AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development

Xinyue Zhoua,Han WangaMing HuangaJin ChenaJianle Chena,cHuan Chenga,b,cXingqian Yea,cWenjun Wanga,b,d,e( )Donghong Liua,b,c,d,e( )
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Changshan Aijia Huyou Food Research and Development Center, Changshan 324200, China
The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Bitterness, one of the 5 “basic tastes”, is usually undesired by humans. However, abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors. This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits. The main bitter contributors, including phenolics, terpenoids, alkaloids, amino acids, nucleosides and purines, were summarized. The bioactivities and wide range of beneficial effects of them on anti-cancers, anti-inflammations, anti-microbes, neuroprotection, inhibiting chronic and acute injury in organs, as well as regulating behavior performance and metabolism were reported. Furthermore, not only did the bitter taste receptors (taste receptor type 2 family, T2Rs) show taste effects, but extra-oral T2Rs could also be activated by binding with bitter components, regulating physiological activities via modulating hormone secretion, immunity, metabolism, and cell proliferation. This review provided a new perspective on exploring and explaining the nutrition of bitter foods, revealing the relationship between the functions of bitter contributors from food and T2Rs. Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases, exploring the mechanism of T2Rs mediating the bioactivities, and making bitter foods more acceptable without getting rid of bitter contributors.

References

[1]

G. Spaggiari, A. Di Pizio, P. Cozzini, Sweet, umami and bitter taste receptors: state of the art of in silico molecular modeling approaches, Trends Food Sci. Technol. 96 (2020) 21-29. https://doi.org/10.1016/j.tifs.2019.12.002.

[2]

J.A. Mennella, N.K. Bobowski, The sweetness and bitterness of childhood: insights from basic research on taste preferences, Physiol. Behav. 152 (2015) 502-507. https://doi.org/10.1016/j.physbeh.2015.05.015.

[3]

W. Xu, L. Wu, S. Liu, et al., Structural basis for strychnine activation of human bitter taste receptor TAS2R46, Science 377 (2022) 1298-1304. https://doi.org/10.1126/science.abo1633.

[4]

P. Zou, Traditional Chinese medicine, food therapy, and hypertension control: a narrative review of Chinese literature, Am. J. Chinese Med. (2016) 1-16.

[5]

J. Ren, S. Wu, Research progress in bioactivities of the bitter compounds in functional foods and their bitter taste masking technology, Sci. Technol. Food Ind. 34 (2013) 396-400.

[6]

L. Dai, L. Luo, J. Luo, et al., Overview of bitter substances in plants and their application in food industry, Journal of Chinese Institute of Food Science and Technology 20 (2020) 305-318. https://doi.org/10.16429/j.1009-7848.2020.11.035.

[7]

M.Q. Fan, E.K. Kim, Y.J. Choi, et al., The role of Momordica charantia in resisting obesity, Int. J. Environ. Res. Public Health 16 (2019) 3251. https://doi.org/10.3390/ijerph16183251.

[8]

A. Gramza-Michalowska, J. Kobus-Cisowska, D. Kmiecik, et al., Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis), Food Chem. 211 (2016) 448-454. https://doi.org/10.1016/j.foodchem.2016.05.048.

[9]

Y. Wang, B. Tao, Y. Wan, et al., Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases, Biomed. Pharmacother. 128 (2020) 110372. https://doi.org/10.1016/j.biopha.2020.110372.

[10]

S.D. Roper, Signal transduction and information processing in mammalian taste buds, Pflugers Arch. 454 (2007) 759-776. https://doi.org/10.1007/s00424-007-0247-x.

[11]

A. Taruno, V. Vingtdeux, M. Ohmoto, et al., CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes, Nature 495(2013) 223-226. https://doi.org/10.1038/nature11906.

[12]

L. Zhang, Q.Q. Cao, D. Granato, et al., Association between chemistry and taste of tea: a review, Trends Food Sci. Technol. 101 (2020) 139-149. https://doi.org/10.1016/j.tifs.2020.05.015.

[13]

C.H. Zhang, L.M. Lifshitz, K.F. Uy, et al., The cellular and molecular basis of bitter tastant-induced bronchodilation, PLoS Biol. 11 (2013) e1001501.

[14]

N. Singh, M. Vrontakis, F. Parkinson, et al., Functional bitter taste receptors are expressed in brain cells, Biochem. Bioph. Res. Co. 406 (2011) 146-151. https://doi.org/10.1016/j.bbrc.2011.02.016.

[15]

C.J. Bloxham, S.R. Foster, W.G. Thomas, A bitter taste in your heart, Front. Physiol. 11 (2020) 431. https://doi.org/10.3389/fphys.2020.00431.

[16]

Q.L. Wang, K.I. Liszt, I. Depoortere, Extra-oral bitter taste receptors: new targets against obesity?, Peptides 127 (2020). https://doi.org/10.1016/j.peptides.2020.170284.

[17]

M.O. Welcome, The bitterness of genitourinary infections: properties, ligands of genitourinary bitter taste receptors and mechanisms linking taste sensing to inflammatory processes in the genitourinary tract, Eur. J. Obstet. Gyn. R. B. 247 (2020) 101-110. https://doi.org/10.1016/j.ejogrb.2020.02.015.

[18]

J. Jeruzal-Swiatecka, W. Fendler, W. Pietruszewska, Clinical role of extraoral bitter taste receptors, Int. J. Mol. Sci. 21 (2020) 5156. https://doi.org/10.3390/ijms21145156.

[19]

T. Kamila, K. Agnieszka, An update on extra-oral bitter taste receptors, J. Transl. Med. 19 (2021) 1-33. https://doi.org/10.1186/s12967-021-03067-y.

[20]

L. Harinantenaina, M. Tanaka, S. Takaoka, et al., Momordica charantia constituents and antidiabetic screening of the isolated major compounds, Chem. Pharm. Bull. 54 (2006) 1017-1021. https://doi.org/10.1248/cpb.54.1017.

[21]

Q.Y. Li, H.B. Chen, Z.M. Liu, et al., Cucurbitane triterpenoids from Momordica charantia, Magn. Reson. Chem. 45 (2007) 451-456. https://doi.org/10.1002/mrc.1989.

[22]

Y.B. Zhang, H. Liu, C.Y. Zhu, et al., Cucurbitane-type triterpenoids from the leaves of Momordica charantia, J. Asian Nat. Prod. Res. 16 (2014) 358-363. https://doi.org/10.1080/10286020.2014.881801.

[23]

J. Cui, B. Li, J. Cheng, et al., Progress on bitter principles and its biosynthesis in bitter gourd, Acta Horticulturae Sinica 42 (2015) 1707-1718.

[24]

X.R. He, F. Luan, Z.F. Zhao, et al., The genus patrinia: a review of traditional uses, phytochemical and pharmacological studies, Am. J. Chinese Med. 45 (2017) 637-666. https://doi.org/10.1142/S0192415X17500379.

[25]

S.M. Liu, W.D. Xie, F.J. Meng, Research progress in chemical compositions and pharmacological activities of ixeris cass, Lishizhen Med. Mater. Med. Res. 21 (2010) 975-976, 977.

[26]

S.W. Lee, Z.T. Chen, C.M. Chen, A new sesquiterpene lactone glucoside of ixeris-chinensis, Heterocycles 38 (1994) 1933-1936.

[27]

Q. Gao, H. Jiang, F. Tang, et al., Evaluation of the bitter components of bamboo shoots using a metabolomics approach, Food Funct. 10 (2019) 90-98. https://doi.org/10.1039/c8fo01820k.

[28]

D. Choudhury, J.K. Sahu, G.D. Sharma, Biochemistry of bitterness in bamboo shoots, Assam University Journal of Science Technology 6 (2010) 105-111.

[29]

Y.Y. Zhu, B.L. Wu, Y.Y. Zhao, et al., Analysis of bitter compounds in harvested bamboo shoots, Food Sci. Technol. 40 (2015) 77-80.

[30]

V. Janos, HCN-containing plant materials: the cyanogen glycosides, Gyógyszerészet 44 (2000) 533-539.

[31]

L.S. Li, W.H. Dung, X.C. Ding, et al., Transcriptome sequencing and differential expression analysis of bitter and astringent substances biosynthesis related gene in Dendrocalamus latiflorus, Forest Research 31(2018) 38-46. https://doi.org/10.13275/j.cnki.lykxyj.2018.04.006.

[32]

L. Tong, L. Zhang, B. Li, et al., Influence of soil-covered cultivation on quality and palatability of Dendrocalamopsis oldhami shoot, Acta Agriculturae Universitatis Jiangxiensis 40 (2018) 487-493.

[33]

Z. Zhang, X. Ding, F. Cui, et al., Identification of bitter and astringent components in Ma bamboo shoots and their relationship with taste by sensory evaluation, Food Sci. 38 (2017) 167-173.

[34]

Y. Shan, Present situation, development trend and countermeasures of citrus industry in China, Journal of Chinese Institute of Food Science 8 (2008) 1-8.

[35]

A.M. Tran, T.B. Nguyen, V.D. Nguyen, et al., Changes in bitterness, antioxidant activity and total phenolic content of grapefruit juice fermented by Lactobacillus and Bifidobacterium strains, Acta Aliment. Hung. 49 (2020) 103-110. https://doi.org/10.1556/066.2020.49.1.13.

[36]

N.F.F. Soares, J.H. Hotchkiss, Bitterness reduction in grapefruit juice through active packaging, Packag. Technol. Sci. 11 (1998) 9-18.

[37]

S. Li, W. Zhuang, D. Fan, et al., Content changes of bitter compounds in ‘Guoqing No.1’ Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons, Food Chem. 145 (2014) 963-969.

[38]

A. Roy, S. Saraf, Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom, Biol. Pharm. Bull. 29 (2006) 191-201. https://doi.org/10.1248/bpb.29.191.

[39]

S. Hasegawa, P. Ou, C.H. Fong, et al., Changes in the limonoate a-ring lactone and limonin 17-beta-D-glucopyranoside content of navel oranges during fruit-growth and maturation, J. Agric. Food Chem. 39 (1991) 262-265. https://doi.org/10.1021/jf00002a008.

[40]

J. Chen, S. Li, J. Xu, et al., Concentration and distribution of main bitter compounds in fruit tissues of ‘Oroblanco’ (Citrus grandis L.×Citrus paradisi Macf.), Sci. Hortic.-Amsterdam 193 (2015) 84-89.

[41]

G.D. Manners, Citrus limonoids: analysis, bioactivity, and biomedical prospects, J. Agri. Food Chem. 55 (2007) 8285-8294. https://doi.org/10.1021/jf07179h.

[42]

A. Frydman, O. Weisshaus, M. Bar-Peled, et al., Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus, Plant J. 40 (2004) 88-100. https://doi.org/10.1111/j.1365-313X.2004.02193.x.

[43]

A. Kawakami, H. Kayahara, A. Ujihara, Properties and elimination of bitter components derived from tartary buckwheat (Fagopyrum-tataricum) flour, J. Jpn. Soc. Food Sci. 42 (1995) 892-898.

[44]

T. Suzuki, Y. Honda, W. Funatsuki, et al., In-gel detection and study of the role of flavon 3-glucosidase in the bitter taste generation in tartary buckwheat, J. Sci. Food Agr. 84 (2004) 1691-1694. https://doi.org/10.1002/jsfa.1865.

[45]

D. Li, X.L. Li, X.L. Ding, et al., A process for preventing enzymatic degradation of rutin in tartary buckwheat (Fagopyrum tataricum Gaertn)flour, Food Sci. Biotechnol. 17 (2008) 118-122.

[46]

H.B. Guo, Cultivation of lotus (Nelumbo nucifera Gaertn.ssp.nucifera) and its utilization in China, Genet. Resour. Crop Ev. 56 (2009) 323-330.

[47]

Y. Tu, S. Yan, J. Li, Impact of harvesting time on the chemical composition and quality of fresh lotus seeds, Hortic. Environ. Biote. 61 (2020) 735-744. https://doi.org/10.1007/s13580-020-00233-x.

[48]

H. Du, J. Ren, S. Wang, Rapid determination of three alkaloids from lotus plumule in human serum using an HPLC-DAD method with a short monolithic column, Food Chem. 129 (2011) 1320-1324. https://doi.org/10.1016/j.foodchem.2011.05.054.

[49]

R. Nandeesh, S. Vijayakumar, A. Munnolli, et al., Bioactive phenolic fraction of Citrus maxima abate lipopolysaccharide-induced sickness behaviour and anorexia in mice: in-silico molecular docking and dynamic studies of biomarkers against NF-κB, Biomed. Pharmacother 108 (2018) 1535-1545.

[50]

B. Leonard, M. Maes, Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression, Neurosci. Biobehav. R. 36 (2012) 764-785.

[51]

Y. Liu, W. Hao, Y.C. Nie, et al., Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway, Int. Immunopharmacol. 11(2011) 1606-1612.

[52]

C. Gong, L. Qi, Y. Huo, et al., Anticancer effect of Limonin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway, J. Biochem. Mol. Toxic. 33 (2019) e22374. https://doi.org/10.1002/jbt.22374.

[53]

W.H. Perera, S.R. Shivanagoudra, J.L. Pérez, et al., Anti-inflammatory, antidiabetic properties and in silico modeling of cucurbitane-type triterpene glycosides from fruits of an Indian cultivar of Momordica charantia L., Molecules 26 (2021) 1038.

[54]

S.R. Shivanagoudra, W.H. Perera, J.L. Perez, et al., In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L., Bioorgan. Med. Chem. 27 (2019) 3097-3109. https://doi.org/10.1016/j.bmc.2019.05.035.

[55]

B.J. Ismaeel, Quercetin inhibits chronic stress-induced myocardial infarction in rats, Int. J. Morphol. 35 (2017) 1363-1369.

[56]

S.A.V. da Silva, A. Clemente, J. Rocha, et al., Anti-inflammatory effect of limonin from cyclodextrin (un)processed orange juices in in vivo acute inflammation and chronic rheumatoid arthritis models, J. Funct. Foods 49(2018) 146-153. https://doi.org/10.1016/j.jff.2018.08.024.

[57]

A. Yoshinaga, N. Kajiya, K. Oishi, et al., NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation, Eur. J. Pharmacol. 782 (2016) 21-29. https://doi.org/10.1016/j.ejphar.2016.04.035.

[58]

E. Ramesh, A.A. Alshatwi, Naringin induces death receptor and mitochondriamediated apoptosis in human cervical cancer (SiHa) cells, Food Chem. Toxicol. 51 (2013) 97-105. https://doi.org/10.1016/j.fct.2012.07.033.

[59]

S. Dasari, V. Bakthavachalam, S. Chinnapaka, et al., Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism, Phytother. Res. 34 (2020) 2366-2384. https://doi.org/10.1002/ptr.6687.

[60]

H.L. Li, Y. Cheng, Z.W. Zhou, et al., Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway, Oncol. Lett. 23 (2022) 8. https://doi.org/10.3892/ol.2021.13126.

[61]

J. Kim, G.K. Jayaprakasha, B.S. Patil, Limonoids and their anti-proliferative and anti-aromatase properties in human breast cancer cells, Food Funct. 4(2013) 258-265. https://doi.org/10.1039/c2fo30209h.

[62]

L. Cai, H. Wu, C. Tu, et al., Naringin inhibits ovarian tumor growth by promoting apoptosis: an in vivo study, Oncol. Lett. 16 (2018) 59-64. https://doi.org/10.3892/ol.2018.8611.

[63]

C.M. Liu, Z. Wu, B. Pan, et al., The antiandrogenic effect of neferine, liensinine, and isoliensinine by inhibiting 5-α-reductase and androgen receptor expression via PI3K/AKT signaling pathway in prostate cancer, Pharmazie 76 (2021) 225-231. https://doi.org/10.1691/ph.2021.1301.

[64]

M. Ghanbari-Movahed, G. Jackson, M.H. Farzaei, et al., A systematic review of the preventive and therapeutic effects of naringin against human malignancies, Front. Pharmacol. 12 (2021) 639840.

[65]

S.M. Tang, X.T. Deng, J. Zhou, et al., Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects, Biomed. Pharmacother. 121 (2020) 109604. https://doi.org/10.1016/j.biopha.2019.109604.

[66]

K.W. Anna, H.W. Marta, I. Magdalena, et al., Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton, Acta Histochem. 119 (2017) 99-112. https://doi.org/10.1016/j.acthis.2016.11.003.

[67]

A.K. Calgarotto, V. Maso, G.C.F. Junior, et al., Antitumor activities of quercetin and green tea in xenografts of human leukemia HL60 cells, Sci. Rep. 8 (2018) 3459. https://doi.org/10.1038/s41598-018-21516-5.

[68]

Y. Chen, J. Liang, X. Liang, et al., Limonin induces apoptosis of HL-60 cells by inhibiting NQO1 activity, Food Sci. Nutr. 9 (2021) 1860-1869. https://doi.org/10.1002/fsn3.2109.

[69]

Z. Jin, F. Li, J. Liao, et al., Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo, PLoS ONE 12 (2017) e0172838.

[70]

K.N. Chidambara Murthy, G.K. Jayaprakasha, S. Safe, et al., Citrus limonoids induce apoptosis and inhibit the proliferation of pancreatic cancer cells, Food Funct. 12 (2021) 1111-1120. https://doi.org/10.1039/D0FO02740E.

[71]

S.M. Poulose, E.D. Harris, B.S. Patil, Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells, Nutr. Cancer 56 (2006) 103-112. https://doi.org/10.1207/s15327914nc5601_14.

[72]

S.B. Raja, V. Rajendiran, N.K. Kasinathan, et al., Differential cytotoxic activity of quercetin on colonic cancer cells depends on ROS generation through COX-2 expression, Food Chem. Toxicol. 106 (2017) 92-106. https://doi.org/10.1016/j.fct.2017.05.006.

[73]

Y. Liu, Z.G. Tang, Y. Lin, et al., Effects of quercetin on proliferation and migration of human glioblastoma U251 cells, Biomed. Pharmacother. 92(2017) 33-38. https://doi.org/10.1016/j.biopha.2017.05.044.

[74]

J.L. Perez, G.K. Jayaprakasha, A. Cadena, et al., In vivo induction of phase Ⅱ detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids, BMC Complem. Altern. M 10 (2010) 51. https://doi.org/10.1186/1472-6882-10-51.

[75]

C. Kelly, C. Jewell, N.M. O’Brien, The effect of dietary supplementation with the citrus limonoids, limonin and nomilin on xenobiotic-metabolizing enzymes in the liver and small intestine of the rat, Nutr. Res. 23 (2003) 681-690. https://doi.org/https://doi.org/10.1016/S0271-5317(03)00021-6.

[76]

G. Gutiérrez-Venegas, J.A. Gómez-Mora, M.A. Meraz-Rodríguez, et al., Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque, Heliyon 5 (2019) e03013.

[77]

R. González-Segovia, J.L. Quintanar, E. Salinas, et al., Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig, J. Gastroenterol. 43(2008) 441.

[78]

A. Haslberger, U. Jacob, B. Hippe, et al., Mechanisms of selected functional foods against viral infections with a view on COVID-19: mini review, Funct. Foods Health D 10 (2020) 195-209. https://doi.org/10.31989/ffhd.v10i5.707.

[79]

J.K. Varughese, K.L. Joseph Libin, K.S. Sindhu, et al., Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics simulations and MM-PBSA calculations, J. Biomol. Struct. Dyn. (2021) 1-16. https://doi.org/10.1080/07391102.2021.1891139.

[80]

B. Gogoi, P. Chowdhury, N. Goswami, et al., Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation, Mol. Divers. 25 (2021) 1963-1977. https://doi.org/10.1007/s11030-021-10211-9.

[81]

T.N. Ramesh, Binding ability of arginine, citrulline, N-acetyl citrulline and thiocitrulline with SARS COV-2 main protease using molecular docking studies, Netw. Model. Anal. Hlth. 10 (2021) 28. https://doi.org/10.1007/s13721-021-00301-x.

[82]

P. Agrawal, C. Agrawal, G. Blunden, Rutin: a potential antiviral for repurposing as a SARS-CoV-2 main protease (M pro) inhibitor, Nat. Prod. Commun. 16 (2021) 1934578X2199172. https://doi.org/10.1177/1934578X21991723.

[83]

E. Balestrieri, F. Pizzimenti, A. Ferlazzo, et al., Antiviral activity of seed extract from Citrus bergamia towards human retroviruses, Bioorgan. Med. Chem. 19 (2011) 2084-2089. https://doi.org/10.1016/j.bmc.2011.01.024.

[84]

L. Battinelli, F. Mengoni, M. Lichtner, et al., Effect of limonin and nomilin on HIV-1 replication on infected human mononuclear cells, Planta. Medica. 69 (2003) 910-913.

[85]

B. Lee, M. Yeom, I. Shim, et al., Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats, Evid-Based. Compl. Alt. 2020 (2020) 1-10. https://doi.org/10.1155/2020/4892415.

[86]

J. Zhang, L. Ning, J. Wang, Dietary quercetin attenuates depressive-like behaviors by inhibiting astrocyte reactivation in response to stress, Biochem. Bioph. Res. Co. 533 (2020) 1338-1346. https://doi.org/10.1016/j.bbrc.2020.10.016.

[87]

L. Alvarez-Arellano, M. Salazar-García, J. Corona, Neuroprotective effects of quercetin in pediatric neurological diseases, Molecules 25 (2020) 5597. https://doi.org/10.3390/molecules25235597.

[88]

K. Le, Z. Song, J. Deng, et al., Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation, Inflamm. Res. 69 (2020) 1201-1213. https://doi.org/10.1007/s00011-020-01402-5.

[89]

G. Wang, Y. Li, C. Lei, et al., Quercetin exerts antidepressant and cardioprotective effects in estrogen receptor α-deficient female mice via BDNF-AKT/ERK1/2 signaling, J. Steroid. Biochem. 206 (2021) 105795. https://doi.org/10.1016/j.jsbmb.2020.105795.

[90]

Y.S. Shi, Y. Zhang, B. Liu, et al., Nomilin protects against cerebral ischemia-reperfusion induced neurological deficits and blood-brain barrier disruption via the Nrf2 pathway, Food Funct. 10 (2019) 5323-5332. https://doi.org/10.1039/C9FO01481K.

[91]

J.V.C. Martins-Perles, G.D.P. Bossolani, I. Zignani, et al., Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus, Auton. Neurosci. 227 (2020) 102675. https://doi.org/10.1016/j.autneu.2020.102675.

[92]

M.S. Ola, M.M. Ahmed, S. Shams, et al., Neuroprotective effects of quercetin in diabetic rat retina, Saudi. J. Biol. Sci. 24 (2017) 1186-1194. https://doi.org/10.1016/j.sjbs.2016.11.017.

[93]

K.L. Vaughan, J.A. Mattison, Obesity and aging in humans and nonhuman primates: a mini-review, Gerontology 62 (2016) 611-617. https://doi.org/10.1159/000445800.

[94]

S. Xie, Y. Li, W. Teng, et al., Liensinine inhibits beige adipocytes recovering to white adipocytes through blocking mitophagy flux in vitro and in vivo, Nutrients 11 (2019) 1640. https://doi.org/10.3390/nu11071640.

[95]

M. Park, J. Han, H.J. Lee, Anti-adipogenic effect of neferine in 3T3-L1 cells and primary white adipocytes, Nutrients 12 (2020) 1858. https://doi.org/10.3390/nu12061858.

[96]

M. Herranz-López, I. Borrás-Linares, M. Olivares-Vicente, et al., Correlation between the cellular metabolism of quercetin and its glucuronide metabolite and oxidative stress in hypertrophied 3T3-L1 adipocytes, Phytomedicine 25(2017) 25-28. https://doi.org/10.1016/j.phymed.2016.12.008.

[97]

S.G. Lee, J.S. Parks, H.W. Kang, Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes, J. Nutr. Biochem. 42 (2017) 62-71.

[98]

J.S. Lee, Y.J. Cha, K.H. Lee, et al., Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study, Nutr. Res. Pract. 10 (2016) 175-181.

[99]

M. Pfeuffer, A. Auinger, U. Bley, et al., Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms, Nutr. Metab. Cardiovas. 23 (2013) 403-409. https://doi.org/10.1016/j.numecd.2011.08.010.

[100]

E. Ono, J. Inoue, T. Hashidume, et al., Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet, Biochem. Bioph. Res. Co. 410 (2011) 677-681. https://doi.org/10.1016/j.bbrc.2011.06.055.

[101]

F. Tuz Zohra, Y. Tominaga, Y. Matsumoto, et al., Relationship between the limonoid content in different parts of the sour orange (Citrus aurantium L.) and the ligand activity of a bile acid receptor, TGR5, Hort. J. 89 (2020) 384-393. https://doi.org/10.2503/hortj.UTD-163.

[102]

A.C. Keller, J. Ma, A. Kavalier, et al., Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro, Phytomedicine 19 (2011) 32-37. https://doi.org/10.1016/j.phymed.2011.06.019.

[103]

Y.L. Luo, C.C. Zhang, P.B. Li, et al., Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke, Int. Immunopharmacol. 13(2012) 301-307.

[104]

H.Y. Jiao, W.W. Su, P.B. Li, et al., Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma, Pulm. Pharmacol. Ther. 33 (2015) 59-65. https://doi.org/10.1016/j.pupt.2015.07.002.

[105]

R. Shi, J.W. Xu, Z.T. Xiao, et al., Naringin and naringenin relax rat tracheal smooth by regulating BKCa activation, J. Med. Food 22 (2019) 963-970. https://doi.org/10.1089/jmf.2018.4364.

[106]

Y.C. Nie, H. Wu, P.B. Li, et al., Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats, J. Med. Food 15 (2012) 894-900.

[107]

R.A. Hassan, W.G. Hozayen, H.T. Abo Sree, et al., Naringin and hesperidin counteract diclofenac-induced hepatotoxicity in male Wistar rats via their antioxidant, anti-inflammatory, and antiapoptotic activities, Oxid. Med. Cell. Longev. 2021 (2021) 9990091. https://doi.org/10.1155/2021/9990091.

[108]

R. Yang, C. Song, J. Chen, et al., Limonin ameliorates acetaminopheninduced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1, Phytomedicine 69 (2020) 153211. https://doi.org/10.1016/j.phymed.2020.153211.

[109]

J. Deng, M. Huang, H. Wu, Protective effect of limonin against doxorubicin-induced cardiotoxicity via activating nuclear factor-like 2 and Sirtuin 2 signaling pathways, Bioengineered 12 (2021) 7975-7984. https://doi.org/10.1080/21655979.2021.1985299.

[110]

I.Chiş, D. Baltaru, A. Dumitrovici, et al., Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart, Physiol. Int. 105 (2018) 233-246. https://doi.org/10.1556/2060.105.2018.3.23.

[111]

I.U. Bhat, R. Bhat, Quercetin: a bioactive compound imparting cardiovascular and neuroprotective benefits: scope for exploring fresh produce, their wastes, and by-products, Biology 10 (2021) 586. https://doi.org/10.3390/biology10070586.

[112]

L. Mirsafaei, Ž. Reiner, R. Shafabakhsh, et al., Molecular and biological functions of quercetin as a natural solution for cardiovascular disease prevention and treatment, Plant. Food Hum. Nutr. 75 (2020) 307-315. https://doi.org/10.1007/s11130-020-00832-0.

[113]

J. Kim, S. Chakraborty, G.K. Jayaprakasha, et al., Citrus nomilin down-regulates TNF-α-induced proliferation of aortic smooth muscle cells via apoptosis and inhibition of IκB, Eur. J. Pharmacol. 811 (2017) 93-100. https://doi.org/10.1016/j.ejphar.2017.05.043.

[114]

J. Kim, G.K. Jayaprakasha, M. Muthuchamy, et al., Structure-function relationships of citrus limonoids on p38 MAP kinase activity in human aortic smooth muscle cells, Eur. J. Pharmacol. 670 (2011) 44-49. https://doi.org/10.1016/j.ejphar.2011.08.035.

[115]

L.J. Sun, W. Qiao, Y.J. Xiao, et al., Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-κB pathway, Int. Immunopharmacol. 75 (2019) 105782. https://doi.org/10.1016/j.intimp.2019.105782.

[116]

A. Uryash, A. Mijares, V. Flores, et al., Effects of naringin on cardiomyocytes from a rodent model of type 2 diabetes, Front. Pharmacol. 12 (2021) 719268.

[117]

F. Li, Z. Zhan, J. Qian, et al., Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy, Exp. Ther. Med. 22 (2021) 811. https://doi.org/10.3892/etm.2021.10243.

[118]

S. Yu, S.R. Kim, K. Jiang, et al., Quercetin reverses cardiac systolic dysfunction in mice fed with a high-fat diet: role of angiogenesis, Oxid. Med. Cell. Longev. 2021 (2021) 8875729. https://doi.org/10.1155/2021/8875729.

[119]

Y. Liang, Y. Zhang, M. Liu, et al., Protective effect of quercetin against myocardial ischemia as a Ca2+ channel inhibitor: involvement of inhibiting contractility and Ca2+ influx via L-type Ca2+ channels, Arch. Pharm. Res. 43(2020) 808-820. https://doi.org/10.1007/s12272-020-01261-y.

[120]

P. Wicha, A. Onsa-Ard, W. Chaichompoo, et al., Vasorelaxant and antihypertensive effects of neferine in rats: an in vitro and in vivo study, Planta. Med. 86 (2020) 496-504.

[121]

Z. Qi, R. Wang, R. Liao, et al., Neferine ameliorates sepsis-induced myocardial dysfunction through anti-apoptotic and antioxidative effects by regulating the PI3K/AKT/mTOR signaling pathway, Front. Pharmacol. 12(2021) 706251. https://doi.org/10.3389/fphar.2021.706251.

[122]

Y. Kimira, Y. Taniuchi, S. Nakatani, et al., Citrus limonoid nomilin inhibits osteoclastogenesis in vitro by suppression of NFATc1 and MAPK signaling pathways, Phytomedicine 22 (2015) 1120-1124. https://doi.org/10.1016/j.phymed.2015.08.013.

[123]

S. Gao, P. Li, H. Yang, et al., Antitussive effect of naringin on experimentally induced cough in guinea pigs, Planta. Med. 77 (2011) 16-21.

[124]

L.M. Chen, B.R. Yang, B.Q. Tang, et al., Differential angiogenic activities of naringin and naringenin in zebrafish in vivo and human umbilical vein endothelial cells in vitro, J. Funct. Foods 49 (2018) 369-377. https://doi.org/10.1016/j.jff.2018.08.010.

[125]

D.H. Lee, E.J. Jeon, J. Ahn, et al., Limonin enhances osteoblastogenesis and prevents ovariectomy-induced bone loss, J. Funct. Foods 23 (2016) 105-114. https://doi.org/10.1016/j.jff.2016.02.008.

[126]

S.K. Wong, K.Y. Chin, S. Ima-Nirwana, Quercetin as an agent for protecting the bone: a review of the current evidence, Int. J. Mol. Sci. 21 (2020) 6448. https://doi.org/10.3390/ijms21176448.

[127]

Y. Chen, H. Wu, Y.C. Nie, et al., Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs, Environ. Toxicol. Phar. 38 (2014) 279-287.

[128]

P. Li, S. Zhang, H. Song, et al., Naringin promotes skeletal muscle fiber remodeling by the AdipoR1-APPL1-AMPK signaling pathway, J. Agric. Food Chem. 69 (2021) 11890-11899. https://doi.org/10.1021/acs.jafc.1c04481.

[129]

R.P. Yang, Y.J. Zhou, W. Song, et al., Pharmacological actions of neferine in the modulation of human platelet function, Eur. J. Pharmacol. 862 (2019) 172626. https://doi.org/10.1016/j.ejphar.2019.172626.

[130]

J.G. Chen, N.N. Ping, D. Liang, et al., The expression of bitter taste receptors in mesenteric, cerebral and omental arteries, Life Sci. 170 (2017) 16-24. https://doi.org/10.1016/j.lfs.2016.11.010.

[131]

U.Wölfle, F.A. Elsholz, A. Kersten, et al., Expression and functional activity of the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, Skin Pharmacol. Phys. 28 (2015) 137-146. https://doi.org/10.1159/000367631.

[132]

J. Xu, J. Cao, N. Iguchi, et al., Functional characterization of bitter-taste receptors expressed in mammalian testis, Mol. Hum. Reprod. 19 (2013) 17-28. https://doi.org/10.1093/molehr/gas040.

[133]

O. Dehkordi, J.E. Rose, M. Fatemi, et al., Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem, Brain Res. 1475 (2012) 1-10. https://doi.org/10.1016/j.brainres.2012.07.038.

[134]

R.J. Lee, G. Xiong, J.M. Kofonow, et al., T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection, J. Clin. Invest. 122 (2012) 4145-4159. https://doi.org/10.1172/JCI64240.

[135]

N.D. Adappa, Z. Zhang, J.N. Palmer, et al., The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery, Int. Forum Allergy Rh. 4 (2014) 3-7. https://doi.org/10.1002/alr.21253.

[136]

N.D. Adappa, D. Farquhar, J.N. Palmer, et al., TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis, Int. Forum Allergy Rh. 6 (2016) 25-33. https://doi.org/10.1002/alr.21666.

[137]

H.P. Barham, M.A. Taha, S.T. Broyles, et al., Association between bitter taste receptor phenotype and clinical outcomes among patients with COVID-19, JAMA Netw. Open 4 (2021) e2111410. https://doi.org/10.1001/jamanetworkopen.2021.11410.

[138]

C. Orsmark-Pietras, A. James, J.R. Konradsen, et al., Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics, Eur. Respir. J. 42 (2013) 65. https://doi.org/10.1183/09031936.00077712.

[139]

S.Y. Yoon, E.S. Shin, S.Y. Park, et al., Association between polymorphisms in bitter taste receptor genes and clinical features in Korean asthmatics, Respiration 91 (2016) 141-150. https://doi.org/10.1159/000443796.

[140]

S. Wendell, X. Wang, M. Brown, et al., Taste genes associated with dental caries, J. Dent. Res. 89 (2010) 1198-1202. https://doi.org/10.1177/0022034510381502.

[141]

S. Gil, S. Coldwell, J.L. Drury, et al., Genotype-specific regulation of oral innate immunity by T2R38 taste receptor, Mol. Immunol. 68 (2015) 663-670. https://doi.org/10.1016/j.molimm.2015.10.012.

[142]

F.J. Ortega, Z. Agüera, M. Sabater, et al., Genetic variations of the bitter taste receptor TAS2R38 are associated with obesity and impact on single immune traits, Mol. Nutr. Food Res. 60 (2016) 1673-1683. https://doi.org/10.1002/mnfr.201500804.

[143]

S. Vascellari, M. Melis, G. Cossu, et al., Genetic variants of TAS2R38 bitter taste receptor associate with distinct gut microbiota traits in Parkinson’s disease: a pilot study, Int. J. Biol. Macromol. 165 (2020) 665-674. https://doi.org/10.1016/j.ijbiomac.2020.09.056.

[144]

M. Melis, A. Errigo, R. Crnjar, et al., TAS2R38 bitter taste receptor and attainment of exceptional longevity, Sci. Rep. 9 (2019) 18047. https://doi.org/10.1038/s41598-019-54604-1.

[145]

B. Semplici, F.P. Luongo, S. Passaponti, et al., Bitter taste receptors expression in human granulosa and cumulus cells: new perspectives in female fertility, Cells 10 (2021). https://doi.org/10.3390/cells10113127.

[146]

P. Andreozzi, G. Sarnelli, M. Pesce, et al., The bitter taste receptor agonist quinine reduces calorie intake and increases the postprandial release of cholecystokinin in healthy subjects, J. Neurogastroenterol. Motil. 21 (2015) 511-519. https://doi.org/10.5056/jnm15028.

[147]

M.C. Chen, S.V. Wu, J.R. Reeve, et al., Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels, Am. J. Physiol. Cell Physiol. 291 (2006) C726-C739. https://doi.org/10.1152/ajpcell.00003.2006.

[148]

K.S. Kim, J.M. Egan, H.J. Jang, Erratum to: denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways, Diabetologia 57 (2014) 2428-2428. https://doi.org/10.1007/s00125-014-3363-0.

[149]

V. Bitarafan, P.C.E. Fitzgerald, T.J. Little, et al., Intragastric administration of the bitter tastant quinine lowers the glycemic response to a nutrient drink without slowing gastric emptying in healthy men, Am. J. Physiol.-Reg.I 318(2019) R263-R273. https://doi.org/10.1152/ajpregu.00294.2019.

[150]

D.B. McMahon, L.E. Kuek, M.E. Johnson, et al., The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells, BioRxiv 101 (2021) 102499. https://doi.org/10.1101/2021.05.16.444376.

[151]

I. Gopallawa, J.R. Freund, R.J. Lee, Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling, Cell. Mol. Life Sci 78 (2021) 271-286. https://doi.org/10.1007/s00018-020-03494-y.

[152]

M.R. Medapati, N. Singh, A.Y. Bhagirath, et al., Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells, FASEB J. 35 (2021) e21375. https://doi.org/10.1096/fj.202000208R.

[153]

R. Cancello, G. Micheletto, D. Meta, et al., Expanding the role of bitter taste receptor in extra oral tissues: TAS2R38 is expressed in human adipocytes, Adipocyte 9 (2020) 7-15. https://doi.org/10.1080/21623945.2019.1709253.

[154]

B. Avau, D. Bauters, S. Steensels, et al., The gustatory signaling pathway and bitter taste receptors affect the development of obesity and adipocyte metabolism in mice, PLoS ONE 10 (2015) e0145538. https://doi.org/10.1371/journal.pone.0145538.

[155]

S. Wu, P. Xue, N. Grayson, et al., Bitter taste receptor ligand improves metabolic and reproductive functions in a murine model of PCOS, Endocrinology 160 (2019) 143-155. https://doi.org/10.1210/en.2018-00711.

[156]

N. Singh, F.A. Shaik, Y. Myal, et al., Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells, Mol. Cell. Biochem. 465 (2020) 199-214. https://doi.org/10.1007/s11010-019-03679-5.

[157]

L.T.P. Martin, M.W. Nachtigal, T. Selman, et al., Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival, Mol. Cell. Biochem. 454 (2019) 203-214. https://doi.org/10.1007/s11010-018-3464-z.

[158]

L. Stern, N. Giese, T. Hackert, et al., Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10, J. Cancer 9(2018) 711-725. https://doi.org/10.7150/jca.21803.

[159]

Y. Seo, Y.S. Kim, K.E. Lee, et al., Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells, PLoS ONE 12 (2017) e0176851. https://doi.org/10.1371/journal.pone.0176851.

[160]

B. Avau, A. Rotondo, T. Thijs, et al., Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation, Sci. Rep. 5 (2015) 15985. https://doi.org/10.1038/srep15985.

[161]

B. Camoretti-Mercado, S.H. Pauer, H.M. Yong, et al., Pleiotropic effects of bitter taste receptors on[Ca2+]i mobilization, hyperpolarization, and relaxation of human airway smooth muscle cells, PLoS ONE 10 (2015)e0131582. https://doi.org/10.1371/journal.pone.0131582.

[162]

P. Sharma, A. Panebra, T. Pera, et al., Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells, Am. J. Physiol.-Lung C 310 (2015) L365-L376. https://doi.org/10.1152/ajplung.00373.2015.

[163]

J.D. Upadhyaya, N. Singh, A.S. Sikarwar, et al., Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction, PLoS ONE 9 (2014) e110373. https://doi.org/10.1371/journal.pone.0110373.

[164]

K. Zhai, Z. Yang, X. Zhu, et al., Activation of bitter taste receptors (TAS2RS)relaxes detrusor smooth muscle and suppresses overactive bladder symptoms, Oncotarget 7 (2016) 21156.

[165]

A.C. Duarte, T. Rosado, A.R. Costa, et al., The bitter taste receptor TAS2R14 regulates resveratrol transport across the human blood-cerebrospinal fluid barrier, Biochem. Pharmacol. 177 (2020) 113953. https://doi.org/10.1016/j.bcp.2020.113953.

[166]

F. Li, M. Zhou, Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice, Mol. Hum. Reprod. 18 (2012) 289-297. https://doi.org/10.1093/molehr/gas005.

[167]

J. Liang, F. Chen, F. Gu, et al., Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells, Mol. Cell. Biochem. 428 (2017) 193-202. https://doi.org/10.1007/s11010-016-2929-1.

[168]

X. Liu, F. Gu, L. Jiang, et al., Expression of bitter taste receptor Tas2r105 in mouse kidney, Biochem. Bioph. Res. Co. 458 (2015) 733-738. https://doi.org/10.1016/j.bbrc.2015.01.089.

[169]

C. Qin, Q. Yuan, S. Zhang, et al., Biomimetic in vitro respiratory system using smooth muscle cells on ECIS chips for anti-asthma TCMs screening, Anal. Chim. Acta 1162 (2021) 338452. https://doi.org/10.1016/j.aca.2021.338452.

[170]

D. Kim, S.S. An, H. Lam, et al., Identification and characterization of novel bronchodilator agonists acting at human airway smooth muscle cell TAS2R5, Acs Pharmacol. Transl. 3 (2020) 1069-1075. https://doi.org/10.1021/acsptsci.0c00127.

[171]

R.L. Clifford, A.J. Knox, Future bronchodilator therapy: a bitter pill to swallow?, Am. J. Physiol.-Lung C 303 (2012) L953-L955. https://doi.org/10.1152/ajplung.00303.2012.

[172]

M. Yasuda, M. Iwamoto, H. Okabe, et al., Structures of momordicine-I, momordicine-Ii and momordicine-Iii the bitter principles in the leaves and vines of Momordica-charantia L, Chem. Pharm. Bull. 32 (1984) 2044-2047.

[173]

H. Okabe, Y. Miyahara, T. Yamauchi, Studies on the constituents of Momordica charantia L. IV. characterization of the new cucurbitacin glycosides of the immature fruits.(2) structures of the bitter glycosides, momordicosides K and L, Chem. Pharm. Bull. 30 (1982) 4334-4340. https://doi.org/10.1248/cpb.30.4334.

[174]

Y. Wang, W. Fan, Y. Xu, Extraction and isolation method of volatile compounds with astringent and bitter taste in Baijiu (Chinese liquor), Food Ferment. Ind. 44 (2018) 240-244.

[175]

R. Cao, X. Wu, H. Guo, et al., Naringin exhibited therapeutic effects against DSS-induced mice ulcerative colitis in intestinal barrier-dependent manner, Molecules 26 (2021) 6604. https://doi.org/10.3390/molecules26216604.

[176]

C. Yang, W. Liu, H. Shan, et al., Naringin inhibits titanium particles-induced up-regulation of TNF-α and IL-6 via the p38 MAPK pathway in fibroblasts from hip periprosthetic membrane, Connect. Tissue Res. 62 (2021) 485-494. https://doi.org/10.1080/03008207.2020.1778680.

[177]

C. Song, J. Chen, X. Li, et al., Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling, Int. Immunopharmacol. 90 (2021) 107161. https://doi.org/10.1016/j.intimp.2020.107161.

[178]

M.Y. Jun, R. Karki, K.R. Paudel, et al., Liensinine prevents vascular inflammation by attenuating inflammatory mediators and modulating VSMC function, Appl. Sci. 11 (2021) 386. https://doi.org/10.3390/app11010386.

[179]

K.M. Chiu, Y.L. Hung, S.J. Wang, et al., Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells, Int. J. Mol. Sci. 22 (2021) 994. https://doi.org/10.3390/ijms222010994.

[180]

X. Min, Y. Guo, Y. Zhou, et al., Protection against dextran sulfate sodium-induced ulcerative colitis in mice by neferine, a natural product from nelumbo nucifera gaertn, Cell J.22 (2021) 523-531. https://doi.org/10.22074/cellj.2021.6918.

[181]

B. Ni, X. Huang, Y. Xi, et al., Neferine inhibits expression of inflammatory mediators and matrix degrading enzymes in IL-1β-treated rat chondrocytes via suppressing MAPK and NF-κB signaling pathways, Inflammation 43(2020) 1209-1221. https://doi.org/10.1007/s10753-019-01143-6.

[182]

Y. Zhong, S. He, K. Huang, et al., Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway, Arch. Biochem. Biophys. 696 (2020) 108595. https://doi.org/10.1016/j.abb.2020.108595.

[183]

R. Acharya, N. Mishra, A. Kumar, et al., Naringin, a natural flavonone glycoside attenuates N-nitrosodiethylamine-induced hepatocellular carcinoma in Sprague-Dawley rats, Pharmacogn. Mag. 17 (2021) 196-204. https://doi.org/10.4103/pm.pm_94_21.

[184]

C. Xu, X. Huang, Y. Huang, et al., Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro-death autophagy, Mol. Med. Rep. 24 (2021) 772. https://doi.org/10.3892/mmr.2021.12412.

[185]

J. Zhou, L. Xia, Y. Zhang, Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway, Pathol. Res. Pract. 215 (2019) 152707. https://doi.org/10.1016/j.prp.2019.152707.

[186]

H. Cheng, X. Jiang, Q. Zhang, et al., Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway, Exp. Ther. Med. 19 (2020) 3798-3804. https://doi.org/10.3892/etm.2020.8649.

[187]

R. Lin, X. Hu, S. Chen, et al., Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells, Acta Biochim. 67 (2020) 181-188. https://doi.org/10.18388/abp.2020_5182.

[188]

S. Aroui, H. Fetoui, A. Kenani, Natural dietary compound naringin inhibits glioblastoma cancer neoangiogenesis, BMC Pharmacol. Toxico. 21 (2020) 46. https://doi.org/10.1186/s40360-020-00426-1.

[189]

Z. Tang, Y. Tang, L. Li, et al., Limonin provokes hepatocellular carcinoma cells with stemness entry into cycle via activating PI3K/Akt signaling, Biomed. Pharmacother. 117 (2019) 109051. https://doi.org/10.1016/j.biopha.2019.109051.

[190]

J. Chen, B.X. Liu, Q. Shen, et al., Limonin inhibits angiogenesis and metastasis of human breast cancer cells by suppressing the VEGFR2/IGFR1-mediated STAT3 signaling pathway, Transl. Cancer Res. 9 (2020) 6820-6832. https://doi.org/10.21037/tcr-20-1992.

[191]

G. Yang, Z. Li, L. Chen, Limonin suppresses the progression of oral tongue squamous cell carcinoma via inhibiting YAP transcriptional regulatory activity, Tissue Cell 65 (2020) 101346. https://doi.org/10.1016/j.tice.2020.101346.

[192]

T. Kitagawa, T. Matsumoto, D. Imahori, et al., Limonoids isolated from the Fortunella crassifolia and the Citrus junos with their cell death-inducing activity on Adriamycin-treated cancer cell, J. Nat. Med.-Tokyo 75 (2021) 998-1004. https://doi.org/10.1007/s11418-021-01528-8.

[193]

J.H. Yang, K. Yu, X.K. Si, et al., Liensinine inhibited gastric cancer cell growth through ROS generation and the PI3K/AKT pathway, J. Cancer 10(2019) 6431-6438. https://doi.org/10.7150/jca.32691.

[194]

Y. Shen, R. Bian, Y. Li, et al., Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway, Acta Bioch. Bioph. Sin. 51 (2019) 607-614. https://doi.org/10.1093/abbs/gmz041.

[195]

P. Manogaran, N. Beeraka, H. Chih-Yang, et al., Neferine and isoliensinine from Nelumbo nucifera induced reactive oxygen species (ROS)-mediated apoptosis in colorectal cancer HCT-15 cells, AJPP 13 (2019) 90-99. https://doi.org/10.5897/AJPP2019.5036.

[196]

Z. Liu, S. Zhang, T. Wang, et al., Neferine inhibits MDA-MB-231 cells growth and metastasis by regulating miR-374a/FGFR-2, Chem. Biol. Interact. 309 (2019) 108716. https://doi.org/10.1016/j.cbi.2019.06.029.

[197]

F. Zhu, X. Li, X. Tang, et al., Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition, Int. J. Mol. Med. 48 (2021) 4957. https://doi.org/10.3892/ijmm.2021.4957.

[198]

J. Wang, Y. Dong, Q. Li, Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma, Exp. Biol. Med. 245 (2020) 1385-1394. https://doi.org/10.1177/1535370220928933.

[199]

J. Xie, M.H. Chen, C.P. Ying, et al., Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma proliferation, apoptosis, and oxidative stress, Ann. Transl. Med. 8 (2020) 1643-1643. https://doi.org/10.21037/atm-20-7201.

[200]

C.W. Huang, Y.C. Lin, C.H. Hung, et al., Adenine inhibits the invasive potential of DLD-1 human colorectal cancer cell via the AMPK/FAK axis, Pharmaceuticals 14 (2021) 860. https://doi.org/10.3390/ph14090860.

[201]

W.W. Su, J.Y. Huang, H.M. Chen, et al., Adenine inhibits growth of hepatocellular carcinoma cells via AMPK-mediated S phase arrest and apoptotic cascade, Int. J. Med. Sci. 17 (2020) 678-684. https://doi.org/10.7150/ijms.42086.

[202]

S. Ramanathan, R.D. Kannan, S. Sivasubramanian, et al., Anti-quorum sensing and protective efficacies of naringin against Aeromonas hydrophila infection in Danio rerio, Front. Microbiol. 11 (2020) 600622. https://doi.org/10.3389/fmicb.2020.600622.

[203]

F. Magurano, M. Sucameli, P. Picone, et al., Antioxidant activity of citrus limonoids and investigation of their virucidal potential against SARS-CoV-2 in cellular models, Antioxidants 10 (2021) 1794. https://doi.org/10.3390/antiox10111794.

[204]

Y. Yang, P. Yang, C. Huang, et al., Inhibitory effect on SARS-CoV-2 infection of neferine by blocking Ca2+-dependent membrane fusion, J. Med. Virol.93 (2021) 5825-5832. https://doi.org/10.1002/jmv.27117.

[205]

D. Zhang, S. Hamdoun, R. Chen, et al., Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry, Pharmacol. Res. 172 (2021) 105820. https://doi.org/10.1016/j.phrs.2021.105820.

[206]

D. Garabadu, N. Agrawal, Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents, Neuromol. Med. 22(2020) 314-330. https://doi.org/10.1007/s12017-019-08590-2.

[207]

O.M. Oladapo, B. Ben-Azu, A.M. Ajayi, et al., Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms, J. Mol. Neurosci. 71 (2021) 431-445. https://doi.org/10.1007/s12031-020-01664-y.

[208]

V. Varshney, D. Garabadu, Naringin exhibits mas receptor-mediated neuroprotection against amyloid beta-induced cognitive deficits and mitochondrial toxicity in rat brain, Neurotox. Res. 39 (2021) 1023-1043. https://doi.org/10.1007/s12640-021-00336-y.

[209]

J.Y. Long, J.M. Chen, Y.J. Liao, et al., Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus, Behav.Brain Funct.16 (2020) 4. https://doi.org/10.1186/s12993-020-00166-6.

[210]

L. Wang, Z. Zhang, H. Wang, Naringin attenuates cerebral ischemiareperfusion injury in rats by inhibiting endoplasmic reticulum stress, Transl.Neurosci. 12 (2021) 190-197. https://doi.org/10.1515/tnsci-2020-0170.

[211]

A. Das, D.Fröhlich, L.B. Achanta, et al., L-Aspartate, L-ornithine and L-ornithine-L-aspartate (LOLA) and their impact on brain energy metabolism, Neurochem. Res. 45 (2020) 1438-1450. https://doi.org/10.1007/s11064-020-03044-9.

[212]

B. Brunner, E. Rauch, C. Ari, et al., Enhancement of ketone supplements-evoked effect on absence epileptic activity by co-administration of uridine in Wistar Albino Glaxo Rijswijk rats, Nutrients 13 (2021) 234. https://doi.org/10.3390/nu13010234.

[213]

Y. Dan, H. Guo, C. Zheng, et al., Neferine alleviates P2X3 receptor in rat dorsal root ganglia mediated neuropathic pain, Neurosci. Res. 170 (2021) 265-272. https://doi.org/10.1016/j.neures.2020.08.004.

[214]

J.J. Zhu, B.Y. Yu, X.K. Huang, et al., Neferine protects against hypoxic-ischemic brain damage in neonatal rats by suppressing NLRP3-mediated inflammasome activation, Oxid. Med. Cell Longev. 2021 (2021) 6654954. https://doi.org/10.1155/2021/6654954.

[215]

S. Jing, Z. Wang, J. Zhang, et al., Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease mouse model, Pharmacogn. Mag. 17 (2021) 186-192. https://doi.org/10.4103/pm.pm_291_19.

[216]

S. Yin, Q. Ran, J. Yang, et al., Nootropic effect of neferine on aluminium chloride-induced Alzheimer’s disease in experimental models, J. Biochem. Mol. Toxic. 34 (2020) e22429. https://doi.org/10.1002/jbt.22429.

[217]

X.L. Wu, M.Z. Deng, Z.J. Gao, et al., Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress, Int. Immunopharmacol. 84 (2020) 106559. https://doi.org/10.1016/j.intimp.2020.106559.

[218]

A.A. Syed, M.I. Reza, M. Shafiq, et al., Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis, Life Sci. 257 (2020) 118118. https://doi.org/10.1016/j.lfs.2020.118118.

[219]

Q. Zhu, Y. Qu, X.G. Zhou, et al., A dihydroflavonoid naringin extends the lifespan of C. elegans and delays the progression of aging-related diseases in PD/AD models via DAF-16, Oxid. Med. Cell. Longev. 2020 (2020) 1-14. https://doi.org/10.1155/2020/6069354.

[220]

J. Yin, B. Zhang, Z. Yu, et al., Ameliorative effect of dietary tryptophan on neurodegeneration and inflammation in D-galactose-induced aging mice with the potential mechanism relying on AMPK/SIRT1/PGC-1α pathway and gut microbiota, J. Agri. Food Chem. 69 (2021) 4732-4744. https://doi.org/10.1021/acs.jafc.1c00706.

[221]

V.V. Bul’on, E.N. Selina, I.B. Krylova, The protective effect of uridine on metabolic processes in the rat myocardum during its ischemia/reperfusion injury, Biochem. Mosc.-Suppl. S. 14 (2020) 33-37. https://doi.org/10.1134/S1990750820010072.

[222]

H. Li, L. Gao, J. Min, et al., Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves’ orbitopathy, J. Cell Mol. Med. 25 (2021) 1949-1957. https://doi.org/10.1111/jcmm.15931.

[223]

P. Zhao, D. Tian, G. Song, et al., Neferine promotes GLUT4 expression and fusion with the plasma membrane to induce glucose uptake in L6 cells, Front. Pharmacol. 10 (2019) 999. https://doi.org/10.3389/fphar.2019.00999.

[224]

J. Li, H. Chou, L. Li, et al., Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and Nrf-2 pathway, Artif. Cell Nanomed. B. 48 (2020) 96-106. https://doi.org/10.1080/21691401.2019.1699814.

[225]

M. Tajaldini, F. Samadi, A. Khosravi, et al., Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model, Biomed. Pharmacother. 121 (2020) 109594. https://doi.org/10.1016/j.biopha.2019.109594.

[226]

H. Elsawy, A.M. Alzahrani, M. Alfwuaires, et al., Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats, Biomed. Pharmacother. 143 (2021) 112180. https://doi.org/10.1016/j.biopha.2021.112180.

[227]

S. Alboghobeish, M. Mahdavinia, L. Zeidooni, et al., Efficiency of naringin against reproductive toxicity and testicular damages induced by bisphenol A in rats, Iran. J. Basic Med. Sci. 22 (2019) 315-323. https://doi.org/10.22038/ijbms.2019.29757.7184.

[228]

J.K. Akintunde, T.E. Akintola, M.O. Hammed, et al., Naringin protects against Bisphenol-A induced oculopathy as implication of cataract in hypertensive rat model, Biomed. Pharmacother. 126 (2020) 110043. https://doi.org/10.1016/j.biopha.2020.110043.

[229]

J.K. Akintunde, J.B. Abioye, O.N. Ebinama, Potential protective effects of naringin on oculo-pulmonary injury induced by PM10 (wood smoke) exposure by modulation of oxidative damage and acetylcholine esterase activity in a rat model, Curr. Ther. Res. Clin. Exp. 92 (2020) 100586. https://doi.org/10.1016/j.curtheres.2020.100586.

[230]

Z.L. Li, B.C. Yang, X.F. Xiao, et al., Naringin improved sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ-miR-21 axis, SSRN Electronic Journal (2020). https://doi.org/10.2139/ssrn.3684393.

[231]

H. Zhao, M. Liu, H. Liu, et al., Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP pathway, Biosci. Rep. 40 (2020). https://doi.org/10.1042/bsr20193431.

[232]

M. Nakashima, M. Hisada, N. Goda, et al., Opposing effect of naringenin and quercetin on the junctional compartment of MDCK Ⅱ cells to modulate the tight junction, Nutrients 12 (2020) 3285. https://doi.org/10.3390/nu12113285.

[233]

Z. Liu, L. Hu, Z. Zhang, et al., Isoliensinine eliminates afterdepolarizations through inhibiting late sodium current and L-type calcium current, Cardiovasc. Toxicol. 21 (2021) 67-78. https://doi.org/10.1007/s12012-020-09597-z.

[234]

Y.S. Tang, Y.H. Zhao, Y. Zhong, et al., Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway, Inflamm. Res. 68 (2019) 727-738. https://doi.org/10.1007/s00011-019-01256-6.

[235]

H. Li, W. Chen, Y. Chen, et al., Neferine attenuates acute kidney injury by inhibiting NF-κB signaling and upregulating klotho expression, Front. Pharmacol. 10 (2019) 1197. https://doi.org/10.3389/fphar.2019.01197.

[236]

N. Jahan, A. Chowdhury, T. Li, et al., Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway, Redox Rep. 26 (2021) 1-9. https://doi.org/10.1080/13510002.2021.1871814.

[237]

G.J. Wu, K.Y. Chen, J.D. Yang, et al., Naringin improves osteoblast mineralization and bone healing and strength through regulating estrogen receptor alpha-dependent alkaline phosphatase gene expression, J. Agric. Food Chem. 69 (2021) 13020-13033. https://doi.org/10.1021/acs.jafc.1c04353.

[238]

M.J. Kuang, W.H. Zhang, W.W. He, et al., Naringin regulates bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head via the Akt/Bad signal cascades, Chem. Biol. Interact. 304 (2019) 97-105. https://doi.org/10.1016/j.cbi.2019.03.008.

[239]

Y. Chen, Y.L. Chu, Y.H. Tsuang, et al., Anti-inflammatory effects of adenine enhance osteogenesis in the osteoblast-like MG-63 cells, Life 10 (2020) 116. https://doi.org/10.3390/life10070116.

[240]

A. Goyal, N. Agrawal, Quercetin: a potential candidate for the treatment of arthritis, Curr. Mol. Med. 21 (2021) 1-11. https://doi.org/10.2174/1566524021666210315125330.

[241]

P. Shen, W. Lin, X. Deng, et al., Potential implications of quercetin in autoimmune diseases, Front. Immunol. 12 (2021) 689044. https://doi.org/10.3389/fimmu.2021.689044.

[242]

F. Guan, Q. Wang, Y. Bao, et al., Anti-rheumatic effect of quercetin and recent developments in nano formulation, RSC Adv. 11 (2021) 7280-7293. https://doi.org/10.1039/D0RA08817J.

[243]

E. Tavana, H. Mollazadeh, E. Mohtashami, et al., Quercetin: a promising phytochemical for the treatment of glioblastoma multiforme, BioFactors 46(2020) 356-366. https://doi.org/10.1002/biof.1605.

[244]

R. Kubina, M. Iriti, A.Kabała-Dzik, Anticancer potential of selected flavonols: fisetin, kaempferol, and quercetin on head and neck cancers, Nutrients 13 (2021) 845. https://doi.org/10.3390/nu13030845.

[245]

P.Fernández-Palanca, F. Fondevila, C.Méndez-Blanco, et al., Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: a systematic review, Nutrients 11 (2019) 2875. https://doi.org/10.3390/nu11122875.

[246]

J. Baby, A.R. Devan, A.R. Kumar, et al., Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: a review, J. Food Biochem. 45 (2021) e13761. https://doi.org/10.1111/jfbc.13761.

[247]

A. Davoodvandi, M. Shabani Varkani, C.C.T. Clark, et al., Quercetin as an anticancer agent: focus on esophageal cancer, J. Food Biochem. 44 (2020)e13374. https://doi.org/10.1111/jfbc.13374.

[248]

S. Ghafouri-Fard, F.A. Shabestari, S. Vaezi, et al., Emerging impact of quercetin in the treatment of prostate cancer, Biomed. Pharmacother. 138(2021) 111548. https://doi.org/10.1016/j.biopha.2021.111548.

[249]

N. Kasiri, M. Rahmati, L. Ahmadi, et al., Therapeutic potential of quercetin on human breast cancer in different dimensions, Inflammopharmacology 28(2020) 39-62. https://doi.org/10.1007/s10787-019-00660-y.

[250]

D.N. Huang, S. Wang, R.S. Sooranna, et al., The efficacy of natural bioactive compounds for the treatment of nasopharyngeal carcinoma, Mini-Rev. Med. Chem. 21 (2021) 1679-1691. https://doi.org/10.2174/1389557521666210105113831.

[251]

M. Jakaria, S. Azam, S.H. Jo, et al., Potential therapeutic targets of quercetin and its derivatives: its role in the therapy of cognitive impairment, J. Clin. Med. 8 (2019) 1789. https://doi.org/10.3390/jcm8111789.

[252]

D. Xu, M.J. Hu, Y.Q. Wang, et al., Antioxidant activities of quercetin and its complexes for medicinal application, Molecules 24 (2019) 1123. https://doi.org/10.3390/molecules24061123.

[253]

E. Akyuz, Y.N. Paudel, A.K. Polat, et al., Enlightening the neuroprotective effect of quercetin in epilepsy: from mechanism to therapeutic opportunities, Epilepsy. Behav. 115 (2021) 107701. https://doi.org/10.1016/j.yebeh.2020.107701.

[254]

M. Bule, A. Abdurahman, S. Nikfar, et al., Antidiabetic effect of quercetin: a systematic review and meta-analysis of animal studies, Food Chem. Toxicol. 125 (2019) 494-502. https://doi.org/10.1016/j.fct.2019.01.037.

[255]

U. Shabbir, M. Rubab, E. Banan-Mwine, et al., Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota, Nutrients 13(2021) 206. https://doi.org/10.3390/nu13010206.

[256]

C. Carrasco-Pozo, M. Cires, M. Gotteland, Quercetin and epigallocatechin gallate in the prevention and treatment of obesity: from molecular to clinical studies, J. Med. Food 22 (2019) 193. https://doi.org/10.1089/jmf.2018.0193.

[257]

F. Pourteymour Fard Tabrizi, F. Hajizadeh-Sharafabad, M. Vaezi, et al., Quercetin and polycystic ovary syndrome, current evidence and future directions: a systematic review, J. Ovarian Res. 13 (2020) 11. https://doi.org/10.1186/s13048-020-0616-z.

[258]

L. Diniz, M. Souza, A. Sucupira Duarte, et al., Mechanistic aspects and therapeutic potential of quercetin against COVID-19-associated acute kidney injury, Molecules 25 (2020) 5772. https://doi.org/10.3390/molecules25235772.

[259]

R. Jayasuriya, U. Dhamodharan, D. Ali, et al., Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: possible therapeutic strategy to combat liver disease, Phytomedicine 92 (2021) 153755. https://doi.org/10.1016/j.phymed.2021.153755.

[260]

L. Zhao, H. Wang, X. Du, The therapeutic use of quercetin in ophthalmology: recent applications, Biomed. Pharmacother. 137 (2021) 111371. https://doi.org/10.1016/j.biopha.2021.111371.

Food Science and Human Wellness
Pages 1806-1824
Cite this article:
Zhou X, Wang H, Huang M, et al. Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development. Food Science and Human Wellness, 2024, 13(4): 1806-1824. https://doi.org/10.26599/FSHW.2022.9250151

846

Views

180

Downloads

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 October 2022
Revised: 08 November 2022
Accepted: 12 December 2022
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return