PDF (2.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (2)

Tables (4)
Table 1
Table 2
Table 3
Table 4
Open Access

An overview of potential cardioprotective benefits of xanthophylls in atherosclerosis: an evidence-based review

Yuting Sua,b,cFeng Chena,bJiehua Chena,b()Mingfu Wanga,b,d()
Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
Institution for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Atherosclerosis, as the most prevalent form of cardiovascular disease, is characterized by oxidized lowdensity lipoprotein (ox-LDL) accumulation in the vascular wall, increased inflammation of the large arteries, dysfunction of the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), which may eventually lead to the formation of plaques. Xanthophylls, one of the main groups of carotenoids, have been proposed as preventive agents or adjunct therapies to prevent and slow the progression of atherosclerosis due to their cardioprotective properties. However, the underlying preventive mechanism of action of xanthophylls on the pathogenesis of atherosclerosis remains unclear, and clinical evidence of the effect of xanthophylls on atherosclerosis have not yet been summarized and critically reviewed. In this regard, we conducted a comprehensive literature search in four scientific databases (PubMed, Google Scholar, ScienceDirect and Web of Science) and carefully analyzed the existing evidence to provide meaningful insights on the association between xanthophylls and atherosclerosis from various aspects. Based on the evidence from in vitro and in vivo studies, we explored several potential mechanisms, including antioxidant effect, anti-inflammatory effect, regulation of lipid metabolism, and modulation of ECs and VSMCs dysfunction, and we found that a clear picture of regulatory pathways of xanthophylls on atherosclerosis prevention and treatment is still lacking. In addition, epidemiological studies suggested the possible relationship among high dietary intake of xanthophylls, high plasma/serum xanthophylls and a reduced risk of atherosclerosis. Direct evidence from interventional studies investigating the effect of xanthophylls on atherosclerosis is very sparse, whilst indirect clinical evidence was only limited to astaxanthin and lutein. Therefore, well-designed long-term randomized controlled trials (RCTs) are highly recommended for future studies to investigate the effective dose of different xanthophylls on atherosclerosis prevention and their possible ancillary effect in conjunction with drug therapies on different stages of atherosclerosis.

References

[1]

A. Gisterå, D.F.J. Ketelhuth, S.G. Malin, et al., Animal models of atherosclerosis-supportive notes and tricks of the trade, Circ. Res. 130 (2022) 1869-1887. https://doi.org/10.1161/CIRCRESAHA.122.320263.

[2]

X. Li, H. Qi, W. Cui, et al., Recent advances in targeted delivery of noncoding RNA-based therapeutics for atherosclerosis, Mol. Ther. 30 (2022) 1-15. https://doi.org/10.1016/j.ymthe.2022.07.018.

[3]

M.A. Khan, M.J. Hashim, H. Mustafa, et al., Global epidemiology of ischemic heart disease: results from the global burden of disease study, Cureus 12 (2020) 9349. https://doi.org/10.7759/cureus.9349.

[4]

J.L.M. Björkegren, A.J. Lusis, Atherosclerosis: recent developments, Cell 185 (2022) 1630-1645. https://doi.org/10.1016/j.cell.2022.04.004.

[5]

U. Ralapanawa, R. Sivakanesan, Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review, J. Epidemiol. Glob. Health 11 (2021) 169-177. https://doi.org/10.2991/JEGH.K.201217.001.

[6]

G. Zhang, C. Yu, M. Zhou, et al, Burden of Ischaemic heart disease and attributable risk factors in China from 1990 to 2015: findings from the global burden of disease 2015 study, BMC Cardiovasc. Disord. 18 (2018) 1-13. https://doi.org/10.1186/s12872-018-0761-0.

[7]

I. Ilyas, P.J. Little, Z. Liu, et al., Mouse models of atherosclerosis in translational research, Trends Pharmacol. Sci. (2022) 1-20. https://doi.org/10.1016/j.tips.2022.06.009.

[8]

E. Huwait, M. Ayoub, S. Karim, Investigation of the molecular mechanisms underlying the antiatherogenic actions of kaempferol in human THP-1 macrophages, Int. J. Mol. Sci. 23 (2022) 7461. https://doi.org/10.3390/ijms23137461.

[9]

E.J. Benjamin, P. Muntner, A. Alonso, et al., Heart disease and stroke statistics-2019 update: a report from the American Heart Association, Circulation 139 (2019) 659. https://doi.org/10.1161/CIR.0000000000000659.

[10]

A.M. Ruiz-León, M. Lapuente, R. Estruch, et al., Clinical advances in immunonutrition and atherosclerosis: a review, Front. Immunol. 10 (2019) 837. https://doi.org/10.3389/fimmu.2019.00837.

[11]

H. Duan, Q. Zhang, J. Liu, et al., Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis, Pharmacol. Res. 168 (2021) 105599. https://doi.org/10.1016/j.phrs.2021.105599.

[12]

G. Du, Y. Song, T. Zhang, et al., Simvastatin attenuates TNF-α-induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1, Int. J. Mol. Med. 34 (2014) 177-182. https://doi.org/10.3892/ijmm.2014.1740.

[13]

P.D. Thompson, G. Panza, A. Zaleski, et al, Statin-associated side effects, J. Am. Coll. Cardiol. 67 (2016) 2395-2410. https://doi.org/10.1016/j.jacc.2016.02.071.

[14]

K.K. Patel, V.S. Sehgal, K. Kashfi, Molecular targets of statins and their potential side effects: not all the glitter is gold, Eur. J. Pharmacol. 922 (2022) 174906. https://doi.org/https://doi.org/10.1016/j.ejphar.2022.174906.

[15]

L. Duan, X. Xiong, J. Hu, et al., Panax notoginseng saponins for treating coronary artery disease: a functional and mechanistic overview, Front. Pharmacol. 8 (2017) 702. https://doi.org/10.3389/fphar.2017.00702.

[16]

J. Fang, P.J. Little, S. Xu, Atheroprotective effects and molecular targets of tanshinones derived from herbal medicine danshen, Med. Res. Rev. 38 (2018) 201-228. https://doi.org/10.1002/med.21438.

[17]

H. Zhen, Q. Yan, Y. Liu, et al., Chitin oligosaccharides alleviate atherosclerosis progress in ApoE-/- mice by regulating lipid metabolism and inhibiting inflammation, Food Sci. Hum. Wellness 11 (2022) 999-1009. https://doi.org/10.1016/j.fshw.2022.03.027.

[18]

A.R. Ganesan, U. Tiwari, G. Rajauria, Seaweed nutraceuticals and their therapeutic role in disease prevention, Food Sci. Hum. Wellness 8 (2019) 252-263. https://doi.org/10.1016/j.fshw.2019.08.001.

[19]

A. Ahmadi, T. Jamialahmadi, A. Sahebkar, Polyphenols and atherosclerosis: a critical review of clinical effects on LDL oxidation, Pharmacol. Res. 184 (2022) 106414. https://doi.org/10.1016/j.phrs.2022.106414.

[20]

A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, et al., Oxidative stress in atherosclerosis, Curr. Atheroscler. Rep. 19 (2017) 1-11. https://doi.org/10.1007/s11883-017-0678-6.

[21]

T. Saleh Al-Shehabi, R. Iratni, A.H. Eid, Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells, Phytomedicine 23 (2016) 1068-1081. https://doi.org/10.1016/j.phymed.2015.10.016.

[22]

S. Zhang, L. Li, W. Chen, et al., Natural products: the role and mechanism in low-density lipoprotein oxidation and atherosclerosis, Phytother. Res. 35 (2021) 2945-2967. https://doi.org/10.1002/ptr.7002.

[23]

R. Varghese, C.G.P. Doss, R.S. Kumar, et al., Cardioprotective effects of phytopigments via multiple signaling pathways, Phytomedicine 95 (2022) 153859. https://doi.org/10.1016/j.phymed.2021.153859.

[24]

Y. Kishimoto, H. Yoshida, K. Kondo, Potential anti-atherosclerotic properties of astaxanthin, Mar. Drugs 14 (2016) 35. https://doi.org/10.3390/md14020035.

[25]

M. Le Goff, E. Le Ferrec, C. Mayer, et al., Biochimie microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention, Biochimie. 167 (2019) 106-118. https://doi.org/10.1016/j.biochi.2019.09.012.

[26]

A.D. Patil, P.J. Kasabe, P.B. Dandge, Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin, Nat. Products Bioprospect 12 (2022) 25. https://doi.org/10.1007/s13659-022-00347-y.

[27]

R.C. Mordi, O.T. Ademosun, C.O. Ajanaku, et al., Free radical mediated oxidative degradation of carotenes and xanthophylls, Molecules 25 (2020) 1-13. https://doi.org/10.3390/molecules25051038.

[28]

T. Maoka, Carotenoids as natural functional pigments, J. Nat. Med. 74 (2020) 1-16. https://doi.org/10.1007/s11418-019-01364-x.

[29]

P. Bhosale, P.S. Bernstein, Microbial xanthophylls, Appl. Microbiol. Biotechnol. 68 (2005) 445-455. https://doi.org/10.1007/s00253-005-0032-8.

[30]

S.E. Thomas, E.J. Johnson, Xanthophylls, Adv. Nutr. 9 (2018) 160-162. https://doi.org/10.1093/advances/nmx005.

[31]

P. Bhosale, A.J. Larson, J.M. Frederick, et al., Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye, J. Biol. Chem. 279 (2004) 49447-49454. https://doi.org/10.1074/jbc.M405334200.

[32]

M.M. Calvo, Lutein: a valuable ingredient of fruit and vegetables, Crit. Rev. Food Sci. Nutr. 45 (2005) 671-696. https://doi.org/10.1080/10408690590957034.

[33]

N.I.N. Fuad, M. Sekar, S.H. Gan, et al., Lutein: a comprehensive review on its chemical, biological activities and therapeutic potentials, Pharmacogn. J. 12 (2020) 1769-1778. https://doi.org/10.5530/pj.2020.12.239.

[34]

Y. Jiao, L. Reuss, Y. Wang, β-Cryptoxanthin: chemistry, occurrence, and potential health benefits, Curr. Pharmacol. Reports 5 (2019) 20-34. https://doi.org/10.1007/s40495-019-00168-7.

[35]

B.J. Burri, β-Cryptoxanthin as a source of vitamin A, J. Sci. Food Agric. 95 (2015) 1786-1794. https://doi.org/10.1002/jsfa.6942.

[36]

R.G. Fassett, J.S. Coombes, Astaxanthin: a potential therapeutic agent in cardiovascular disease, Mar. Drugs 9 (2011) 447-465. https://doi.org/10.3390/md9030447.

[37]

W. Tao, X. Ye, Y. Cao, Isomerization and degradation of all-trans-β- carotene during in-vitro digestion, Food Sci. Hum. Wellness 10 (2021) 370-374. https://doi.org/10.1016/j.fshw.2021.02.028.

[38]

S. Beutner, B. Bloedorn, S. Frixel, et al., Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. the role of β-carotene in antioxidant functions, J. Sci. Food Agric. 81 (2001) 559-568. https://doi.org/10.1002/jsfa.849.

[39]

H.D. Martin, S. Kock, R. Scherrers, et al., 3,3'-Dihydroxyisorenieratene, a natural carotenoid with superior antioxidant and photoprotective properties, Angew. Chemie-Int. Ed. 48 (2009) 400-403. https://doi.org/10.1002/anie.200803668.

[40]

M. Bae, M.B. Kim, Y.K. Park, et al., Health benefits of fucoxanthin in the prevention of chronic diseases, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 1865 (2020) 158618. https://doi.org/10.1016/j.bbalip.2020.158618.

[41]

K. Mikami, M. Hosokawa, Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds, Int. J. Mol. Sci. 14 (2013) 13763-13781. https://doi.org/10.3390/ijms140713763.

[42]

H. Zhang, Y. Tang, Y. Zhang, et al., Fucoxanthin: a promising medicinal and nutritional ingredient, evidence-based complement. Altern. Med. 2015 (2015) 723515. https://doi.org/10.1155/2015/723515.

[43]

C. Simonetto, M. Heier, A. Peters, et al., From atherosclerosis to myocardial infarction: a process-oriented model investigating the role of risk factors, Am. J. Epidemiol. 191 (2022) 1766-1775. https://doi.org/10.1093/aje/kwac038.

[44]

A.V. Poznyak, N.K. Sadykhov, A.G. Kartuesov, et al., Hypertension as a risk factor for atherosclerosis: cardiovascular risk assessment, Front. Cardiovasc. Med. (2022) 1-8. https://doi.org/10.3389/fcvm.2022.959285.

[45]

M. Janjusevic, A.L. Fluca, G. Gagno, et al., Old and novel therapeutic approaches in the management of hyperglycemia, an important risk factor for atherosclerosis, Int. J. Mol. Sci. 23 (2022) 2336. https://doi.org/10.3390/ijms23042336.

[46]

B. Yao, L.B. Meng, M.L. Hao, et al., Chronic stress a critical risk factor for atherosclerosis, J. Int. Med. Res. 47 (2019) 1429-1440. https://doi.org/10.1177/0300060519826820.

[47]

E. Mccracken, M. Uk, M. Monaghan, et al., Pathophysiology of the metabolic syndrome, Clin. Dermatol. 36 (2018) 14-20. https://doi.org/10.1016/j.clindermatol.2017.09.004.

[48]

X. Jiang, W. Tian, M.R. Nicolls, et al, The lymphatic system in obesity, insulin resistance, and cardiovascular diseases, Front. Physiol. 10 (2019) 1-10. https://doi.org/10.3389/fphys.2019.01402.

[49]

H.K. Neuhauser, The metabolic syndrome, Lancet 366 (2005) 1415-1428. https://doi.org/10.1016/s0140-6736(05)67780-x.

[50]

J.J. Bax, Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging, Nat. Rev. Cardiol. 18 (2021) 291-304. https://doi.org/10.1038/s41569-020-00465-5.

[51]

D. Montaigne, X. Marechal, A. Coisne, et al., Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients, Circulation 130 (2014) 554-564. https://doi.org/10.1161/CIRCULATIONAHA.113.008476.

[52]

G. Basta, Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications, Atherosclerosis 196 (2008) 9-21. https://doi.org/10.1016/j.atherosclerosis.2007.07.025.

[53]

C.A. Reardon, A. Lingaraju, K.Q. Schoenfelt, et al., Obesity and insulin resistance promote atherosclerosis through an IFNγ-regulated macrophage protein network, Cell Reports 23 (2018) 3021-3030. https://doi.org/10.1016/j.celrep.2018.05.010.

[54]

E.A. Ivanova, V.A. Myasoedova, A.A. Melnichenko, et al., Small dense lowdensity lipoprotein as biomarker for atherosclerotic diseases, Oxid. Med. Cell Longev. 2017 (2017) 1273042. https://doi.org/10.1155/2017/1273042.

[55]

K. Lechner, A.L. Mckenzie, N. Kra, et al., High-risk atherosclerosis and metabolic phenotype: the roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation, Metab. Syndr. Relat. Disord. 18 (2020) 176-185. https://doi.org/10.1089/met.2019.0115.

[56]

B. Ning, Y. Chen, B. Waqar, et al., Hypertension enhances advanced atherosclerosis and induces cardiac death in watanabe heritable hyperlipidemic rabbits, Am. J. Pathol. 188 (2018) 2936-2947. https://doi.org/10.1016/j.ajpath.2018.08.007.

[57]

A.V. Poznyak, A.V. Grechko, V.A. Orekhova, et al., Oxidative stress and antioxidants in atherosclerosis development and treatment, Biology 9 (2020) 60. https://doi.org/10.3390/biology9030060.

[58]

Y. Liu, X. Luo, H. Jia, et al., The effect of blood pressure variability on coronary atherosclerosis plaques, Front. Cardiovasc. Med. 9 (2022) 1-10. https://doi.org/10.3389/fcvm.2022.803810.

[59]

P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533. https://doi.org/10.1038/s41586-021-03392-8.

[60]

K. Malekmohammad, E.E. Bezsonov, M. Rafieian-Kopaei, Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms, Front. Cardiovasc. Med. 8 (2021) 1-16. https://doi.org/10.3389/fcvm.2021.707529.

[61]

X. Liu, J. Wu, R. Tian, et al., Targeting foam cell formation and macrophage polarization in atherosclerosis: the therapeutic potential of rhubarb, Biomed. Pharmacother. 129 (2020) 110433. https://doi.org/10.1016/j.biopha.2020.110433.

[62]

V.N. Sukhorukov, V.A. Khotina, Y.S. Chegodaev, et al., Lipid metabolism in macrophages: focus on atherosclerosis, Biomedicines 8 (2020) 1-15. https://doi.org/10.3390/BIOMEDICINES8080262.

[63]

J. van Tuijl, L.A.B. Joosten, M.G. Netea, et al., Immunometabolism orchestrates training of innate immunity in atherosclerosis, Cardiovasc. Res. 115 (2019) 1416-1424. https://doi.org/10.1093/cvr/cvz107.

[64]

L. Gonzalez, B.L. Trigatti, Macrophage apoptosis and necrotic core development in atherosclerosis: a rapidly advancing field with clinical relevance to imaging and therapy, Can. J. Cardiol. 33 (2017) 303-312. https://doi.org/10.1016/j.cjca.2016.12.010.

[65]

G.K. Hansson, Regulation of immune mechanisms in atherosclerosis, Ann. N. Y. Acad. Sci. 947 (2001) 157-166. https://doi.org/10.1111/j.1749-6632.2001.tb03938.x.

[66]

L. Badimon, G. Vilahur, Thrombosis formation on atherosclerotic lesions and plaque rupture, J. Intern. Med. 276 (2014) 618-632. https://doi.org/10.1111/joim.12296.

[67]

C. Wang, R. Qiu, Y. Cao, et al., Higher dietary and serum carotenoid levels are associated with lower carotid intima-media thickness in middle-aged and elderly people, Br. J. Nutr. 119 (2018) 590-598. https://doi.org/10.1017/S0007114517003932.

[68]

Y. Wang, S.J. Chung, M.L. McCullough, et al., Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations, J. Nutr. 144 (2014) 1067-1074. https://doi.org/10.3945/jn.113.184317.

[69]

F. Khachik, G. Englert, C.E. Daitch, et al., Isolation and structural elucidation of the geometrical isomers of lutein and zeaxanthin in extracts from human plasma, J. Chromatogr. B: Biomed. Sci. Appl. 582 (1992) 153-166. https://doi.org/10.1016/0378-4347(92)80314-G.

[70]

A.V. Rao, L.G. Rao, Carotenoids and human health, Pharmacol. Res. 55 (2007) 207-216. https://doi.org/10.1016/j.phrs.2007.01.012.

[71]

W.P. Koh, J.M. Yuan, R. Wang, et al., Plasma carotenoids and risk of acute myocardial infarction in the Singapore Chinese health study, Nutr. Metab. Cardiovasc. Dis. 21 (2011) 685-690. https://doi.org/10.1016/j.numecd.2009.12.005.

[72]

X.R. Xu, Z.Y. Zou, Y.M. Huang, et al., Serum carotenoids in relation to risk factors for development of atherosclerosis, Clin. Biochem. 45 (2012) 1357-1361. https://doi.org/10.1016/j.clinbiochem.2012.07.101.

[73]

J.H. Dwyer, M. Navab, K.M. Dwyer, et al., Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study, Circulation 103 (2001) 2922-2927. https://doi.org/10.1161/01.CIR.103.24.2922.

[74]

J.H. Dwyer, M.J. Paul-Labrador, J. Fan, et al., Progression of carotid intimamedia thickness and plasma antioxidants: the Los Angeles atherosclerosis study, Arterioscler. Thromb. Vasc. Biol. 24 (2004) 313-319. https://doi.org/10.1161/01.ATV.0000109955.80818.8a.

[75]

J. Karppi, S. Kurl, J.A. Laukkanen, et al., Plasma carotenoids are related to intima-media thickness of the carotid artery wall in men from eastern Finland, J. Intern. Med. 270 (2011) 478-485. https://doi.org/10.1111/j.1365-2796.2011.02401.x.

[76]

C. Iribarren, A.R. Folsom, J. Jacobs David, et al., Association of serum vitamin levels, LDL susceptibility to oxidation, and autoantibodies against MDA-LDL with carotid atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 17 (1997) 1171-1177. https://doi.org/10.1161/01.ATV.17.6.1171.

[77]

Z. Zou, X. Xu, Y. Huang, et al., High serum level of lutein may be protective against early atherosclerosis: the Beijing atherosclerosis study, Atherosclerosis 219 (2011) 789-793. https://doi.org/10.1016/j.atherosclerosis.2011.08.006.

[78]

R.W.S. Chung, P. Leanderson, A.K. Lundberg, et al., Lutein exerts antiinflammatory effects in patients with coronary artery disease, Atherosclerosis 262 (2017) 87-93. https://doi.org/10.1016/j.atherosclerosis.2017.05.008.

[79]

W.M.R. van Herpen-Broekmans, I.A.A. Klöpping-Ketelaars, M.L. Bots, et al., Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation., Eur. J. Epidemiol. 19 (2004) 915-921. https://doi.org/10.1007/s10654-004-5760-z.

[80]

X.R. Xu, Z.Y. Zou, X. Xiao, et al., Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population, J. Atheroscler. Thromb. 20 (2013) 170-177. https://doi.org/10.5551/jat.14365.

[81]

H. Yoshida, H. Yanai, K. Ito, et al., Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia, Atherosclerosis 209 (2010) 520-523. https://doi.org/10.1016/j.atherosclerosis.2009.10.012.

[82]

H.D. Choi, Y.K. Youn, W.G. Shin, Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects, Plant Foods Hum. Nutr. 66 (2011) 363-369. https://doi.org/10.1007/s11130-011-0258-9.

[83]

N.S. Mashhadi, M. Zakerkish, J. Mohammadiasl, et al., Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus, Asia Pac. J. Clin. Nutr. 27 (2018) 341-346. https://doi.org/10.6133/apjcn.052017.11.

[84]

T. Iwamoto, K. Hosoda, R. Hirano, et al., Inhibition of low-density lipoprotein oxidation by astaxanthin, J. Atheroscler. Thromb. 7 (2000) 216-222. https://doi.org/10.5551/jat1994.7.216.

[85]

J. Karppi, T.H. Rissanen, K. Nyyssönen, et al., Effects of astaxanthin supplementation on lipid peroxidation, Int. J. Vitam. Nutr. Res. 77 (2007) 3-11. https://doi.org/10.1024/0300-9831.77.1.3.

[86]

J.E. Kim, J.O. Leite, R. de Ogburn, et al., A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of guinea pigs, J. Nutr. 141 (2011) 1458-1463. https://doi.org/10.3945/jn.111.141630.

[87]

K. Nakagawa, T. Kiko, T. Miyazawa, et al., Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes, Br. J. Nutr. 105 (2011) 1563-1571. https://doi.org/10.1017/S0007114510005398.

[88]

M.X. Wang, J.H. Jiao, Z.Y. Li, et al., Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers, Atherosclerosis 227 (2013) 380-385. https://doi.org/10.1016/j.atherosclerosis.2013.01.021.

[89]

J.H. Kim, M.J. Chang, H.D. Choi, et al., Protective effects of haematococcus astaxanthin on oxidative stress in healthy smokers, J. Med. Food 14 (2011) 1469-1475. https://doi.org/10.1089/jmf.2011.1626.

[90]

M. Iwabayashi, N. Fujioka, K. Nomoto, et al., Efficacy and safety of eightweek treatment with astaxanthin in individuals screened for increased oxidative stress burden, Anti-Aging Med. 6 (2009) 15-21. https://doi.org/10.3793/jaam.6.15.

[91]

J.S. Park, J.H. Chyun, Y.K. Kim, et al., Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans, Nutr. Metab. 7 (2010) 1-10. https://doi.org/10.1186/1743-7075-7-18.

[92]

R.W.S. Chung, P. Leanderson, A.K. Lundberg, et al., Lutein exerts antiinflammatory effects in patients with coronary artery disease, Atherosclerosis 262 (2017) 87-93. https://doi.org/10.1016/j.atherosclerosis.2017.05.008.

[93]

D. Burtenshaw, M. Kitching, E.M. Redmond, et al., Reactive oxygen species (ROS), intimal thickening, and subclinical atherosclerotic disease, Front. Cardiovasc. Med. 6 (2019) 1-18. https://doi.org/10.3389/fcvm.2019.00089.

[94]

E. Niki, Oxidant-specific biomarkers of oxidative stress. association with atherosclerosis and implication for antioxidant effects, Free Radic. Biol. Med. 120 (2018) 425-440. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2018.04.001.

[95]

H. Sies, Strategies of antioxidant defense, Eur. J. Biochem. 219 (1993) 213-219. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x.

[96]

K. Malekmohammad, R.D.E. Sewell, M. Rafieian-Kopaei, Antioxidants and atherosclerosis: mechanistic aspects, Biomolecules 9 (2019) 1-19. https://doi.org/10.3390/biom9080301.

[97]

C.D. Fan, J.Y. Sun, X.T. Fu, et al., Astaxanthin attenuates homocysteineinduced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage, Front. Physiol. 8 (2017) 1-10. https://doi.org/10.3389/fphys.2017.01041.

[98]

P. Régnier, J. Bastias, V. Rodriguez-Ruiz, et al., Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity, Mar. Drugs. 13 (2015) 2857-2874. https://doi.org/10.3390/md13052857.

[99]

H.C. Ou, W.C. Chou, P.M. Chu, et al., Fucoxanthin protects against oxLDLinduced endothelial damage via activating the AMPK-Akt-CREB-PGC1α pathway, Mol. Nutr. Food Res. 63 (2019) 1-10. https://doi.org/10.1002/mnfr.201801353.

[100]

P. Rajendran, A.M. AlZahrani, Fucoxanthin suppresses oxLDL-induced inflammation via activation of Nrf2 and inhibition of NF-κB signaling, Asian Pac. J. Trop. Biomed. 12 (2022) 207-215. https://doi.org/10.4103/2221-1691.343388.

[101]

L. Li, H. Dong, E. Song, et al., Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling, Chem. Biol. Interact. 209 (2014) 56-67. https://doi.org/10.1016/j.cbi.2013.12.005.

[102]

D. Hu, C. Yin, S. Luo, et al., Vascular smooth muscle cells contribute to atherosclerosis immunity, Front. Immunol. 10 (2019) 1101. https://doi.org/10.3389/fimmu.2019.01101.

[103]

Y. Chen, S. Li, Y. Guo, et al., Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stressinduced mitochondrial dysfunction, Oxid. Med. Cell. Longev. 2020 (2020) 4629189. https://doi.org/10.1155/2020/4629189.

[104]

H.M. Lo, Y.J. Tsai, W.Y. Du, et al., A naturally occurring carotenoid, lutein, reduces PDGF and H2O2 signaling and compromised migration in cultured vascular smooth muscle cells, J. Biomed. Sci. 19 (2012) 1-10. https://doi.org/10.1186/1423-0127-19-18.

[105]

Y.F. Chiang, C.H. Tsai, H.Y. Chen, et al., Protective effects of fucoxanthin on hydrogen peroxide-induced calcification of heart valve interstitial cells, Mar. Drugs 19 (2021) 307. https://doi.org/10.3390/md19060307.

[106]

H. Han, W. Cui, L. Wang, et al., Lutein prevents high fat diet-induced atherosclerosis in ApoE-deficient mice by inhibiting NADPH oxidase and increasing PPAR expression, Lipids 50 (2015) 261-273. https://doi.org/10.1007/s11745-015-3992-1.

[107]

P.R. Augusti, G.M.M. Conterato, S. Somacal, et al., Astaxanthin reduces oxidative stress, but not aortic damage in atherosclerotic rabbits, J. Cardiovasc. Pharmacol. Ther. 14 (2009) 314-322. https://doi.org/10.1177/1074248409350136.

[108]

Z.Y. Deng, W.G. Shan, S.F. Wang, et al., Effects of astaxanthin on blood coagulation, fibrinolysis and platelet aggregation in hyperlipidemic rats, Pharm. Biol. 55 (2017) 663-672. https://doi.org/10.1080/13880209.2016.1261905.

[109]

R. Kumar, K.J. Salwe, M. Kumarappan, Evaluation of antioxidant, hypolipidemic, and antiatherogenic property of lycopene and astaxanthin in atherosclerosis-induced rats, Pharmacognosy Res. 9 (2017) 161-167. https://doi.org/10.4103/0974-8490.204654.

[110]

A.S. Shatoor, S. Al Humayed, Astaxanthin ameliorates high-fat diet-induced cardiac damage and fibrosis by upregulating and activating SIRT1, Saudi J. Biol. Sci. 28 (2021) 7012-7021. https://doi.org/10.1016/j.sjbs.2021.07.079.

[111]

M. Westerterp, A.E. Bochem, L. Yvan-Charvet, et al., ATP-binding cassette transporters, atherosclerosis, and inflammation, Circ. Res. 114 (2014) 157-170. https://doi.org/10.1161/CIRCRESAHA.114.300738.

[112]

F.M. van Der Valk, S. Bekkering, J. Kroon, et al., Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans, Circulation 134 (2016) 611-624. https://doi.org/10.1161/CIRCULATIONAHA.116.020838.

[113]

C.P.M. Pereira, A.C.R. Souza, A.R. Vasconcelos, et al., Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases, Int. J. Mol. Med. 47 (2021) 37-48. https://doi.org/10.3892/ijmm.2020.4783.

[114]

H. Xu, J. Jiang, W. Chen, et al., Vascular macrophages in atherosclerosis, J. Immunol. Res. 2019 (2019). https://doi.org/10.1155/2019/4354786.

[115]

F. Visioli, C. Artaria, Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps, Food Funct. 8 (2017) 39-63. https://doi.org/10.1039/C6FO01721E.

[116]

Y. Yao, H.M. Goh, J.E. Kim, The roles of carotenoid consumption and bioavailability in cardiovascular health, Antioxidants 10 (2021) 1978. https://doi.org/10.3390/antiox10121978.

[117]

F. Xia, C. Wang, Y. Jin, et al., Luteolin protects HUVECs from TNF-α- induced oxidative stress and inflammation via its effects on the Nox4/ROSNF-κB and MAPK pathways, J. Atheroscler. Thromb. 21 (2014) 768-783. https://doi.org/10.5551/jat.23697.

[118]

L. Boamponsem A.G. Boamponsem, The role of inflammation in atherosclerosis, Adv. Appl. Sci. Res. 39 (2010) 140-146. https://doi.org/10.1055/s-0030-1253323.

[119]

G. Battineni, G.G. Sagaro, N. Chintalapudi, et al., Impact of obesity-induced inflammation on cardiovascular diseases, Int. J. Mol. Sci. 22 (2021) 4798. https://doi.org/10.3390/ijms22094798.

[120]

P. Lin, Q. Ren, Q. Wang, et al., Carotenoids inhibit fructose-induced inflammatory response in human endothelial cells and monocytes, Mediators Inflamm. 2020 (2020) 5373562. https://doi.org/10.1155/2020/5373562.

[121]

A. Grasa-López, Á. Miliar-García, L. Quevedo-Corona, et al., Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of dietinduced obesity, Mar. Drugs 14 (2016) 148. https://doi.org/10.3390/md14080148.

[122]

M.J. Hsieh, C.Y. Huang, R. Kiefer, et al., Cardiovascular disease and possible ways in which lycopene acts as an efficient cardio-protectant against different cardiovascular risk factors, Molecules 27 (2022) 3235. https://doi.org/10.3390/molecules27103235.

[123]

K.J. Moore, F.J. Sheedy, E.A. Fisher, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol. 13 (2013) 709-721. https://doi.org/10.1038/nri3520.

[124]

M. Cuchel, D.J. Rader, Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?, Circulation 113 (2006) 2548-2555. https://doi.org/10.1161/CIRCULATIONAHA.104.475715.

[125]

J. Yan, T. Horng, Lipid metabolism in regulation of macrophage functions, Trends Cell Biol. 30 (2020) 979-989. https://doi.org/10.1016/j.tcb.2020.09.006.

[126]

M. Izuka, M. Ayaori, H. Uto-Kondo, et al., Astaxanthin enhances ATPbinding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages, J. Nutr. Sci. Vitaminol. 58 (2012) 96-104. https://doi.org/10.3177/jnsv.58.96.

[127]

J. Liu, Y. Wei, Y. Lin, et al., Expression of the circular RNAs in astaxanthin promotes cholesterol efflux from THP-1 cells based on RNA-seq, Genes Nutr. 16 (2021) 1-12. https://doi.org/10.1186/s12263-021-00693-5.

[128]

H. Fu, C. Wu, H. Riaz, et al., β-Cryptoxanthin uptake in THP-1 macrophages upregulates the CYP27A1 signaling pathway, Mol. Nutr. Food Res. 58 (2014) 425-436. https://doi.org/10.1002/mnfr.201300329.

[129]

M. Norlin, K. Wikvall, Enzymes in the conversion of cholesterol into bile acids, Curr. Mol. Med. 7 (2007) 199-218. https://doi.org/10.2174/156652407780059168

[130]

Y. Yang, J.M. Seo, A. Nguyen, et al., Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice, J. Nutr. 141 (2011) 1611-1617. https://doi.org/10.3945/jn.111.142109.

[131]

X. Wang, M.R. Briggs, X. Hua, et al., Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. Ⅱ. purification and characterization, J. Biol. Chem. 268 (1993) 14497-14504. https://doi.org/10.1016/s0021-9258(19)85266-3.

[132]

T.B. Zou, S.S. Zhu, F. Luo, et al., Effects of astaxanthin on reverse cholesterol transport and atherosclerosis in mice, Biomed Res. Int. 2017 (2017) 4625932. https://doi.org/10.1155/2017/4625932.

[133]

S.K. Ryu, T.J. King, K. Fujioka, et al., Effect of an oral astaxanthin prodrug (CDX-085) on lipoprotein levels and progression of atherosclerosis in LDLR-/- and ApoE-/- mice, Atherosclerosis 222 (2012) 99-105. https://doi.org/10.1016/j.atherosclerosis.2012.02.002.

[134]

F. Beppu, M. Hosokawa, Y. Niwano, et al., Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice, Lipids Health Dis. 11 (2012) 1-8. https://doi.org/10.1186/1476-511X-11-112.

[135]

M.N. Woo, S.M. Jeon, H.J. Kim, et al., Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice, Chem. Biol. Interact. 186 (2010) 316-322. https://doi.org/10.1016/j.cbi.2010.05.006.

[136]

M. Araki, Y. Nakagawa, A. Oishi, et al., The peroxisome proliferatoractivated receptor α (PPARα) agonist pemafibrate protects against dietinduced obesity in mice, Int. J. Mol. Sci. 19 (2018) 1-21. https://doi.org/10.3390/ijms19072148.

[137]

B.E. Sumpio, J. T. Riley, A. Dardik, Cells in focus: endothelial cell, Int. J. Biochem. Cell Biol. 34 (2002) 1508-1512. https://doi.org/10.1016/s1357-2725(02)00075-4.

[138]

M.A. Jr. Gimbrone, G. García-Cardeña, Endothelial cell dysfunction and the. pathobiology of atherosclerosis, Circ. Res. 118 (2016) 620-636. https://doi.org/10.1161/CIRCRESAHA.115.306301.

[139]

S. Sitia, L. Tomasoni, F. Atzeni, et al., From endothelial dysfunction to atherosclerosis, Autoimmun. Rev. 9 (2010) 830-834. https://doi.org/10.1016/j.autrev.2010.07.016.

[140]

S. Xu, I. Ilyas, P.J. Little, et al., Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies, Pharmacol. Rev. 73 (2021) 924-967. https://doi.org/10.1124/PHARMREV.120.000096.

[141]

P.M. Vanhoutte, Endothelial dysfunction and atherosclerosis, Eur. Heart J. 18 (1997) 19-29. https://doi.org/10.1016/S0195-668X(97)90005-1.

[142]

D.J. Preiss, N. Sattar, Vascular cell adhesion molecule-1: a viable therapeutic target for atherosclerosis?, Int. J. Clin. Pract. 61 (2007) 697-701. https://doi.org/10.1111/j.1742-1241.2007.01330.x.

[143]

P. Marchio, S. Guerra-Ojeda, J.M. Vila, et al., Targeting early atherosclerosis: a focus on oxidative stress and inflammation, Oxid. Med. Cell. Longev. 2019 (2019) 3845. https://doi.org/10.1155/2019/8563845.

[144]

X.J. Wang, D.C. Tian, F.W. Wang, et al., Astaxanthin inhibits homocysteineinduced endothelial cell dysfunction via the regulation of the reactive oxygen species-dependent VEGF-VEGFR2-FAK signaling pathway, Mol. Med. Rep. 19 (2019) 4753-4760. https://doi.org/10.3892/mmr.2019.10162.

[145]

K.R. Martin, D. Wu, M. Meydani, The effect of carotenoids on the expression of cell surface adhesion molecules and binding of monocytes to human aortic endothelial cells, Atherosclerosis 150 (2000) 265-274. https://doi.org/10.1016/S0021-9150(99)00375-5.

[146]

J. Monroy-Ruiz, M.Á. Sevilla, R. Carrón, et al., , Astaxanthin-enricheddiet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats, Pharmacol. Res. 63 (2011) 44-50. https://doi.org/10.1016/j.phrs.2010.09.003.

[147]

T. Hatabu, T. Harada, Y. Takao, et al., Daily meal supplemented with astaxanthin-enriched yolk has mitigative effects against hypertension in spontaneously hypertensive rats, Biol. Pharm. Bull. 43 (2020) 404-408. https://doi.org/10.1248/bpb.b19-01013.

[148]

Y. Xue, C. Sun, Q. Hao, et al., Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats, Naunyn. Schmiedebergs. Arch. Pharmacol. 392 (2019) 341-348. https://doi.org/10.1007/s00210-018-1595-0.

Food Science and Human Wellness
Pages 1739-1755
Cite this article:
Su Y, Chen F, Chen J, et al. An overview of potential cardioprotective benefits of xanthophylls in atherosclerosis: an evidence-based review. Food Science and Human Wellness, 2024, 13(4): 1739-1755. https://doi.org/10.26599/FSHW.2022.9250147
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return