AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Comparative proteomics reveals the response and adaptation mechanisms of white Hypsizygus marmoreus against the biological stress caused by Penicillium

Xiuqing Yang,Sizhu LiXiaohang LiChenxiao ZhangMeijie LiuLizhong GuoLin Liu( )Hao Yu( )
Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

Penicillium can produce harmful gas and compete for limited space and nutrients to inhibit White H. marmoreus mycelium growth, which will lead to a final yield and a quality decrease.

• The proteome of white H. marmoreus mycelium with and without contamination by Penicillium was examined. And it was found that a series of interesting changes occurred.

• The mechanism of the edible fungi response to biological stresses and the growth restriction adaptive mechanism were discussed in this paper.

• Our research could provide a theoretical basis for the control of mold contamination and the improvement of cultivation methods.

Abstract

White Hypsizygus marmoreus is a popular edible mushroom. Its mycelium is easy to be contaminated by Penicillium, which leads to a decrease in its quality and yield. Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases, such as benzene, aldehydes, phenols, etc., to inhibit the growth of H. marmoreus mycelium. A series of changes occurred in H. marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry (MS/MS) technique. Some protein s with up-regulated expression worked together to participate in some processes, such as the non-toxic transformation of harmful gases, glutathione metabolism, histone modification, nucleotide excision repair, clearing misfolded proteins, and synthesizing glutamine, which were mainly used in response to biological stress. The proteins with down-regulated expression are mainly related to the processes of ribosome function, protein processing, spliceosome, carbon metabolism, glycolysis, and gluconeogenesis. The reduction in the function of these proteins affected the production of the cell components, which might be an adjustment to adapt to growth retardation. This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi. It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.

Electronic Supplementary Material

Download File(s)
fshw-13-3-1645_ESM1.docx (1.1 MB)
fshw-13-3-1645_ESM10.xlsx (14.7 KB)
fshw-13-3-1645_ESM11.xlsx (14.9 KB)
fshw-13-3-1645_ESM12.xlsx (10.3 KB)
fshw-13-3-1645_ESM2.xlsx (12.5 KB)
fshw-13-3-1645_ESM3.xlsx (904.7 KB)
fshw-13-3-1645_ESM4.xlsx (43.4 KB)
fshw-13-3-1645_ESM5.xlsx (9.3 KB)
fshw-13-3-1645_ESM6.xlsx (10.9 KB)
fshw-13-3-1645_ESM7.xlsx (2.1 MB)
fshw-13-3-1645_ESM8.xlsx (22.3 KB)
fshw-13-3-1645_ESM9.xlsx (40.2 KB)

References

[1]

G. Wang, J. Lin, Y. Shi, et al., Mitochondrial genome in Hypsizygus marmoreus and its evolution in Dikarya, BMC Genom. 20(1) (2019) 765. https://doi.org/10.1186/s12864-019-6133-z.

[2]

X. Yang, R. Lin, K. Xu, et al., Comparative proteomic analysis within the developmental stages of the mushroom white Hypsizygus marmoreus, J. Fungi. 7(12) (2021) 1064. https://doi.org/10.3390/jof7121064.

[3]

M. Mleczek, M. Siwulski, P. Rzymski, et al., Comparison of elemental composition of mushroom Hypsizygus marmoreus originating from commercial production and experimental cultivation, Sci. Hortic. 236(16) (2018) 30-35. https://doi.org/10.1016/j.scienta.2018.03.029.

[4]

B. Min, S. Kim, Y.L. Oh, et al., Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus, BMC Genom. 19(1) (2018) 789. https://doi.org/10.1186/s12864-018-5159-y.

[5]

R. Chien, Y. Yang, E. Lai, et al., Anti-inflammatory effects of extracts from the medicinal mushrooms Hypsizygus marmoreus and Pleurotus eryngii (Agaricomycetes), Int. J. Med. Mushrooms 18(6) (2016) 477-487. https://doi.org/10.1615/IntJMedMushrooms.v18.i6.20.

[6]

P.F. Tsai, C.Y. Ma, J.S. Wu. A novel glycoprotein from mushroom Hypsizygus marmoreus (Peck) Bigelow with growth inhibitory effect against human leukemic U937 cells, Food Chem. 141(2) (2013) 1252-1258. https://doi.org/10.1016/j.foodchem.2013.04.024.

[7]

R.S. Oliveira, S.M.P. Biscaia, D.L. Bellan, et al., Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus, Carbohydr. 225 (2019) 115203. https://doi.org/10.1016/j.carbpol.2019.115203.

[8]

Q. Xu, H. Wang, T. Li, et al., Comparison of phenolics, antioxidant, and antiproliferative activities of two Hypsizygus marmoreus varieties, J. Food Sci. 85(7) (2022) 2227-2235. https://doi.org/10.1111/1750-3841.15173.

[9]

L. Xu, L. Guo, H. Yu. Label-Free comparative proteomics analysis revealed heat stress responsive mechanism in Hypsizygus marmoreus, Front. Microbiol. 11 (2021) 541967. https://doi.org/10.3389/fmicb.2020.541967.

[10]

W. Li, H. Ma, R. He, et al., Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi, Ultrason. Sonochem. 76 (2021) 105613. https://doi.org/10.1016/j.ultsonch.2021.105613

[11]

K. Liu, Y. Gai, A. Fayyaz, et al., Genomic and morphological characteristics of the cold-adapted bacteria Mycetocola saprophilus provide insights into the pathogenesis of soft rot in Flammulina velutipes, Biotechnol. Biotechnol. Equip. 34(1) (2020) 885-897. https://doi.org/10.1080/13102818.2020.1808068.

[12]

X. Chen, X. Zhou, J. Zhao, et al., Occurrence of green mold disease on Dictyophora rubrovolvata caused by Trichoderma koningiopsis, J. Plant Pathol. 103(3) (2021) 981-984. https://link.springer.com/article/10.1007/s42161-021-00861-x.

[13]

Q. Wang, M. Guo, R. Xu, et al., Transcriptional changes on blight fruiting body of Flammulina velutipes caused by two new bacterial pathogens, Front. Microbiol. 10 (2019) 2845. https://doi.org/10.3389/fmicb.2019.02845.

[14]

X.L. He, W.H. Peng, R.Y. Miao, et al., White mold on cultivated morels caused by Paecilomyces penicillatus, FEMS Microbiol. Lett. 364(5) (2017). https://doi.org/10.1093/femsle/fnx037

[15]

M. Cai, M. Idrees, Y. Zhou, et al., First report of green mold disease caused by Trichoderma hengshanicum on Ganoderma lingzhi, Mycobiology 48(5) (2020) 427-430. https://doi.org/10.1080/12298093.2020.1794230.

[16]

X. Ma, X. Fan, G. Wang, et al., Enhanced expression of thaumatin-like protein gene (LeTLP1) endows resistance to Trichoderma atroviride in Lentinula edodes, Life 11(8) (2021) 863. https://doi.org/10.3390/life11080863.

[17]

J.G. Francisco, M. Navarro, M. Santos, et al., Screening and evaluation of essential oils from mediterranean aromatic plants against the mushroom cobweb disease, Cladobotryum mycophilum, Agronomy 9(10) (2019) 656. https://doi.org/10.3390/agronomy9100656.

[18]

F.L. Sossah, Z. Liu, C. Yang, et al., Genome sequencing of Cladobotryum protrusum provides insights into the evolution and pathogenic mechanisms of the cobweb disease pathogen on cultivated mushroom, Genes 10(2) (2019) 124. https://doi.org/10.3390/genes10020124.

[19]

X. Wang, J. Peng, L. Sun, et al., Genome sequencing of Paecilomyces penicillatus provides insights into its phylogenetic placement and mycoparasitism mechanisms on morel mushrooms, Pathogens 9 (10) (2020) 834. https://doi.org/10.3390/pathogens9100834.

[20]

M.A. Kertesz, M. Thai. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms, Appl. Microbiol. Biotechnol. 102(4) (2018) 1639-1650. https://doi.org/10.1007/s00253-018-8777-z.

[21]

Z. Qiu, X. Wu, J. Zhang, et al., High-temperature induced changes of extracellular metabolites in Pleurotus ostreatus and their positive effects on the growth of Trichoderma asperellum, Front. Microbiol. 9 (2018) 10. https://doi.org/10.3389/fmicb.2018.00010.

[22]

K. Oka, A. Ishihara, N. Sakaguchi, et al., Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi, Phytopathologische Zeitschrift 163(11-1) (2015) 987-996. https://doi.org/10.1111/jph.12405.

[23]

J.Y. Liu, M.C. Chang, J.L. Meng, et al., A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress, J. Agr. Food Chem. 66(14) (2018) 3716-3725. https://doi.org/10.1021/acs.jafc.8b00383.

[24]

X. Tong, F. Wang, H. Zhang, et al., iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis, PeerJ. 9 (2021) e10940. https://doi.org/10.7717/peerj.10940.

[25]

J.Y. Liu, J.L. Men, M.C. Chang, et al., iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress, J. Proteomics. 156 (2017) 75-84. https://doi.org/10.1016/j.jprot.2017.01.009.

[26]

M. Chen, J. Liao, H. Li, et al., iTRAQ-MS/MS proteomic analysis reveals differentially expressed proteins during post-harvest maturation of the white button mushroom Agaricus bisporus, Curr. Microbiol. 74(5) (2017) 641-649. https://doi.org/10.1007/s00284-017-1225-y.

[27]

D. Tian, Z. Chen, Y. Lin, et al., Weighted gene co-expression network coupled with a critical-time-point analysis during pathogenesis for predicting the molecular mechanism underlying blast resistance in rice, Rice 13(1) (2020) 81. https://doi.org/10.1186/s12284-020-00439-8.

[28]

A. Sekiya, F.G. Marques, T.F. Leite, et al., Network analysis combining proteomics and metabolomics reveals new insights into early responses of Eucalyptus grandis during rust infection, Front. Plant Sci. 11 (2021) 604849. https://doi.org/10.3389/fpls.2020.604849.

[29]

D.K. Manter, J.M. Vivanco, Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis, J. Microbiol. 71(1) (2007) 7-14. https://doi.org/10.1016/j.mimet.2007.06.016.

[30]

M.A. Lachance. Phylogenies in yeast species descriptions: in defense of neighbor-joining. Yeast 39(10) (2022) 513-520. https://doi.org/10.1002/yea.3812.

[31]

M. Kohl, S. Wiese, B. Warscheid. Cytoscape: software for visualization and analysis of biological networks, Methods Mol. Bio. 696 (2011) 291-303. https://doi.org/10.1007/978-1-60761-987-1_18.

[32]

H. Yu, S. Zhao, W. Lu, et al., A novel gene, encoding 3-aminobenzoate 6-monooxygenase, involved in 3-aminobenzoate degradation in Comamonas sp. strain QT12, Appl. Microbiol. Biotechnol. 102(11) (2018) 4843-4852. https://doi.org/10.1007/s00253-018-9015-4.

[33]

K.M. Andersson, D. Kumar, J. Bentzer, et al., Interspecific and host-related gene expression patterns in nematode-trapping fungi, BMC Genom. 15(1) (2014) 968. https://doi.org/10.1186/1471-2164-15-968.

[34]

N. Rahmad, J.R. Al-Obaidi, N.M. Nor Rashid, et al., Comparative proteomic analysis of different developmental stages of the edible mushroom Termitomyces heimii, Biol. Res. 47(1) (2014) 30. https://doi.org/10.1186/0717-6287-47-30.

[35]

Y. Li, H. Tang, W. Zhao, et al., Study of dimorphism transition mechanism of Tremella fuciformis based on comparative proteomics, J. Fungi 8(3) (2022) 242. https://doi.org/10.3390/jof8030242.

[36]

X. Yang, P. Feng, Y. Yin, et al., Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment, mBio. 9(5) (2018) e01211-18. https://doi.org/10.1128/mBio.01211-18.

[37]

T. Pusztahelyi, I.J. Holb, I. Pócsi. Secondary metabolites in fungusplant interactions, Front. Plant Sci. 6 (2015) 573. https://doi.org/10.3389/fpls.2015.00573.

[38]

R. Whiteford, I. Nurika, T. Schiller, et al., The white-rot fungus, Phanerochaete chrysosporium, under combinatorial stress produces variable oil profiles following analysis of secondary metabolites, J. Appl. Microbiol. 131(3) (2021) 1305-1317. https://doi.org/10.1111/jam.15013.

[39]

J. González De León, R. González Méndez, C.L. Cadilla, et al., Identification of immunoglobulin E-binding proteins of the xerophilic fungus Aspergillus penicillioides crude mycelial mat extract and serological reactivity assessment in subjects with different allergen reactivity profiles, Int. Arch. Allergy Immunol. 175(3) (2018) 147-159. https://doi.org/10.1159/000484898.

[40]

A. Salimi, F. Khodaparast, S. Bohlooli, et al., Linalool reverses benzeneinduced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocytes, Drug Chem. Toxicol. 45(6) (2022) 2454-2462. https://doi.org/10.1080/01480545.2021.1957563.

[41]

M. Cvančarová, Z. Křesinová, A. Filipová, et al., Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products, Chemosphere 88(11) (2012) 1317–1323. https://doi.org/10.1016/j.chemosphere.2012.03.107.

[42]

D.D. Yang, J.M. François, G.M. de Billerbeck. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767, BMC Microbiol. 12 (2012) 126. https://doi.org/10.1186/1471-2180-12-126.

[43]

D.D. Yang, G.M. de Billerbeck, J.J. Zhang, et al., Deciphering the origin, evolution, and physiological function of the subtelomeric aryl-alcohol dehydrogenase gene family in the yeast Saccharomyces cerevisiae, Appl. Environ. 84 (1) (2017) e01553-17. https://doi.org/10.1128/AEM.01553-17.

[44]

T. Asiimwe, K. Krause, I. Schlunk, et al., Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum, Mycorrhiza 22(6) (2012) 471–484. https://doi.org/10.1007/s00572-011-0424-9.

[45]

C. Henke, E.M. Jung, A. Voit, et al., Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: a role for Ald1 in mycorrhizal symbiosis, J. Basic Microbiol. 56(2) (2015) 162–174. https://doi.org/10.1002/jobm.201500381.

[46]

W. Abdul, S.R. Aliyu, L. Lin, et al., Family-four aldehyde dehydrogenases play an indispensable role in the pathogenesis of Magnaporthe oryzae, Front. Plant. Sci. 8(9) (2018) 980. https://doi.org/10.3389/fpls.2018.00980.

[47]

W.D. Chen, Y. Zhang. Regulation of aldo-keto reductases in human diseases, Front. Pharmacol. 3 (2012) 35. https://doi.org/10.3389/fphar.2012.00035.

[48]

L.T.M. Pham, Y.H. Kim. Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri, Enzyme Microb. Technol. 66 (2014) 74-79. https://doi.org/10.1016/j.enzmictec.2014.08.011.

[49]

S. Berne, B. Podobnik, N. Zupanec, et al., Virtual screening yields inhibitors of novel antifungal drug target, benzoate 4-monooxygenase, J. Chem. Inf. Model. 52(11) (2021) 3053-3063. https://doi.org/10.1021/ci3004418.

[50]

C. He, J. Yang, J. Ding, et al., Downregulation of glucose 6 phosphate dehydrogenase by microRNA 1 inhibits the growth of pituitary tumor cells, Oncol. Rep. 40(6) (2018) 3533-3542. https://doi.org/10.3892/or.2018.6755.

[51]

J. Zhang, M. Cao, W. Yang, et al., Inhibition of glucose-6-phosphate dehydrogenase could enhance 1, 4-benzoquinone-induced oxidative damage in K562 cells, Oxid. Med. Cell. Longev. (2016) 3912515. https://doi.org/10.1155/2016/3912515.

[52]

A.N. Carvalho, J.L. Lim, P.G. Nijland, et al., Glutathione in multiple sclerosis: more than just an antioxidant? Mult. Scler. J. 20(11) (2014) 1425-1431. https://doi.org/10.1177/1352458514533400.

[53]

N. Iqbal, S. Umar, T.S. Per, et al., Ethephon increases photosyntheticnitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard, Plant Signal. Behav. 12(5) (2017) e1297000. https://doi.org/10.1080/15592324.2017.1297000.

[54]

J.Y. Yeon, S.J. Yoo, H. Takagi, et al., A novel mitochondrial serine O-acetyltransferase, OpSAT1, plays a critical role in sulfur metabolism in the thermotolerant methylotrophic yeast Ogataea parapolymorpha, Sci. Rep. 8(1) (2018) 2377. https://doi.org/10.1038/s41598-018-20630-8.

[55]

K. Singh, K.P. Singh, A. Equbal, et al., Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani, Biochimie. 131 (2016) 29-44. https://doi.org/10.1016/j.biochi.2016.09.004.

[56]

M. Velayutham, B. Ojha, P.K. Issac, et al., NV14 from serine O-acetyltransferase of cyanobacteria influences the antioxidant enzymes in vitro cells, gene expression against H2O2 and other responses in vivo zebrafish larval model, Cell Biol. Int. 45(11) (2021) 2331-2346. https://doi.org/10.1002/cbin.11680.

[57]

R.J. Mailloux, D. Craig Ayre, S.L. Christian, Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase, Redox. Biol. 8 (2016) 285-297. https://doi.org/10.1016/j.redox.2016.02.002.

[58]

L.C. Chang, S.K. Chiang, S.E. Chen, et al., Targeting 2-oxoglutarate dehydrogenase for cancer treatment, Am. J. Cancer Res.12(4) (2022) 1436-1455.

[59]

J. Zhang, H. Hao, X. Wu, et al., The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus, Appl. Microbiol. Biotechnol. 104(24) (2020) 10555-10570. https://doi.org/10.1007/s00253-020-10981-6.

[60]

Z. Ren, H. He, Z. Zuo, et al., ROS: trichothecenes’ handy weapon? Food Chem. Toxicol. 142 (2020) 111438. https://doi.org/10.1016/j.fct.2020.111438.

[61]

M. Freitag, Histone methylation by SET domain proteins in fungi, Annu. Rev. Microbiol. 71 (2017) 413-439. https://doi.org/10.1146/annurevmicro-102215-095757.

[62]

Y. Chen, J. Wang, N. Yang, et al., Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation, Nat. Commun. 9(1) (2018) 3429. https://doi.org/10.1038/s41467-018-05683-7.

[63]

D. Jaiswal, R. Turniansky, J.J. Moresco, et al., Function of the MYND domain and c-terminal region in regulating the subcellular localization and catalytic activity of the SMYD family lysine methyltransferase set5, Mol. Cell. Biol. 40(2) (2020) e00341-19. https://doi.org/10.1128/MCB.00341-19.

[64]

N. Tuteja, M. Tarique, M.S. Banu, et al., Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase, Plant Mol. Biol. 85(6) (2014) 639-651. https://doi.org/10.1007/s11103-014-0209-6.

[65]

A. Roy, R. Tamuli. Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi, Arch. Microbiol. 204(5) (2022) 240. https://doi.org/10.1007/s00203-022-02833-w.

[66]

Z. Li, P. Srivastava. Heat-shock proteins, Curr. Protoc. Immunol. Appendix 1 (2004) Appendix 1T. https://doi.org/10.1002/0471142735.ima01ts58.

[67]

K. Kataoka, C. Nakamura, T. Asahi, et al., Mitochondrial cereblon functions as a Lon-type protease, Sci. Rep. 6 (2016) 29986. https://doi.org/10.1038/srep29986.

[68]

W. Voos, K. Pollecker. The mitochondrial lon protease: novel functions off the beaten track? Biomolecules 10(2) (2020) 253. https://doi.org/10.3390/biom10020253.

[69]

R.D. Zeinert, H. Baniasadi, B.P. Tu, et al., The lon protease links nucleotide metabolism with proteotoxic stress, Mol. Cell. 79(5) (2020) 758-767.e6. https://doi.org/10.1016/j.molcel.2020.07.011.

[70]

Y. Kimura, Y. Kurata, A. Ishikawa, et al., N-terminal methylation of proteasome subunit Rpt1 in yeast, Proteomics 13(21) (2013) 3167-3174. https://doi.org/10.1002/pmic.201300207.

[71]

Y. Kondo, K. Rikiishi, M. Sugimoto, Rice nudix hydrolase OsNUDX2 Sanitizes oxidized nucleotides, Antioxidants 11(9) (2022) 1805. https://doi.org/10.3390/antiox11091805.

[72]

M Shimizu, N. Takaya. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans, Biosci. Biotechnol. Biochem. 77(9) (2013) 1888–1893. https://doi.org/10.1271/bbb.130334.

[73]

J. Cheng, Q. Luo, H. Duan, et al., Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment, Sci. Rep. 10(1) (2020) 990. https://doi.org/10.1038/s41598-020-57752-x.

[74]

J.M.P. Jorge, F. Pérez-García, V.F. Wendisch. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources, Bioresour. Technol. 245(Pt B) (2017) 1701-1709. https://doi.org/10.1016/j.biortech.2017.04.108.

[75]

J. Adkins, J. Jordan, D.R. Nielsen. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate, Biotechnol Bioeng. 110(6) (2013) 1726-1734. https://doi.org/10.1002/bit.24828.

[76]

S.J. Park, E.Y. Kim, W. Noh, et al., Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals, Metab, 16 (2013) 42-47. https://doi.org/10.1016/j.ymben.2012.11.011.

[77]

F. Pérez-García, J.M.P. Jorge, A. Dreyszas, et al., Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway, Front. Microbiol 9 (2018) 2589. https://doi.org/10.3389/fmicb.2018.02589.

[78]

Y. Sasaki, A. Kojima, Y. Shibata, et al., Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe, PLoS ONE 12(10) (2017) e0186028. https://doi.org/10.1371/journal.pone.0186028.

[79]

O. Aron, M. Wang, L. Lin, et al., MoGLN2 is important for vegetative growth, conidiogenesis, maintenance of cell wall integrity and pathogenesis of Magnaporthe oryzae, J. Fungi. 7(6) (2021) 463. https://doi.org/10.3390/jof7060463.

[80]

P. Chutoam, V. Charoensawan, P. Wongtrakoongate, et al., RpoS and oxidative stress conditions regulate succinyl-CoA: 3-ketoacid-coenzyme A transferase (SCOT) expression in Burkholderia pseudomallei, Microbiol. Immunol. 57(9) (2013) 605-615. https://doi.org/10.1111/1348-0421.12077.

[81]

M. Kamei, K. Yamashita, M. Takahashi, et al., Deletion and expression analysis of beta-(1,3)-glucanosyltransferase genes in Neurospora crassa, Fungal Genet. Biol. 52 (2013) 65-72. https://doi.org/10.1016/j.fgb.2012.12.001.

[82]

Z. Luo, T. Zhang, P. Liu, et al., The Beauveria bassiana gas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline conditions, Appl. Environ. 84(15) (2018) e01086-18. https://doi.org/10.1128/AEM.01086-18.

[83]

S. Venkat, C. Gregory, J. Sturges, et al., Studying the lysine acetylation of malate dehydrogenase, J. Mol. Biol. 429(9) (2017) 1396-1405. https://doi.org/10.1016/j.jmb.2017.03.027.

[84]

W.L. Araújo, L.G. Trofimova, G. Mkrtchyan, et al., On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism, Amino Acids 44(2) (2013) 683-700. https://doi.org/10.1007/s00726-012-1392-x.

[85]

H.B. Aamudalapalli, D. Bertwistle, D.R.J. Palmer, et al., Myo-inositol dehydrogenase and scyllo-inositol dehydrogenase from Lactobacillus casei BL23 bind their substrates in very different orientation, Biochim. Biophys Acta Proteins Proteom 1866(11) (2018) 1115-1124. https://doi.org/10.1016/j.bbapap.2018.08.011.

[86]

S. Wang, H. Chen, X. Tang, et al., The role of glyceraldehyde-3-phosphate dehydrogenases in NADPH supply in the oleaginous filamentous fungus Mortierella alpina, Front. Microbiol. 11 (2020) 818. https://doi.org/10.3389/fmicb.2020.00818.

[87]

N.V. Soroka, A.A. Kulminskaya, E.V. Eneyskaya, et al., Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitolphosphate dehydrogenase, Carbohydr. Res. 340(4) (2005) 539-546. https://doi.org/10.1016/j.carres.2004.11.030.

Food Science and Human Wellness
Pages 1645-1661
Cite this article:
Yang X, Li S, Li X, et al. Comparative proteomics reveals the response and adaptation mechanisms of white Hypsizygus marmoreus against the biological stress caused by Penicillium. Food Science and Human Wellness, 2024, 13(3): 1645-1661. https://doi.org/10.26599/FSHW.2022.9250144

651

Views

128

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 January 2023
Revised: 15 March 2023
Accepted: 27 March 2023
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return