AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Review on dietary supplements as an effective improvement of Alzheimer’s disease: focus on structures and mechanisms

Sheng Lia,bYinling WeiaZhenzhen Lianga,bLingli GuoaXiaojiang Haoa( )Yu Zhanga,( )
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

Alzheimer’s disease (AD), the major form of neurodegenerative diseases that can severely impede normal cognitive function, makes it one of the most common fatal diseases. There are currently over 50 million AD patients worldwide. The neuropathology of AD is perplexing and there is a scarcity of disease-modifying treatments. Currently, early diagnosis of AD has been made possible with the discovery of biological markers associated with pathology, providing strong support for the improvement of the disease status. The search for inhibitors of AD markers from dietary supplements (DSs) has become a major hot topic. Especially with the widespread use of DSs, DSs containing polyphenols, alkaloids, terpenes, polysaccharides and other bioactive components can prevent AD by reducing Aβ deposition, inhibiting tau protein hyperphosphorylation, reconstructing synaptic dysfunction, weakening cholinesterase activity, regulating mitochondrial oxidative stress, neuronal inflammation and apoptosis. This review summarizes the anti-AD effects of the main DSs and their bioactive constituents, as well as the potential molecular mechanisms covers from 2017 to 2023. Additionally, we discussed the opportunities and challenges faced by DSs in the process of AD prevention and treatment, aiming to further provide new perspectives for functional food development.

References

[1]

M. Goedert, M.G. Spillantini, A century of Alzheimer’s disease, Science 314(5800) (2006) 777-781. https://doi.org/10.1126/science.1132814.

[2]

P. Scheltens, B. de Strooper, M. Kivipelto, et al., Alzheimer’s disease, Lancet 397(10284) (2021) 1577-1590. https://doi.org/10.1016/S0140-6736(20)32205-4.

[3]

M.J. Ferreira, T.S. Martins, O. da Cruz E Silva, et al., Bioinformatic analysis of senile plaques and neurofibrillary tangles proteomes, Alzheimers. Dement. 17 (2021) e057796. https://doi.org/10.1002/alz.057796.

[4]

G. Halliday, Pathology and hippocampal atrophy in Alzheimer’s disease, Lancet Neurol. 16(11) (2017) 862-864. https://doi.org/10.1016/S1474-4422(17)30343-5.

[5]

H.J. Barbian, N.S. Lurain, D.A. Bennett, et al., HCMV infection induces AD pathology in astrocytes in vitro: molecular and cell biology/neuroinflammation, Alzheimers. Dement. 16 (2020) e039591. https://doi.org/10.1002/alz.039591.

[6]

M.S. Albert, S.T. DeKosky, D. Dickson, et al., The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging: Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers. Dement. 7(3) (2011) 270-279. https://doi.org/10.1016/j.jalz.2011.03.008.

[7]

H. Brodaty, M. Donkin, Family caregivers of people with dementia, Dialogues Clin. Neurosci. (2009) 217-228. https://doi.org/10.31887/DCNS.2009.11.2/hbrodaty.

[8]

X.P. Liao, Y. Huang, Z.L. Zhang, et al., Factors associated with healthrelated quality of life among family caregivers of people with Alzheimer’s disease, Psychogeriatrics 20(4) (2020) 398-405. https://doi.org/10.1111/psyg.12528.

[9]

H. McGurran, J. Glenn, E. Madero, et al., Risk reduction and prevention of Alzheimer’s disease: biological mechanisms of diet, Curr. Alzheimer. Res. 17(5) (2020) 407-427. https://doi.org/10.2174/1567205017666200624200651.

[10]

Alzheimer’s Association, 2018 Alzheimer’s disease facts and figures, Alzheimers. Dement. 14(5) (2018) 367-429. https://doi.org/10.1016/j.jalz.2018.02.001.

[11]

L. Jalili-Baleh, E. Babaei, S. Abdpour, et al., A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease, Eur. J. Med. Chem. 152 (2018) 570-589. https://doi.org/10.1016/j.ejmech.2018.05.004.

[12]

J.C. Lee, S.J. Kim, S. Hong, et al., Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers, Exp. Mol. Med. 51(5) (2019) 1-10. https://doi.org/10.1038/s12276-019-0250-2.

[13]

P.P. Liu, Y. Xie, X.Y. Meng, et al., History and progress of hypotheses and clinical trials for Alzheimer’s disease, Signal Transduct. Target. Ther. 4(1) (2019) 29. https://doi.org/10.1038/s41392-019-0063-8.

[14]

M. Tolar, S. Abushakra, M. Sabbagh, The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis, Alzheimers. Dement. (2019). https://doi.org/10.1016/j.jalz.2019.09.075.

[15]

J. Hardy, D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer’s disease, Trends Pharmacol. Sci. 12 (1991) 383-388. https://doi.org/10.1016/0165-6147(91)90609-V.

[16]

G. Šimić, M. Babić Leko, S. Wray, et al., Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies, Biomolecules 6(1) (2016) 6. https://doi.org/10.3390/biom6010006.

[17]

P. Davies, A. Maloney, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 308 (1976) 1403. https://doi.org/10.1016/S0140-6736(76)91936-X.

[18]

C.H. Latta, H.M. Brothers, D.M. Wilcock, Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy, Neuroscience 302 (2015) 103-111. https://doi.org/10.1016/j.neuroscience.2014.09.061.

[19]

R.H. Swerdlow, S.M. Khan, A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses 63(1) (2004) 8-20. https://doi.org/10.1016/j.mehy.2003.12.045.

[20]

M.P. Mattson, B. Cheng, D. Davis, et al., β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12(2) (1992) 376-389. https://doi.org/10.1523/jneurosci.12-02-00376.1992.

[21]

B.R. Roberts, T.M. Ryan, A.I. Bush, et al., The role of metallobiology and amyloid-β peptides in Alzheimer’s disease, J. Neurochem. 120 (2012) 149-166. https://doi.org/10.1111/j.1471-4159.2011.07500.x.

[22]

C. Iadecola, Neurovascular regulation in the normal brain and in Alzheimer’s disease, Nat. Rev. Neurosci. 5 (2004) 347-360. https://doi.org/10.1038/nrn1387.

[23]

S. Da Mesquita, A. Louveau, A. Vaccari, et al., Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease, Nature 560 (2018) 185-191. https://doi.org/10.1038/s41586-018-0368-8.

[24]

J.Q. Cao, J.W. Hou, J. Ping, et al., Advances in developing novel therapeutic strategies for Alzheimer’s disease, Mol. Neurodegener. 13 (2018) 1-20. https://doi.org/10.1186/s13024-018-0299-8.

[25]

O. Benek, J. Korabecny, O. Soukup, A perspective on multi-target drugs for Alzheimer’s disease, Trends Pharmacol. Sci. 41(7) (2020) 434-445. https://doi.org/10.1016/j.tips.2020.04.008.

[26]

S. Dhillon, Aducanumab: first approval, Drugs 81 (2021) 1437-1443. https://doi.org/10.1007/s40265-021-01569-z.

[27]

The Lancet. Lecanemab for Alzheimer’s disease: tempering hype and hope, Lancet 400(10367) (2022) 1899. https://doi.org/10.1016/S0140-6736(22)02480-1.

[28]

Y.P. Yan, J.Y. Chen, J.H. Lu, Disease-modifying activity of huperzine A on Alzheimer’s disease: evidence from preclinical studies on rodent models, Int. J. Mol. Sci. 23(23) (2022) 15238. https://doi.org/10.3390/ijms232315238.

[29]

Y.Y. Syed, Sodium oligomannate: first approval. Drugs 80(4) (2020) 441-444. https://doi.org/10.1007/s40265-020-01268-1.

[30]

M. Tolar, S. Abushakra, J.A. Hey, et al., Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval, Alzheimer’s Res. Ther. 12 (2020) 1-10. https://doi.org/10.1186/s13195-020-00663-w.

[31]

M.B. Colovic, D.Z. Krstic, T.D. Lazarevic-Pasti, et al., Acetylcholinesterase inhibitors: pharmacology and toxicology, Curr. Neuropharmacol. 11(3) (2013) 315-335. https://doi.org/10.2174/1570159x11311030006.

[32]

D.A. Casey, D. Antimisiaris, J. O’Brien, Drugs for Alzheimer’s disease: are they effective?, Pharmacol. Ther. 35(4) (2010) 208-211.

[33]

R.S. Shah, H.G. Lee, Z. Xiongwei, et al., Current approaches in the treatment of Alzheimer’s disease, Biomed. Pharmacother. 62(4) (2008) 199-207. https://doi.org/10.1016/j.biopha.2008.02.005.

[34]

J.T. Brewster, S. Dell’Acqua, D.Q. Thach, et al., Classics in chemical neuroscience: donepezil, ACS Chem. Neurosci. 10(1) (2018) 155-167. https://doi.org/10.1021/acschemneuro.8b00517.

[35]

B.R. Pinho, F. Ferreres, P. Valentão, et al., Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer’s disease treatment, J. Pharm. Pharmacol. 65(12) (2013) 1681-1700. https://doi.org/10.1111/jphp.12081.

[36]

M. Raskind, E. Peskind, T. Wessel, et al., Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension, Neurology 54(12) (2000) 2261-2268. https://doi.org/10.1212/WNL.54.12.2261.

[37]

J.C. Pendergrass, S.D. Targum, K. Drake, et al., P3-297: stability in cognitive and neurobehavioral assessments between screen and baseline in an Alzheimer’s disease trial, Alzheimers Dement. 11 (2015) 748-749. https://doi.org/10.1016/j.jalz.2015.06.1670.

[38]

Y. Zhang, P.Y. Li, J.B. Feng, et al., Dysfunction of NMDA receptors in Alzheimer’s disease, Neurol. Sci. 37 (2016) 1039-1047. https://doi.org/10.1007/s10072-016-2546-5.

[39]

J.M. Long, D.M. Holtzman, Alzheimer disease: an update on pathobiology and treatment strategies, Cell 179(2) (2019) 312-339. https://doi.org/10.1016/j.cell.2019.09.001.

[40]

W. Zheng, X.H. Li, X.H. Yang, et al., Adjunctive memantine for schizophrenia: a meta-analysis of randomized, double-blind, placebo-controlled trials, Psychol. Med. 48(1) (2018) 72-81. https://doi.org/10.1017/S0033291717001271.

[41]

R. Chen, P.T. Chan, H. Chu, et al., Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: a meta-analysis, PLoS One 12(8) (2017) e0183586. https://doi.org/10.1371/journal.pone.0183586.

[42]

E. Betoret, N. Betoret, D. Vidal, et al., Functional foods development: trends and technologies, Trends Food Sci. Technol. 22(9) (2011) 498-508. https://doi.org/10.1016/j.tifs.2011.05.004.

[43]

D. Barauskaite, J. Gineikiene, B.M. Fennis, et al., Eating healthy to impress: how conspicuous consumption, perceived self-control motivation, and descriptive normative influence determine functional food choices, Appetite 131 (2018) 59-67. https://doi.org/10.1016/j.appet.2018.08.015.

[44]

E. Czepielewska, M. Makarewicz-Wujec, F. Różewski, et al., Drug adulteration of food supplements: a threat to public health in the European Union?, Regul. Toxicol. Pharmacol. 97 (2018) 98-102. https://doi.org/10.1016/j.yrtph.2018.06.014.

[45]

F. Colombo, P. Restani, S. Biella, et al., Botanicals in functional foods and food supplements: tradition, efficacy and regulatory aspects, Appl. Sci. 10(7) (2020) 2387. https://doi.org/10.3390/app10072387.

[46]

X. Meng, Q. Li, R. Shi, et al., Food supplements could be an effective improvement of diabetes mellitus: a review, J. Future Foods 1(1) (2021) 67-81. https://doi.org/10.1016/j.jfutfo.2021.09.003.

[47]

C.P. Wolf, T. Rachow, T. Ernst, et al., Interactions in cancer treatment considering cancer therapy, concomitant medications, food, herbal medicine and other supplements, J. Cancer Res. Clin. Oncol. 148 (2022) 461-473. https://doi.org/10.1007/s00432-021-03625-3.

[48]

R. Businaro, D. Vauzour, J. Sarris, G. Münch, et al., Therapeutic opportunities for food supplements in neurodegenerative disease and depression, Front. Nutr. 8 (2021) 669846. https://doi.org/10.3389/fnut.2021.669846.

[49]

R. Leuci, L. Brunetti, V. Poliseno, et al., Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases, Foods 10(1) (2020) 29. https://doi.org/10.3390/foods10010029.

[50]

S.G. Wang, D. Sun-Waterhouse, G.I.N. Waterhouse, et al., Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: a review, Trends Food Sci. Technol. 116 (2021) 712-732. https://doi.org/10.1016/j.tifs.2021.04.056.

[51]

G.E. Bigford, G. Del Rossi, Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders, Adv. Nutr. 5(4) (2014) 394-403. https://doi.org/10.3945/an.113.005264.

[52]

P. Deshpande, N. Gogia, A. Singh, Exploring the efficacy of natural products in alleviating Alzheimer’s disease, Neural Regen. Res. 14(8) (2019) 1321. https://doi.org/10.4103/1673-5374.253509.

[53]

R.A. Armstrong, Risk factors for Alzheimer’s disease, Folia Neuropathol. 57(2) (2019) 87-105. https://doi.org/10.5114/fn.2019.85929.

[54]

L.B. Martins, A.L. Malheiros Silveira, A.L. Teixeira, The link between nutrition and Alzheimer’s disease: from prevention to treatment, Neurodegener. Dis. Manag. 11(2) (2021) 155-166. https://doi.org/10.2217/nmt-2020-0023.

[55]

L. Shinto, J. Quinn, T. Montine, et al., A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease, J. Alzheimers Dis. 38(1) (2014) 111-120. https://doi.org/10.3233/JAD-130722.

[56]

S.S.M. Fernández, S.M.L. Ribeiro. Nutrition and Alzheimer disease, Clin. Geriatr. Med. 34(4) (2018) 677-697. https://doi.org/10.1016/j.cger.2018.06.012.

[57]

J.E. de la Rubia Ortí, M.P. García-Pardo, E. Drehmer, et al., Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: a pilot study, J. Alzheimers Dis. 65(2) (2018) 577-587. https://doi.org/10.3233/JAD-180184.

[58]

B. Klimova, M. Novotny, K. Kuca, et al., Effect of an extra-virgin olive oil intake on the delay of cognitive decline: role of secoiridoid oleuropein?, Neuropsychiatr. Dis. Treat. (15) (2019) 3033-3040. https://doi.org/10.2147/NDT.S218238.

[59]

L.A. Aschettino, C.A. Labyak, C. Sealey-Potts, Nutritional treatments for alzheimer’s disease: a narrative review, Alzheimers. Dement. 17(s8) (2021) e053172. https://doi.org/10.1002/alz.053172.

[60]

I.X. Luo, K. Ali, Q.L Chen, Effect of nutrition in Alzheimer’s disease: a systematic review, Front. Neurosci. 17 (2023) 1147177. https://doi.org/10.3389/fnins.2023.1147177.

[61]

F. Pistollato, R. Calderon Iglesias, R. Ruiz, et al., Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies, Pharmacol. Res. 131 (2018) 32-43. https://doi.org/10.1016/j.phrs.2018.03.012.

[62]

K.B. Pandey, S.I. Rizvi, Plant polyphenols as dietary antioxidants in human health and disease, Oxidative Med. Cell. Longev. 2 (2009) 270-278. https://doi.org/10.4161/oxim.2.5.9498.

[63]

I.F. do Valle, H.G. Roweth, M.W. Malloy, et al., Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols, Nat. Food 2 (2021) 143-155. https://doi.org/10.1038/s43016-021-00243-7.

[64]

M. Sobhani, M.H. Farzaei, S. Kiani, et al., Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: a comparative review on the parental compounds and their metabolites, Food Rev. Int. 37(8) (2021) 759-811. https://doi.org/10.1080/87559129.2020.1717523.

[65]

S. Sajadimajd, R. Bahramsoltani, A. Iranpanah, et al., Advances on natural polyphenols as anticancer agents for skin cancer, Pharmacol. Res. 151 (2020) 104584. https://doi.org/10.1016/j.phrs.2019.104584.

[66]

W.Y. Ma, L.G. Xiao, H.Y. Liu, et al., Hypoglycemic natural products with in vivo activities and their mechanisms: a review, Food Sci. Hum. Wellness 11(5) (2022) 1087-1100. https://doi.org/10.1016/j.fshw.2022.04.001.

[67]

W.Z. Hao, H. Gan, L. Wang, et al., Polyphenols in edible herbal medicine: targeting gut-brain interactions in depression-associated neuroinflammation, Crit. Rev. Food Sci. Nutr. (2022) 1-17. https://doi.org/10.1080/10408398.2022.2099808.

[68]

T. Jayasena, A. Poljak, G. Smythe, et al., The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease, Ageing Res. Rev. 12(4) (2013) 867-883. https://doi.org/10.1016/j.arr.2013.06.003.

[69]

J. Wang, G.M. Pasinetti, P1-408: tageting synaptic dysfunction through dietary polyphenol as a novel therapeutic intervention for AD, Alzheimers. Dement. 10 (2014) 463-463. https://doi.org/10.1016/j.jalz.2014.05.651.

[70]

M. Akaberi, A. Sahebkar, S.A. Emami, Turmeric and curcumin: from traditional to modern medicine.Studies on biomarkers and new targets in aging research in Iran, Adv. Exp. Medi. Biol. 1291 (2021) 15-39. https://doi.org/10.1007/978-3-030-56153-6_2.

[71]

E.P.O.F. Additives, N.S.A.T. Food, Scientific opinion on the re-evaluation of curcumin (E 100) as a food additive, EFSA J. 8(9) (2010) 1679. https://doi.org/10.2903/j.efsa.2010.1679.

[72]

M. Shah, W. Murad, S. Mubin, et al., Multiple health benefits of curcumin and its therapeutic potential, Environ. Sci. Pollut. Res. 29 (2022) 43732-43744. https://doi.org/10.1007/s11356-022-20137-w.

[73]

S.S. Patel, A. Acharya, R. Ray, et al., Cellular and molecular mechanisms of curcumin in prevention and treatment of disease, Crit. Rev. Food Sci. Nutr. 60(6) (2020) 887-939. https://doi.org/10.1080/10408398.2018.1552244.

[74]

M.M. Serafini, M. Catanzaro, M. Rosini, et al., Curcumin in Alzheimer’s disease: can we think to new strategies and perspectives for this molecule?, Pharmacol. Res. 124 (2017) 146-155. https://doi.org/10.1016/j.phrs.2017.08.004.

[75]

H.C. Huang, D. Tang, K. Xu, et al., Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway, J. Recept. Signal Transduct. 34(1) (2014) 26-37. https://doi.org/10.3109/10799893.2013.848891.

[76]

T. Dubey, S.K. Sonawane, M.C. Mannava, et al., The inhibitory effect of curcumin-artemisinin co-amorphous on tau aggregation and tau phosphorylation, Colloid Surf. B-Biointerfaces. 221 (2023) 112970. https://doi.org/10.1016/j.colsurfb.2022.112970.

[77]

K. Ono, K. Hasegawa, H. Naiki, et al., Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro, J. Neurosci. Res. 75(6) (2004) 742-750. https://doi.org/10.1002/jnr.20025.

[78]

M. Garcia-Alloza, L. Borrelli, A. Rozkalne, et al., Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model, J. Neurochem. 102(4) (2007) 1095-1104. https://doi.org/10.1111/j.1471-4159.2007.04613.x.

[79]

Y.J. Wang, P. Thomas, J.H. Zhong, et al., Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse, Neurotox. Res. 15 (2009) 3-14. https://doi.org/10.1007/s12640-009-9000-x.

[80]

M.X. Tang, C. Taghibiglou, The mechanisms of action of curcumin in Alzheimer’s disease, J. Alzheimer’s Dis. 58(4) (2017) 1003-1016. https://doi.org/10.3233/JAD-170188.

[81]

J. Burns, T. Yokota, H. Ashihara, et al., Plant foods and herbal sources of resveratrol, J. Agric. Food Chem. 50(11) (2002) 3337-3340. https://doi.org/10.1021/jf0112973.

[82]

X.X. Chen, J. Zhang, N. Yin, et al., Resveratrol in disease prevention and health promotion: a role of the gut microbiome, Crit. Rev. Food Sci. Nutr. (2022) 1-18. https://doi.org/10.1080/10408398.2022.2159921.

[83]

S.X. Wu, R.G. Xiong, S.Y. Huang, et al., Effects and mechanisms of resveratrol for prevention and management of cancers: an updated review, Crit. Rev. Food Sci. Nutr. (2022) 1-19. https://doi.org/10.1080/10408398.2022.2101428.

[84]

N. Katila, R. Duwa, S. Bhurtel, et al., Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol, J. Control. Release. 346 (2022) 1-19. https://doi.org/10.1016/j.jconrel.2022.04.003.

[85]

Z.F. Xie, X. Chen, Healthy benefits and edible delivery systems of resveratrol: a review, Food Rev. Int. (2021) 1-27. https://doi.org/10.1080/87559129.2021.2013873.

[86]

J.Y. Chen, Q. Zhu, S. Zhang, et al., Resveratrol in experimental Alzheimer’s disease models: a systematic review of preclinical studies, Pharmacol. Res. 150 (2019) 104476. https://doi.org/10.1016/j.phrs.2019.104476.

[87]

S. Schweiger, F. Matthes, K. Posey, et al., Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex, Sci. Rep. 7(1) (2017) 1-13. https://doi.org/10.1038/s41598-017-12974-4.

[88]

W.M. Al-Bishri, A.H. Hamza, S.K. Farran, Resveratrol treatment attenuates amyloid beta, Tau protein and markers of oxidative stress, and inflammation in Alzheimer’s disease rat model, Int. J. Pharm. Res. Allied Sci. 6(3) (2017) 71-78.

[89]

T.C. Huang, K.T. Lu, Y.Y.P. Wo, et al., Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation, PLoS ONE 6(12) (2011) e29102. https://doi.org/10.1371/journal.pone.0029102.

[90]

Q.H. Gong, F. Li, F. Jin, et al., Resveratrol attenuates neuroinflammation-mediated cognitive deficits in rats, J. Health Sci. 56(6) (2010) 655-663. https://doi.org/10.1248/jhs.56.655.

[91]

H.B. Yu, T. Yamashita, X. Hu, et al., Protective and anti-oxidative effects of curcumin and resveratrol on Aβ-oligomer-induced damage in the SHSY5Y cell line, J. Neurol. Sci. 441 (2022) 120356. https://doi.org/10.1016/j.jns.2022.120356.

[92]

J.L. Dennison, C.H. Volmar, F. Modarresi, et al., JOTROL, a novel formulation of resveratrol, shows beneficial effects in the 3xTg-AD mouse model, J. Alzheimer’s Dis. 86(1) (2022) 173-190. https://doi.org/10.3233/JAD-215370.

[93]

Y.J. Chiu, Y.S. Teng, C.M. Chen, et al., A neuroprotective action of quercetin and apigenin through inhibiting aggregation of Aβ and activation of TRKB signaling in a cellular eExperiment, Biomol. Ther. (2023). https://doi.org/10.4062/biomolther.2022.136.

[94]

S.J. Nan, P. Wang, Y.Z. Zhang, et al., Epigallocatechin-3-gallate provides protection against Alzheimer’s disease-induced learning and memory impairments in rats, Drug Des. Devel. Ther. 15 (2021) 2013-2024. https://doi.org/10.2147/DDDT.S289473.

[95]

M. Kuşi, E. Becer, H.S. Vatansever, et al., Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for Alzheimer’s disease, J. Am. Nutr. Assoc. 42(4) (2022) 418-426. https://doi.org/10.1080/07315724.2022.2062488.

[96]

S. Kouhestani, A. Jafari, P. Babaei, Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia, Neural Regen. Res. 13(10) (2018) 1827-1832. https://doi.org/10.4103/1673-5374.238714.

[97]

L. Zhao, J.L. Wang, R. Liu, et al., Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model, Molecules 18(8) (2013) 9949-9965. https://doi.org/10.3390/molecules18089949.

[98]

Y.H. Siddique, G. Ara, M. Afzal, et al., Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease, Chem. Biol. Interact. 366 (2022) 110120. https://doi.org/10.1016/j.cbi.2022.110120.

[99]

H.W. Gao, X. Lei, S. Ye, et al., Genistein attenuates memory impairment in Alzheimer’s disease via ERS-mediated apoptotic pathway in vivo and in vitro, J. Nutr. Biochem. 109 (2022) 109118. https://doi.org/10.1016/j.jnutbio.2022.109118.

[100]

X. Jin, M.Y. Liu, D.F. Zhang, et al., Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway, CNS Neurosci. Ther. 25(5) (2019) 575-590. https://doi.org/10.1111/cns.13086.

[101]

Y. Kang, J.H. Lee, Y.H. Seo, et al., Epicatechin prevents methamphetamine-induced neuronal cell death via inhibition of ER stress, Biomol. Ther. 27(2) (2019) 145. https://doi.org/10.4062/biomolther.2018.092.

[102]

J.J. Yan, J.Y. Cho, H.S. Kim, et al., Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid, Br. J. Pharmacol. 133(1) (2001) 89-96. https://doi.org/10.1038/sj.bjp.0704047.

[103]

L.J. Gao, X.Q. Li, S. Meng, et al., Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway, Drug Des. Devel. Ther. 14 (2020) 1705-1716. https://doi.org/10.2147/DDDT.S235969.

[104]

M. Shi, F. Sun, Y.B. Wang, et al., CGA restrains the apoptosis of Aβ25-35-induced hippocampal neurons, Int. J. Neurosci. 130(7) (2020) 700-707. https://doi.org/10.1080/00207454.2019.1702547.

[105]

J.J. Kou, J.Z. Shi, Y.Y. He, et al., Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation, Acta Pharmacol. Sin. 43 (2022) 840-849. https://doi.org/10.1038/s41401-021-00702-8.

[106]

K. Murakami, K. Irie, Three structural features of functional food components and herbal medicine with amyloid β42 anti-aggregation properties, Molecules 24(11) (2019) 2125. https://doi.org/10.3390/molecules24112125.

[107]

A.M. Kimura, M. Tsuji, T. Yasumoto, et al., Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria, Free Radic. Biol. Med. 171(2021) 232-244. https://doi.org/10.1016/j.freeradbiomed.2021.05.019.

[108]

M. Yu, X.W. Chen, J.H. Liu, et al., Gallic acid disruption of Aβ1-42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse, Neurobiol. Dis. 124 (2019) 67-80. https://doi.org/10.1016/j.nbd.2018.11.009.

[109]

J. Feng, J.X. Wang, Y.H. Du, et al., Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice, CNS Neurosci. Ther. 24(12) (2018) 1207-1218. https://doi.org/10.1111/cns.12983.

[110]

L.H. Weng, H. Zhang, X.X. Li, et al., Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia, Int. Immunopharmacol. 44 (2017) 1-8. https://doi.org/10.1016/j.intimp.2016.12.018.

[111]

L.S. Meng, G. Xin, B. Li, et al., Anthocyanins extracted from Aronia melanocarpa protect SH-SY5Y cells against amyloid-beta (1-42)-induced apoptosis by regulating Ca2+ homeostasis and inhibiting mitochondrial dysfunction, J. Agric. Food Chem. 66(49) (2018) 12967-12977. https://doi.org/10.1021/acs.jafc.8b05404.

[112]

Y. Ano, R. Ohya, M. Kita, et al., Theaflavins improve memory impairment and depression-like behavior by regulating microglial activation, Molecules 24(3) (2019) 467. https://doi.org/10.3390/molecules24030467.

[113]

Y.H. Peng, C. Hou, Z.Q. Yang, et al., Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice, Mol. Nutr. Food Res. 60(11) (2016) 2331-2342. https://doi.org/10.1002/mnfr.201600332.

[114]

F. Islam, J.F. Khadija, M. Harun-Or-Rashid, et al., Bioactive compounds and their derivatives: an insight into prospective phytotherapeutic approach against Alzheimer’s disease, Oxidative Med. Cell. Longev. 2022 (2022). https://doi.org/10.1155/2022/5100904.

[115]

A.G. Osman, S. Haider, A.G. Chittiboyina, et al., Utility of alkaloids as chemical and biomarkers for quality, efficacy, and safety assessment of botanical ingredients, Phytomedicine 54 (2019) 347-356. https://doi.org/10.1016/j.phymed.2018.03.064.

[116]

S.A. Hussain, N.R. Panjagari, R. Singh, et al., Potential herbs and herbal nutraceuticals: food applications and their interactions with food components, Crit. Rev. Food Sci. Nutr. 55(1) (2015) 94-122. https://doi.org/10.1080/10408398.2011.649148.

[117]

P. Brevoort, The US botanical market: an overview, HerbalGram. 36 (1996) 49-57.

[118]

B. Debnath, W.S. Singh, M. Das, et al., Role of plant alkaloids on human health: a review of biological activities, Mater. Today Chem. 9 (2018) 56-72. https://doi.org/10.1016/j.mtchem.2018.05.001.

[119]

L.J. Scott, K.L. Goa, Galantamine: a review of its use in Alzheimer’s disease, Drugs 60 (2000) 1095-1122. https://doi.org/10.2165/00003495-200060050-00008.

[120]

R. van der Kant, V. Langness, R.A. Rissman, et al., A high-throughput drug screen identifies berberine as a potent inducer of tau clearance, Alzheimers Dement. 16 (2020) e044798. https://doi.org/10.1002/alz.044798.

[121]

H.Y. Zhang, New insights into huperzine A for the treatment of Alzheimer’s disease, Acta Pharmacol. Sin. 33 (2012) 1170-1175. https://doi.org/10.1038/aps.2012.128.

[122]

Y.F. Shi, H.Y. Zhang, W. Wang, et al., Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors, Acta Pharmacol. Sin. 30 (2009) 1195-1203. https://doi.org/10.1038/aps.2009.91.

[123]

Y.F. Zhang, Y.Y. Gu, H.H. Ren, et al., Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study), Nat. Commun. 11 (2020) 5015. https://doi.org/10.1038/s41467-020-18414-8.

[124]

X.R. Gu, J.Y. Zhou, Y.Y. Zhou, et al., Huanglian Jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer’s disease progression based on the “brain-gut” axis through multiple integrated omics, Alzheimer’s Res. Ther. 13 (2021) 44. https://doi.org/10.1186/s13195-021-00779-7.

[125]

Y.B. Han, M. Tian, X.X. Wang, et al., Berberine ameliorates obesity-induced chronic inflammation through suppression of ER stress and promotion of macrophage M2 polarization at least partly via downregulating lncRNA Gomafu, Int. Immunopharmacol. 86 (2020) 106741. https://doi.org/10.1016/j.intimp.2020.106741.

[126]

S. Marcheluzzo, M. Faggian, M. Zancato, et al., Analysis of monacolins and berberine in food supplements for lipid control: an overview of products sold on the Italian market, Molecules 26(8) (2021) 2222. https://doi.org/10.3390/molecules26082222.

[127]

M. Shayganfard, Berberine: is a promising agent for mental disorders treatment?, Curr.Molec.Pharmacol. 16(3) (2023) 307-320. https://doi.org/10.2174/1874467215666220509213122.

[128]

C.H. Ye, Y.B. Liang, Y. Chen, et al., Berberine improves cognitive impairment by simultaneously impacting cerebral blood flow and β-amyloid accumulation in an APP/tau/PS1 mouse model of Alzheimer’s disease, Cells 10(5) (2021) 1161. https://doi.org/10.3390/cells10051161.

[129]

L.Y. Jia, J. Liu, Z. Song, et al., Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways, J. Pharm. Pharmacol. 64(10) (2012) 1510-1521. https://doi.org/10.1111/j.2042-7158.2012.01529.x.

[130]

G. Mishra, R. Awasthi, A.K. Singh, et al., Intranasally co-administered berberine and curcumin loaded in transfersomal vesicles improved inhibition of amyloid formation and BACE-1, ACS Omega 7(47) (2022) 43290-43305. https://doi.org/10.1021/acsomega.2c06215.

[131]

L. Lin, C. Li, D.Y. Zhang, et al., Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model, Neurochem. Res. 45 (2020) 1130-1141. https://doi.org/10.1007/s11064-020-02992-6.

[132]

Y. Chen, Y.L. Chen, Y.B. Liang, et al., Berberine mitigates cognitive decline in an Alzheimer’s disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance, Biomed. Pharmacother. 121(2020) 109670. https://doi.org/10.1016/j.biopha.2019.109670.

[133]

R.L. Zhang, B.X. Lei, G.Y. Wu, et al., Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway, Bioorganic Chem. 133 (2023) 106210. https://doi.org/10.1016/j.bioorg.2022.106210.

[134]

M. Huang, X. Jiang, Y.B. Liang, et al., Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease, Exp. Gerontol. 91 (2017) 25-33. https://doi.org/10.1016/j.exger.2017.02.004.

[135]

H.Y. Zhang, X.C. Tang, Huperzine B, a novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells, Neurosci. Lett. 292(1) (2000) 41-44. https://doi.org/10.1016/S0304-3940(00)01433-6.

[136]

J. Liu, H.Y. Zhang, L.M. Wang, et al., Inhibitory effects of huperzine B on cholinesterase activity in mice, Acta Pharmacol. Sin. 20(2) (1999) 141-145.

[137]

I. Kiris, W. Kukula-Koch, M. Karayel-Basar, et al., Proteomic alterations in the cerebellum and hippocampus in an Alzheimer’s disease mouse model: alleviating effect of palmatine, Biomed. Pharmacother. 158 (2023) 114111. https://doi.org/10.1016/j.biopha.2022.114111.

[138]

W.Z. Jia, Q.N. Su, Q. Cheng, et al., Neuroprotective effects of palmatine via the enhancement of antioxidant defense and small heat shock protein expression in Aβ-transgenic caenorhabditis elegans, Oxid. Med. Cell. Longev. 2021 (2021). https://doi.org/10.1155/2021/9966223.

[139]

D. Yu, B.B. Tao, Y.Y. Yang, et al., The IDO inhibitor coptisine ameliorates cognitive impairment in a mouse model of Alzheimer’s disease, J. Alzheimer’s Dis. 43(1) (2015) 291-302. https://doi.org/10.3233/JAD-140414.

[140]

W.O. Castillo, A.F. Aristizabal-Pachon, A.P. de Lima Montaldi, et al., Galanthamine decreases genotoxicity and cell death induced by β-amyloid peptide in SH-SY5Y cell line, Neurotoxicology 57 (2016) 291-297. https://doi.org/10.1016/j.neuro.2016.10.013.

[141]

W.Y. Fu, K.W. Hung, S.F. Lau, et al., Rhynchophylline administration ameliorates amyloid-β pathology and inflammation in an Alzheimer’s disease transgenic mouse model, ACS Chem. Neurosci. 12(22) (2021) 4249-4256. https://doi.org/10.1021/acschemneuro.1c00600.

[142]

A.K. Fua, K.W. Hunga, H. Huanga, et al., Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease, PNAS 111(27) (2014) 9959-9964. https://doi.org/10.1073/pnas.1405803111.

[143]

H.Q. Li, S.P. Ip, Q.J. Yuan, et al., Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: studies in a transgenic mouse model of Alzheimer’s disease, Brain Behav. Immun. 82 (2019) 264-278. https://doi.org/10.1016/j.bbi.2019.08.194.

[144]

S.G. Sreenivasmurthy, A. Iyaswamy, S. Krishnamoorthi, et al., Protopine promotes the proteasomal degradation of pathological tau in Alzheimer’s disease models via HDAC6 inhibition, Phytomedicine 96 (2022) 153887. https://doi.org/10.1016/j.phymed.2021.153887.

[145]

D. Ren, Y. Fu, L. Wang, et al., Tetrandrine ameliorated Alzheimer’s disease through suppressing microglial inflammatory activation and neurotoxicity in the 5XFAD mouse, Phytomedicine 90 (2021) 153627. https://doi.org/10.1016/j.phymed.2021.153627.

[146]

F.Q. He, B.Y. Qiu, T.K. Li, et al., Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells, Int. Immunopharmacol. 11(9) (2011) 1220-1225. https://doi.org/10.1016/j.intimp.2011.03.023.

[147]

B.C.K. Tong, A.S. Huang, A.J. Wu, et al., Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies, J. Biomed. Sci. 29 (2022) 85. https://doi.org/10.1186/s12929-022-00871-6.

[148]

S. Li, L.L. Han, K.P. Huang, et al., New monoterpenoid indole alkaloids from Tabernaemontana crassa inhibit β-amyloid 42 production and phospho-Tau (Thr217), Int. J. Mol. Sci. 24(2) (2023) 1487. https://doi.org/10.3390/ijms24021487.

[149]
K.A. Adedokun, S.O. Imodoye, I.O. Bello, et al., Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery, in: C. Egbuna, M. Rudrapal, H, Tijjani (Eds.), Phytochemistry, computational tools and databases in drug discovery, Elsevier, 2023, pp.393-455. https://doi.org/10.1016/B978-0-323-90593-0.00017-4.
[150]

L. Caputi, E. Aprea, Use of terpenoids as natural flavouring compounds in food industry, Recent Pat. food, Nutr. Agric. 3(1) (2011) 9-16. https://doi.org/10.2174/2212798411103010009.

[151]

F. Abbas, Y. Ke, R. Yu, et al., Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering, Planta 246 (2017) 803-816. https://doi.org/10.1007/s00425-017-2749-x.

[152]

L.D. do Nascimento, A.A.B. de Moraes, K.S. da Costa, et al., Bioactive natural compounds and antioxidant activity of essential oils from spice plants: new findings and potential applications, Biomolecules 10(7) (2020) 988. https://doi.org/10.3390/biom10070988.

[153]

M.E. Bergman, B. Davis, M.A. Phillips, Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action, Molecules 24(21) (2019) 3961. https://doi.org/10.3390/molecules24213961.

[154]

Y.X. Liu, H.W. Xin, Y.C. Zhang, et al., Leaves, seeds and exocarp of Ginkgo biloba L.(Ginkgoaceae): a comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity, J. Ethnopharmacol. (2022) 115645. https://doi.org/10.1016/j.jep.2022.115645.

[155]

P. Klomsakul, A. Aiumsubtub, P. Chalopagorn, Evaluation of antioxidant activities and tyrosinase inhibitory effects of Ginkgo biloba tea extract, Sci. World J. 2022 (2022). https://doi.org/10.1155/2022/4806889.

[156]

S. Czigle, J. Tóth, N. Jedlinszki, et al., Ginkgo biloba food supplements on the European market-adulteration patterns revealed by quality control of selected samples, Planta Med.84(6/7) (2018) 475-482. https://doi.org/10.1055/a-0581-5203.

[157]

S. Petrović, L. Ušjak, Herbal medicines from ginkgo leaf extract in the treatment of mild dementia, Arhiv Za Farmaciju 70 (Notebook 2) (2020) 81-97. https://doi.org/10.5937/arhfarm2002081p.

[158]

L.C. Kuo, Y.Q. Song, C.A. Yao, et al., Ginkgolide A prevents the amyloid-β-induced depolarization of cortical neurons, J. Agric. Food Chem. 67(1) (2018) 81-89. https://doi.org/10.1021/acs.jafc.8b04514.

[159]

J.M. Liu, T. Ye, Y.H Zhang, et al., Protective effect of ginkgolide B against cognitive impairment in mice via regulation of gut microbiota, J. Agric. Food Chem. 69(41) (2021) 12230-12240. https://doi.org/10.1021/acs.jafc.1c05038.

[160]

Y.D. Zhang, Y. Zhao, J. Zhang, et al., Ginkgolide B inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization in Aβ1-42-induced microglia cells, Neurosci. Lett. 764 (2021) 136206. https://doi.org/10.1016/j.neulet.2021.136206.

[161]

L. Shao, C. Dong, D.Q. Geng, et al., Ginkgolide B inactivates the NLRP3 inflammasome by promoting autophagic degradation to improve learning and memory impairment in Alzheimer’s disease, Metab. Brain Dis. 37(2) (2022) 329-341. https://doi.org/10.1007/s11011-021-00886-2.

[162]

I. Gill, S. Kaur, N. Kaur, et al., Phytochemical ginkgolide B attenuates amyloid-β1-42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells, J. Alzheimer’s Dis. 60(Suppl 1) (2017) 25-40. https://doi.org/10.3233/jad-161086.

[163]

Q. Guo, J.B. He, H. Zhang, et al., Oleanolic acid alleviates oxidative stress in Alzheimer’s disease by regulating stanniocalcin-1 and uncoupling protein-2 signalling, Clin. Exp. Pharmacol. Physiol. 47(7) (2020) 1263-1271. https://doi.org/10.1111/1440-1681.13292.

[164]

L.G. Zhang, R.X. Xia, J.P. Jia, et al., Oleanolic acid protects against cognitive decline and neuroinflammation-mediated neurotoxicity by blocking secretory phospholipase A2 ⅡA-activated calcium signals, Mol. Immunol. 99 (2018) 95-103. https://doi.org/10.1016/j.molimm.2018.04.015.

[165]

X. Zhao, X.S. Huang, C. Yang, et al., Artemisinin attenuates amyloid-induced brain inflammation and memory impairments by modulating TLR4/NF-κB signaling, Int. J. Mol. Sci. 23(11) (2022) 6354. https://doi.org/10.3390/ijms23116354.

[166]

Z.W. Zeng, J.Y. Xu, W.H. Zheng, Artemisinin protects PC12 cells against β-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway, Redox Biol. 12 (2017) 625-633. https://doi.org/10.1016/j.redox.2017.04.003.

[167]

X. Zhao, J.K. Fang, S. Li, et al., Artemisinin attenuated hydrogen peroxide(H2O2)-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway, Int. J. Mol. Sci. 20(11) (2019) 2680. https://doi.org/10.3390/ijms20112680.

[168]

K.L. Lin, Z. Zhang, Z. Zhang, et al., Tenuigenin ameliorates cognitive dysfunction in Alzheimer’s disease via hippocampal neurogenesis enhancement, Phytochem. Lett. 51 (2022) 109-113. https://doi.org/10.1016/j.phytol.2022.08.005.

[169]

W.B. Cui, Z.P. Zhang, X. Bai, et al., Cryptotanshinone alleviates oxidative stress and reduces the level of abnormally aggregated protein in Caenorhabditis elegans AD models, Int. J. Mol. Sci. 23(17) (2022) 10030. https://doi.org/10.3390/ijms231710030.

[170]

D. Lyu, J. Jia, Cryptotanshinone attenuates amyloid-β42-induced Tau phosphorylation by regulating PI3K/Akt/GSK3β pathway in HT22 cells, Mol. Neurobiol. 59(7) (2022) 4488-4500. https://doi.org/10.1007/s12035-022-02850-2.

[171]

W.Y. Liu, Y. Li, Y. Li, et al., Carnosic acid attenuates AβOs-induced apoptosis and synaptic impairment via regulating NMDAR2B and its downstream cascades in SH-SY5Y cells, Mol. Neurobiol. 60(1) (2023) 133-144. https://doi.org/10.1007/s12035-022-03032-w.

[172]

Y. Chen, Y.R. Wang, Q. Qin, et al., Carnosic acid ameliorated Aβ-mediated(amyloid-β peptide) toxicity, cholinergic dysfunction and mitochondrial defect in Caenorhabditis elegans of Alzheimer’s model, Food Funct. 13(8) (2022) 4624-4640. https://doi.org/10.1039/d1fo02965g.

[173]

F.M. An, Y.H. Bai, X.R. Xuan, et al., 1,8-Cineole ameliorates advanced glycation end products-induced Alzheimer’s disease-like pathology in vitro and in vivo, Molecules 27(12) (2022) 3913. https://doi.org/10.3390/molecules27123913.

[174]

J.W. Zhang, Y.L. Zheng, Y. Zhao, et al., Andrographolide ameliorates neuroinflammation in APP/PS1 transgenic mice, Int. Immunopharmacol. 96(2021) 107808. https://doi.org/10.1016/j.intimp.2021.107808.

[175]

Y.Y. Kong, Q.J. Peng, N. Lv, et al., Paeoniflorin exerts neuroprotective effects in a transgenic mouse model of Alzheimer’s disease via activation of adenosine A1 receptor, Neurosci. Lett. 730 (2020) 135016. https://doi.org/10.1016/j.neulet.2020.135016.

[176]

Y.J. Zhang, Q.Y. Huang, S.C. Wang, et al., The food additive β-caryophyllene exerts its neuroprotective effects through the JAK2-STAT3-BACE1 pathway, Front. Aging Neurosci. 14 (2022). https://doi.org/10.3389/fnagi.2022.814432.

[177]

Y.W. Hu, Z.L. Zeng, B.J Wang, et al., trans-Caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells, Int. Immunopharmacol. 51 (2017) 91-98. https://doi.org/10.1016/j.intimp.2017.07.009.

[178]

X.M. Lu, B.L. Yang, H. Yu, et al., Epigenetic mechanisms underlying the effects of triptolide and tripchlorolide on the expression of neuroligin-1 in the hippocampus of APP/PS1 transgenic mice, Pharm. Biol. 57(1) (2019) 453-459. https://doi.org/10.1080/13880209.2019.1629463.

[179]

S.L. Wang, L.J. Yu, H. Yang, et al., Oridonin attenuates synaptic loss and cognitive deficits in an Aβ1-42-induced mouse model of Alzheimer’s disease, PLoS ONE 11(3) (2016) e0151397. https://doi.org/10.1371/journal.pone.0151397.

[180]

N. Cai, J.J. Chen, D.C. Bi, et al., Specific degradation of endogenous tau protein and inhibition of tau fibrillation by tanshinone ⅡA through the ubiquitin-proteasome pathway, J. Agric. Food Chem. 68(7) (2020) 2054-2062. https://doi.org/10.1021/acs.jafc.9b07022.

[181]

X.Q. Peng, L. Chen, Z.J. Wang, et al., Tanshinone ⅡA regulates glycogen synthase kinase-3β-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice, Eur. J. Pharmacol. 918 (2022) 174772. https://doi.org/10.1016/j.ejphar.2022.174772.

[182]

B. Ding, C.H. Lin, Q. Liu, et al., Tanshinone ⅡA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro, J. Neuroinflamm. 17(1) (2020) 1-17. https://doi.org/10.1186/s12974-020-01981-4.

[183]

J.K. Du, J.R. Liu, X.M. Huang, et al., Catalpol ameliorates neurotoxicity in N2a/APP695swe cells and APP/PS1 transgenic mice, Neurotox. Res. 40(4) (2022) 961-972. https://doi.org/10.1007/s12640-022-00524-4.

[184]

S.X. Meng, H.Z. Chen, C.J. Deng, et al., Catalpol mitigates Alzheimer’s disease progression by promoting the expression of neural stem cell exosomes released miR-138-5p, Neurotox. Res. 41 (2023) 41-56. https://doi.org/10.1007/s12640-022-00626-z.

[185]

N. Wang, J.Y. Yang, R.J. Chen, et al., Ginsenoside Rg1 ameliorates Alzheimer’s disease pathology via restoring mitophagy, J. Ginseng Res. (2022). https://doi.org/10.1016/j.jgr.2022.12.001.

[186]

L.L. Nie, J.X. Xia, H.L. Li, et al., Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer’s disease, Oxidative Med. Cell. Longev. 2017(2017). https://doi.org/10.1155/2017/6473506.

[187]

R. Wang, Z.G. Xu, Y.F. Li, et al., Lycopene can modulate the LRP1 and RAGE transporters expression at the choroid plexus in Alzheimer’s disease rat, J. Funct. Foods 85 (2021) 104644. https://doi.org/10.1016/j.jff.2021.104644.

[188]

S. Lim, S. Hwang, J.H. Yu, et al., Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells, Mol. Nutr. Food Res. 61(5) (2017) 1600530. https://doi.org/110.1002/mnfr.201600530.

[189]

C.Y. Wang, X.Y. Cai, W.J. Hu, et al., Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer’s disease, Int. J. Mol. Med. 43(2) (2019) 956-966. https://doi.org/10.3892/ijmm.2018.4032.

[190]

H.X. Zhou, J.M. Zhao, C.H. Liu, et al., Xanthoceraside exerts anti-Alzheimer’s disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats, Phytomedicine 98 (2022) 153937. https://doi.org/10.1016/j.phymed.2022.153937.

[191]

J. Zhang, N. Song, Y.Z. Liu, et al., Platycodin D inhibits β-amyloid-induced inflammation and oxidative stress in BV-2 cells via suppressing TLR4/NF-κB signaling pathway and activating Nrf2/HO-1 signaling pathway, Neurochem. Res. 46 (2021) 638-647. https://doi.org/10.1007/s11064-020-03198-6.

[192]

Y. Zhang, X.M. Yang, S. Wang, et al., Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer’s disease, J. Agric. Food Chem. 67(36) (2019) 10048-10058. https://doi.org/10.1021/acs.jafc.9b03793.

[193]

Z.J. He, H.J. Zhang, X.Q. Li, et al., The protective effects of esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer’s disease, Phytomedicine 109 (2023) 154555. https://doi.org/10.1016/j.phymed.2022.154555.

[194]

A. Lovegrove, C. Edwards, I. De Noni, et al., Role of polysaccharides in food, digestion, and health, Crit. Rev. Food Sci. Nutr. 57(2) (2017) 237-253. https://doi.org/10.1080/10408398.2014.939263.

[195]

T. Feng, X.B. Yang, Q.J. Kong, et al., Editorial: food bioactive polysaccharides and their health functions, Front. Nutr. 8 (2021). https://doi.org/10.3389/fnut.2021.746255.

[196]

J.Q. Xu, J.L. Zhang, Y.M. Sang, et al., Polysaccharides from medicine and food homology materials: a review on their extraction, purification, structure, and biological activities, Molecules 27(10) (2022) 3215. https://doi.org/10.3390/molecules27103215.

[197]

R. Huang, Z.J. Zhu, Q.P. Wu, et al., Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer’s disease, Crit. Rev. Food Sci. Nutr. (2021) 1-19. https://doi.org/10.1080/10408398.2021.1975093.

[198]

Z.Y. Zhang, S. Wang, H.N. Tan, et al., Advances in polysaccharides of natural source of the anti-Alzheimer’s disease effect and mechanism, Carbohydr. Polym. 296 (2022) 119961. https://doi.org/10.1016/j.carbpol.2022.119961.

[199]

B.S. Sanodiya, G.S. Thakur, R.K. Baghel, et al., Ganoderma lucidum: a potent pharmacological macrofungus, Curr. Pharm. Biotechnol. 10(8) (2009) 717-742. https://doi.org/10.2174/138920109789978757.

[200]

J.H. Lu, R.J. He, P.L. Sun, et al., Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review, Int. J. Biol. Macromol. 150 (2020) 765-774. https://doi.org/10.1016/j.ijbiomac.2020.02.035.

[201]

D. Cör, Ž. Knez, M. Knez Hrnčič, Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review, Molecules 23(3) (2018) 649. https://doi.org/10.3390/molecules23030649.

[202]

Y. Zhang, H.T. Li, L.L. Song, et al., Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats, Food Funct. 12(15) (2021) 6900-6914. https://doi.org/10.1039/d1fo00355k.

[203]

S.C. Huang, J.X. Mao, K. Ding, et al., Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease, Stem Cell Rep. 8(1) (2017) 84-94. https://doi.org/10.1016/j.stemcr.2016.12.007.

[204]

M.L. Jin, K. Zhao, Q.S. Huang, et al., Structural features and biological activities of the polysaccharides from Astragalus membranaceus, Int. J. Biol. Macromol. 64 (2014) 257-266. https://doi.org/10.1016/j.ijbiomac.2013.12.002.

[205]

G.H. Su, L.H. Liu, H.L. Chen, et al., Effect of astragalus polysaccharide on oxidative stress response and Wnt signaling pathway of AD rat model, Chin. J. Coal. Ind. Med. 23 (2020) 21-26. https://doi.org/10.11723/mtgyyx1007-9564202001005.

[206]

Y.C. Huang, H.J. Tsay, M.K. Lu, et al., Astragalus membranaceus-polysaccharides ameliorates obesity, hepatic steatosis, neuroinflammation and cognition impairment without affecting amyloid deposition in metabolically stressed APPswe/PS1dE9 mice, Int. J. Mol. Sci. 18(12) (2017) 2746. https://doi.org/10.3390/ijms18122746.

[207]

G.X. Ma, Q.P. Ding, H.H. Deng, et al., Effect of astragalus polysaccharide and mechanism on Alzheimer’s disease rats, Stroke Nerv. Dis. 24(4) (2017) 323-327. https://doi.org/10.3969/j.issn.1007-0478.2017.04.011.

[208]

J. Klose, C. Griehl, S. Roßner, et al., Natural products from plants and algae for treatment of Alzheimer’s disease: a review, Biomolecules 12(5) (2022) 694. https://doi.org/10.3390/biom12050694.

[209]

X.Y. Wang, G.Q. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression, Cell Res. 29(10) (2019) 787-803. https://doi.org/10.1038/s41422-019-0216-x.

[210]

Y.J. Li, S.W. Guan, C. Liu, et al., Neuroprotective effects of Coptis chinensis Franch polysaccharide on amyloid-beta (Aβ)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease(AD), Int. J. Biol. Macromol. 113 (2018) 991-995. https://doi.org/10.1016/j.ijbiomac.2018.03.035.

[211]

Q. Zhang, Y.Y. Xia, H.B. Luo, et al., Codonopsis pilosula polysaccharide attenuates Tau hyperphosphorylation and cognitive impairments in hTau infected mice, Front. Molec. Neurosci. 11 (2018) 437. https://doi.org/10.3389/fnmol.2018.00437.

[212]

J. Fu, J.X. Li, Y.Z. Sun, et al., An integrated study on the comprehensive mechanism of Schisandra chinensis polysaccharides mitigating Alzheimer’s disease in rats using a UPLC-Q-TOF-MS based serum and urine metabolomics strategy, Food Funct. (2023). https://doi.org/10.1039/d2fo02842e.

[213]

W.Y. Zhang, Y.H. Guo, Y.L. Cheng, et al., Neuroprotective effects of polysaccharide from Sparassis crispa on Alzheimer’s disease-like mice: involvement of microbiota-gut-brain axis, Int. J. Biol. Macromol. 225 (2023) 974-986. https://doi.org/10.1016/j.ijbiomac.2022.11.160.

[214]

Z.W. Zeng, X. Chang, D.W. Zhang, et al., Structural elucidation and anti-neuroinflammatory activity of Polygala tenuifolia polysaccharide, Int. J. Biol. Macromol. 219 (2022) 1284-1296. https://doi.org/10.1016/j.ijbiomac.2022.08.161.

[215]

J. Liang, Y.F. Wu, H. Yuan, et al., Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions, Int. J. Biol. Macromol. 126 (2019) 414-426. https://doi.org/10.1016/j.ijbiomac.2018.12.230.

[216]

P. Yang, J. Jin, Q. Liu, et al., Optimization of degradation conditions with PRG, a polysaccharide from Phellinus ribis, by RSM and the neuroprotective activity in PC12 cells damaged by Aβ25-35, Molecules 24(16) (2019) 3010. https://doi.org/10.3390/molecules24163010.

[217]

Z.S. Zhang, X.M. Wang, Y.L. Pan, et al., The degraded polysaccharide from Pyropia haitanensis represses amyloid beta peptide-induced neurotoxicity and memory in vivo, Int. J. Biol. Macromol. 146 (2020) 725-729. https://doi.org/10.1016/j.ijbiomac.2019.09.243.

[218]

H.Y. Wei, Z.X. Gao, L.P. Zheng, et al., Protective effects of fucoidan on Aβ25-35 and D-Gal-induced neurotoxicity in PC12 cells and D-Gal-induced cognitive dysfunction in mice, Mar. Drugs. 15(3) (2017) 77. https://doi.org/10.3390/md15030077.

[219]

A. Habaike, M. Yakufu, Y.Y Cong, et al., Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway, Cytotechnology 72 (2020) 539-549. https://doi.org/10.1007/s10616-020-00400-z.

[220]

S.W. Zhang, L.L. Li, J.T. Hu, et al., Polysaccharide of Taxus chinensis var. mairei Cheng et LK Fu attenuates neurotoxicity and cognitive dysfunction in mice with Alzheimer’s disease, Pharm. Biol. 58(1) (2020) 959-968. https://doi.org/10.1080/13880209.2020.1817102.

[221]

H.X. Zhang, Y.Z. Cao, L.X. Chen, et al., A polysaccharide from polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells, Carbohydr. Polym. 117 (2015) 879-886. https://doi.org/10.1016/j.carbpol.2014.10.034.

[222]

X.B. Zhou, Y.X. Zhang, Y.Q. Jiang, et al., Poria cocos polysaccharide attenuates damage of nervus in Alzheimer’s disease rat model induced by D-galactose and aluminum trichloride, NeuroReport 32(8) (2021) 727-737. https://doi.org/10.1097/wnr.0000000000001648.

[223]

S.X. Yang, L.S. Wang, Z.P. Xie, et al., The combination of Salidroside and Hedysari Radix polysaccharide inhibits mitochondrial damage and apoptosis via the PKC/ERK pathway, Evid.-Based Compl. Alt. 2022 (2022). https://doi.org/10.1155/2022/9475703.

[224]

J. Zhong, X. Qiu, Q. Yu, et al., A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways, Int. J. Biol. Macromol. 163 (2020) 464-475.

[225]

C.J. Zhang, J.Y. Guo, H. Cheng, et al., Protective effects of the king oyster culinary-medicinal mushroom, Pleurotus eryngii (Agaricomycetes), polysaccharides on β-amyloid-induced neurotoxicity in PC12 cells and aging rats, in vitro and in vivo studies, Int. J. Med. Mushrooms. 22(4) (2020). https://doi.org/10.1615/intjmedmushrooms.2020033990.

[226]

X.W. Jiang, H.Y. Lu, J.D. Li, et al., A natural BACE1 and GSK3β dual inhibitor Notopterol effectively ameliorates the cognitive deficits in APP/PS1 Alzheimer’s mice by attenuating amyloid-β and tau pathology, Clin. Transl. Med. 10(3) (2020). https://doi.org/10.1002/ctm2.50.

[227]

M.J. Jin, X.T. Ji, X.Z. Zhu, et al., Dietary xylitol supplement ameliorated AD-related neuronal injury by regulating glucose metabolism relevant amino acids in mice, CNS Neurol Disord-Dr. (2023). https://doi.org/10.2174/1871527322666220922112955.

[228]

J.H. Deng, X.Y. Feng, L.J. Zhou, et al., Heterophyllin B, a cyclopeptide from Pseudostellaria heterophylla, improves memory via immunomodulation and neurite regeneration in ICV Aβ-induced mice, Food Res. Int. 158 (2022) 111576. https://doi.org/10.1016/j.foodres.2022.111576.

[229]

A. Cianciulli, R. Salvatore, C. Porro, et al., Folic acid is able to polarize the inflammatory response in LPS activated microglia by regulating multiple signaling pathways, Mediators. Inflamm. 2016 (2016). https://doi.org/10.1155/2016/5240127.

[230]

R. Martínez-Mármol, Y. Chai, J.N. Conroy, et al., Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory, J. Neurochem. (2023). https://doi.org/10.1111/jnc.15767.

[231]

G.P. Lim, F. Calon, T. Morihara, et al., A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model, J. Neurosci. 25(12) (2005) 3032-3040. https://doi.org/10.1523/jneurosci.4225-04.2005.

[232]

K. Wittstein, M. Rascher, Z. Rupcic, et al., Corallocins A-C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides, J. Nat. Prod. 79(9) (2016) 2264-2269. https://doi.org/10.1021/acs.jnatprod.6b00371.

[233]

Y. Zhang, L.J. Huang, S. Shi, et al., L-3-n-Butylphthalide rescues hippocampal synaptic failure and attenuates neuropathology in aged APP/PS 1 mouse model of Alzheimer’s disease, CNS. Neurosci. Ther. 22(12) (2016) 979-987. https://doi.org/10.1111/cns.12594.

[234]

K.P. Anupama, A. Antony, O. Shilpa, et al., Jatamansinol from Nardostachys jatamansi ameliorates tau-induced neurotoxicity in Drosophila Alzheimer’s disease model, Mol. Neurobiol. 59(10) (2022) 6091-6106. https://doi.org/10.1007/s12035-022-02964-7.

[235]

W. Hong, D. Liu, P. Zhao, et al., UV-guided isolation of enantiomeric polyacetylenes from Bupleurum scorzonerifolium Willd. with inhibitory effects against LPS-induced NO release in BV-2 microglial cells, Bioorg. Chem. 119 (2022) 105521. https://doi.org/10.1016/j.bioorg.2021.105521.

Food Science and Human Wellness
Pages 1787-1805
Cite this article:
Li S, Wei Y, Liang Z, et al. Review on dietary supplements as an effective improvement of Alzheimer’s disease: focus on structures and mechanisms. Food Science and Human Wellness, 2024, 13(4): 1787-1805. https://doi.org/10.26599/FSHW.2022.9250150

1075

Views

496

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 02 April 2023
Revised: 03 May 2023
Accepted: 20 May 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return