AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Bioactive compounds in Hericium erinaceus and their biological properties: a review

Yue QiuaGenglan LinaWeiming LiubFuming ZhangcRobert J. Linhardtc,dXingli WangbAnqiang Zhanga( )
College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Zhejiang Biosan Biotech Co., Ltd., Hangzhou 310052, China
Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Departments of Chemistry and Chemical Biology and Biomedical Engineering, Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Hericium erinaceus is a nutritious edible and medicinal fungi, rich in a variety of functional active ingredients, with various physiological functions such as antioxidation, anticancer, and enhancing immunity. It is also effective in protecting the digestive system and preventing neurodegenerative diseases. In this review paper, we summarize the sources, structures and eff icacies of the main active components in H. erinaceus fruiting body, mycelium, and culture media, and update the latest research progress on their biological activities and the related molecular mechanisms. Based on this information, we provide detailed challenges in current research, industrialization and information on the active ingredients of H. erinaceus. Perspectives for future studies and new applications of H. erinaceus are proposed.

References

[1]

Y. Yang, H.Q. Ye, C.H. Zhao, et al., Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota, Carbohydr. Polym. 262 (2021) 117668. https://doi.org/10.1016/j.carbpol.2021.117668.

[2]

B. Thongbai, S. Rapior, K.D. Hyde, et al., Hericium erinaceus, an amazing medicinal mushroom, Mycol. Prog. 14(10) (2015) 91. https://doi.org/10.1007/s11557-015-1105-4.

[3]

N. Makhamrueang, S. Sirilun, J. Sirithunyalug, et al., Effect of pretreatment processes on biogenic amines content and some bioactive compounds in Hericium erinaceus extract, Foods 10(5) (2021) 996. https://doi.org/10.3390/foods10050996.

[4]

S. Deshmukh, K. Sridhar, M. Gupta, Hericium erinaceus-a rich source of diverse bioactive metabolites, FungalBiotec 1(2) (2021) 10-38. https://doi.org/10.5943/FunBiotec/1/2/2.

[5]

E. Roda, E.C. Priori, D. Ratto, et al., Neuroprotective metabolites of Hericium erinaceus promote neuro-healthy aging, Int. J. Mol. Sci. 22(12) (2021) 6379. https://doi.org/10.3390/ijms22126379.

[6]

X.Y. Wang, D.D. Zhang, J.Y. Yin, et al., Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities, Crit. Rev. Food Sci. Nutr. 59 (2019) S96-S115. https://doi.org/10.1080/10408398.2018.1521370.

[7]

J.K. Yan, Z.C. Ding, X. Gao, et al., Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions, Carbohydr. Polym. 193 (2018) 373-382. https://doi.org/10.1016/j.carbpol.2018.04.019.

[8]

B. Ma, T. Feng, S. Zhang, et al., The inhibitory effects of Hericium erinaceus beta-glucan on in vitro starch digestion, Front. Nutr. 7 (2021) 621131. https://doi.org/10.3389/fnut.2020.621131.

[9]

S.M.T. Gharibzahedi, F.J. Marti-Quijal, F.J. Barba, et al., Current emerging trends in antitumor activities of polysaccharides extracted by microwave-and ultrasound-assisted methods, Int. J. Biol. Macromol. 202 (2022) 494-507. https://doi.org/10.1016/j.ijbiomac.2022.01.088.

[10]

N. Florez-Fernandez, M. Lopez-Garcia, M. Jesus Gonzalez-Munoz, et al., Ultrasound-assisted extraction of fucoidan from Sargassum muticum, J. Applied Phycol. 29(3) (2017) 1553-1561. https://doi.org/10.1007/s10811-016-1043-9.

[11]

M. Yang, W. Ren, G. Li, et al., The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi, Food Funct. 13(24) (2022) 12541-12560. https://doi.org/10.1039/d2fo02029g.

[12]

X. He, X. Wang, J. Fang, et al., Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (lion’s mane) mushroom: a review, Int. J. Biol. Macromol. 97 (2017) 228-237. https://doi.org/10.1016/j.ijbiomac.2017.01.040.

[13]

Y. Zhu, Q. Li, G.H. Mao, et al., Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus, Carbohydr. Polym. 101 (2014) 606-613. https://doi.org/10.1016/j.carbpol.2013.09.099.

[14]

W. Tang, D. Liu, J.Y. Yin, et al., Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide, Trends Food Sci. Technol. 99 (2020) 76-87. https://doi.org/10.1016/j.tifs.2020.02.015.

[15]

D. Wu, S. Yang, C. Tang, et al., Structural properties and macrophage activation of cell wall polysaccharides from the fruiting bodies of Hericium erinaceus, Polymers 10(8) (2018) 850. https://doi.org/10.3390/polym10080850.

[16]

T.T. Liu, N. Wang, X.L. Xu, et al., Effect of high quality dietary fiber of Hericium erinaceus on lowering blood lipid in hyperlipidemia mice, J. Fut. Foods 2(1) (2022) 61-68. https://doi.org/10.1016/j.jfutfo.2022.03.018.

[17]

H. Kawagishi, M. Ando, T. Mizuno, Hericenone A and B as cytotoxic principles from the mushroom Hericium-erinaceum, Tetrahedron Lett.31(3) (1990) 373-376. https://doi.org/10.1016/S0040-4039(00)94558-1.

[18]

H. Kawagishi, M. Ando, H. Sakamoto, et al., Hericenone C, D and E, stimulators of nerve growth-factor (NGF)-synthesis, from the mushroom Hericium-erinaceum, Tetrahedron Lett. 32(35) (1991) 4561-4564. https://doi.org/10.1016/0040-4039(91)80039-9.

[19]

H. Kawagishi, M. Ando, K. Shinba, et al., Chromans, hericenone-F, hericenone-G and hericenone-H from the mushroom Hericium-erinaceum, Phytochemistry 32(1) (1993) 175-178. http://doi.org/10.1016/0031-9422(92)80127-Z.

[20]

K. Ueda, M. Tsujimori, S. Kodani, et al., An endoplasmic reticulum (ER)stress-suppressive compound and its analogues from the mushroom Hericium erinaceum, Bioorgan. Med. Chem. 16(21) (2008) 9467-9470. https://doi.org/10.1016/j.bmc.2008.09.044.

[21]

B.J. Ma, J.C. Ma, Y. Ruan, Hericenone L, a new aromatic compound from the fruiting bodies of Hericium erinaceums, Chin. J. Nat. Med. 10(5) (2012) 363-365. https://doi.org/10.1016/S1875-5364(12)60072-7.

[22]

S. Kobayashi, T. Tamura, M. Koshishiba, et al., Total synthesis, structure revision, and neuroprotective effect of hericenones C-H and their derivatives, J. Org. Chem. 86(3) (2021) 2602-2620. https://doi.org/10.1021/acs.joc.0c02681.

[23]

S. Kobayashi, H. Tamanoi, Y. Hasegawa, et al., Divergent synthesis of bioactive resorcinols isolated from the fruiting bodies of Hericium erinaceum: total syntheses of hericenones A, B, and I, hericenols B-D, and erinacerins A and B, J.Org.Chem. 79(11) (2014) 5227-5238. https://doi.org/10.1021/jo500795z.

[24]

H. Kawagishi, A. Shimada, R. Shirai, et al., Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hetiiurn erinaceum, Tetrahedron Lett. 35(10) (1994) 1569-1572. https://doi.org/10.1016/s0040-4039(00)76760-8.

[25]

M.V. Valu, L.C. Soare, N.A. Sutan, et al., Optimization of ultrasonic extraction to obtain erinacine a and polyphenols with antioxidant activity from the fungal biomass of Hericium erinaceus, Foods 9(12) (2020) 1889. https://doi.org/10.3390/foods9121889.

[26]

H. Kenmoku, T. Sassa, N. Kato, Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B, Tetrahedron Lett.41(22) (2000) 4389-4393. https://doi.org/10.1016/S0040-4039(00)00601-8.

[27]

H. Kenmoku, T. Shimai, T. Toyomasu, et al., Erinacine Q, a new erinacine from Hericium erinaceum, and its biosynthetic route to erinacine C in the basidiomycete, Biosci. Biotechnol. Biochem. 66(3) (2002) 571-575. https://doi.org/10.1271/bbb.66.571.

[28]

A. Arnone, R. Cardillo, G. Nasini, et al., Secondary mold metabolites Part.46.Hericenes-A-C and erinapyrone-C, new metabolites produced by the fungus Hericium-erinaceus, J. Nat. Prod. 57(5) (1994) 602-606. https://doi.org/10.1021/np50107a006.

[29]

B.J. Ma, H.Y. Yu, J.W. Shen, et al., Cytotoxic aromatic compounds from Hericium erinaceum, J. Antibiot. 63(12) (2010) 713-715. https://doi.org/10.1038/ja.2010.112.

[30]
M. Kurz, S. Peter, S. Helke, New derivatives of phthalaldehyde, process for their preparation and their use: EP0902002A1, 1999
[31]

A. Ashour, Y. Amen, A.E. Allam, et al., New isoindolinones from the fruiting bodies of the fungus Hericium erinaceus, Phytochem. Lett. 32 (2019) 10-14. https://doi.org/10.1016/j.phytol.2019.04.017

[32]

K. Wang, L. Bao, Q. Qi, et al., Isoindolin-1-ones with alpha-glucosidase inhibitory activity from cultures of the medicinal mushroom Hericium erinaceus, J. Natural Products 78(1) (2015) 146-154.

[33]

S.H. Ryu, S.M. Hong, Z. Khan, et al., Neurotrophic isoindolinones from the fruiting bodies of Hericium erinaceus, Bioorganic Med. Chem. Lett. 31(2021) 127714. https://doi.org/10.1016/j.bmcl.2020.127714.

[34]

H. Kawagishi, R. Shirai, H. Sakamoto, et al., Erinapyrone-A and erinapyrone-B from the cultured mycelia of Hericium-erinaceum, Chem. Lett. 12 (1992) 2475-2476. https://doi.org/10.1246/cl.1992.2475.

[35]

J. Wu, T. Tokunaga, M. Kondo, et al., Erinaceolactones A to C, from the culture broth of Hericium erinaceus, J. Nat. Prod. 78(1) (2015) 155-158. https://doi.org/10.1021/np500623s.

[36]

X.L. Wang, J. Gao, J. Li, et al., Three new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus, J. Asian Nat. Prod. Res. 19(2) (2017) 134-139. https://doi.org/10.1080/10286020.2016.1183653.

[37]

J. Li, X.L. Wang, G. Li, et al., Two new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus, J. Asian Nat. Prod. Res. 19(11) (2017) 1108-1113. https://doi.org/10.1080/10286020.2017.1307185.

[38]

W. Li, W. Zhou, S.B. Song, et al., Sterol fatty acid esters from the mushroom Hericium erinaceum and their PPAR transactivational effects, J. Nat. Prod. 77(12) (2014) 2611-2618. https://doi.org/10.1021/np500234f.

[39]

W. Li, W. Zhou, J.Y. Cha, et al., Sterols from Hericium erinaceum and their inhibition of TNF-alpha and NO production in lipopolysaccharide-induced RAW264.7 cells, Phytochemistry 115 (2015) 231-238. https://doi.org/10.1016/j.phytochem.2015.02.021.

[40]

X.D. Dai, Y.G. Zhan, J.C. Zhang, et al., Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia, J. For. Res. 26(1) (2015) 71-77. https://doi.org/10.1007/s11676-014-0014-8.

[41]

L. Chen, J.N. Yao, H.P. Chen, et al., Hericinoids A-C, cyathane diterpenoids from culture of mushroom Hericium erinaceus, Phytochemistry Lett. 27(2018) 94-100. https://doi.org/10.1016/j.phytol.2018.07.006.

[42]

H. Kawagishi, M. Ando, T. Mizuno, et al., A novel fatty-acid from the mushroom Hericium-erinaceum, Agric. Biol. Chem. 54(5) (1990) 1329-1331, https://doi.org/10.1080/00021369.1990.10870092.

[43]

J. Erjavec, J. Kos, M. Ravnikar, et al., Proteins of higher fungi: from forest to application, Trends Biotechnol. 30(5) (2012) 259-273. https://doi.org/10.1016/j.tibtech.2012.01.004.

[44]

D.L. Chen, C.Q. Zheng, J. Yang, et al., Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota, Front. Immunol.8 (2017) 666. https://doi.org/10.3389/fimmu.2017.00666.

[45]

D.D. Wang, X.X. Zhu, X.C. Tang, et al., Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota, J. Food Sci. 85(6) (2020) 1872-1890. https://doi.org/10.1111/1750-3841.15134.

[46]

Y.H. Yu, Q.H. Hu, J.H. Liu, et al., Isolation, purification and identification of immunologically active peptides from Hericium erinaceus, Food Chem. Toxicol. 151 (2021) 112111. https://doi.org/10.1016/j.fct.2021.112111.

[47]

N. Wang, Z.Q. Tong, D.W. Wang, et al., Effects of Hericium erinaceus polypeptide on lowering blood lipids of mice with hyperlipidemia induced by a high-fat diet, J. Fut. Foods 2(4) (2022) 346-357. https://doi.org/10.1016/j.jfutfo.2022.08.006.

[48]

X. Zeng, H. Ling, J.W. Yang, et al., Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus, Gene 666(2018) 108-115. https://doi.org/10.1016/j.gene.2018.05.020.

[49]

J. Liu, W.W. Wang, Q.H. Hu, et al., Bioactivities and molecular mechanisms of polysaccharides from Hericium erinaceus, J. Fut. Foods 2(2) (2022) 103-111, https://doi.org/10.1016/j.jfutfo.2022.03.007.

[50]
S.A.M. Jalani, Effects of different cooking methods on the antioxidant activities of Hericium erinaceus (Bull.: Fr) pers., Faculty of Science, University of Malaya, Kuala Lumpur, 2017.
[51]

Y.T. Xue, X. Ding, X.Y. Wu, et al., Optimization of preparation process and antioxidant activity of the chelate of a Hericium erinaceus polysaccharide with zinc, J. Food Meas. Charact. 15(2) (2021) 2039-2048. https://doi.org/10.1007/s11694-020-00795-5.

[52]

B. Xu, H.L. Wang, X.Y. Lin, et al., Acetylation modification of polysaccharides from Hericium erinaceus and its antioxidant activity, Sci. Technol. Food Ind. 39(8) (2018) 50-55. https://doi.org/10.13386/j.issn1002-0306.2018.08.010.

[53]

C. Zhang, J. Li, C. Hu, et al., Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice, Sci. Rep. 7 (2017) 10847. https://doi.org/10.1038/s41598-017-11457-w.

[54]

H.Q. He, M.X. Liu, S.J. Jiang, Antioxidant responses of Hericium erinaceus ingredients based on response surface methodology, Int. Food Res. J. 28(2) (2021) 283-293.

[55]

I.C. Li, L.Y. Lee, Y.J. Chen, et al., Erinacine A-enriched Hericium erinaceus mycelia promotes longevity in Drosophila melanogaster and aged mice, PLoS ONE 14(5) (2019) e0217226. https://doi.org/10.1371/journal.pone.0217226.

[56]

X.T. Sheng, J.M. Yan, Y. Meng, et al., Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology, Food Funct. 8(3) (2017) 1020-1027. https://doi.org/10.1039/c7fo00071e.

[57]

F.F. Wu, C.H. Zhou, D.D. Zhou, et al., Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities, Food Funct. 9(1) (2018) 294-306. https://doi.org/10.1039/c7fo01389b.

[58]

Z. Ren, T. Qin, F.A. Qiu, et al., Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7, Int. J. Biol. Macromol. 105 (2017) 879-885. https://doi.org/10.1016/j.ijbiomac.2017.07.104.

[59]

J.L. Hu, S.P. Nie, M.Y. Xie, Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions, J. Agric. Food Chem. 66(19) (2018) 4781-4786. https://doi.org/10.1021/acs.jafc.7b05410.

[60]

Z.H. Yin, Z.H. Liang, C.Q. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Human Wellness 10(4) (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[61]

J.Y. Wong, M.A. Abdulla, J. Raman, et al., Gastroprotective effects of lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers.(Aphyllophoromycetideae) extract against ethanol-induced ulcer in rats, Evid.-Based Complementary Altern. Med.: eCAM 2013 (2013) 492976. https://doi.org/10.1155/2013/492976.

[62]

X.Y. Wang, J.Y. Yin, M.M. Zhao, et al., Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities, Carbohydr. Polym. 186 (2018) 100-109. https://doi.org/10.1016/j.carbpol.2018.01.004.

[63]

E.D. Yuan, L.Y. Liu, M. Huang, et al., Effects of complex extracts of traditional Chinese herbs on gastric mucosal injury in rats and potential underlying mechanism, Food Front. 2 (2021) 305-315. https://doi.org/10.1002/fft2.73.

[64]

C.L. Hou, L.Y. Liu, J.Y. Ren, et al., Structural characterization of two Hericium erinaceus polysaccharides and their protective effects on the alcohol-induced gastric mucosal injury, Food Chem. 375 (2022) 131896. https://doi.org/10.1016/j.foodchem.2021.131896.

[65]

D.D. Wang, Y.Q. Zhang, S. Yang, et al., A polysaccharide from cultured mycelium of Hericium erinaceus relieves ulcerative colitis by counteracting oxidative stress and improving mitochondrial function, Int. J. Biol. Macromol. 125 (2019) 572-579. https://doi.org/10.1016/j.ijbiomac.2018.12.092.

[66]

Y.L. Ren, Y. Geng, Y. Du, et al., Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota, J. Nutr. Biochem. 57 (2018) 67-76. https://doi.org/10.1016/j.jnutbio.2018.03.005.

[67]

I.C. Li, L.Y. Lee, T.T. Tzeng, et al., Neurohealth properties of Hericium erinaceus mycelia enriched with erinacines, Behav. Neurol. 2018 (2018) 5802634. https://doi.org/10.1155/2018/5802634.

[68]

R.G. Thorne, W.H. Frey, Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations, Clin. Pharmacokinet. 40(12) (2001) 907-946. https://doi.org/10.2165/00003088-200140120-00003.

[69]

C.W. Phan, P. David, M. Naidu, et al., Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism, Crit. Rev. Biotechnol. 35(3) (2015) 355-368. https://doi.org/10.3109/07388551.2014.887649.

[70]

K. Mori, Y. Obara, M. Hirota, et al., Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells, Biol. Pharm. Bull. 31(9) (2008) 1727-1732. https://doi.org/10.1248/bpb.31.1727.

[71]

T.T. Tzeng, C.C. Chen, L.Y. Lee, et al., Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice, J. Biomed. Sci. 23 (2016) 49. https://doi.org/10.1186/s12929-016-0266-z.

[72]

B.J. Ma, J.W. Shen, H.Y. Yu, et al., Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus, Mycology 1(2) (2010) 92-98. https://doi.org/10.1080/21501201003735556.

[73]

C.W. Phan, G.S. Lee, S.L. Hong, et al., Hericium erinaceus (Bull.: Fr)Pers.cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways, Food Funct. 5(12) (2014) 3160-3169. https://doi.org/10.1039/c4fo00452c.

[74]

H. Kawagishi, A. Simada, K. Shizuki, et al., Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum, Heterocycl. Comm. 2(1) (1996) 51-54. https://doi.org/10.1515/HC.1996.2.1.51.

[75]

H. Kawagishi, A. Shimada, S. Hosokawa, et al., Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum, Tetrahedron Lett. 37(41) (1996) 7399-7402. https://doi.org/10.1016/0040-4039(96)01687-5.

[76]

C.C. Zhang, C.Y. Cao, M. Kubo, et al., Chemical constituents from Hericium erinaceus promote neuronal survival and potentiate neurite outgrowth via the TrkA/Erk1/2 pathway, Int. J. Mol. Sci. 18(8) (2017) 1659. https://doi.org/10.3390/ijms18081659.

[77]

Z. Rupcic, M. Rascher, S. Kanaki, et al., Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum, Int. J. Mol. Sci. 19(3) (2018) 740. https://doi.org/10.3390/ijms19030740.

[78]

E.W. Lee, K. Shizuki, S. Hosokawa, et al., Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum, Biosci.Biotechnol. Biochem. 64(11) (2000) 2402-2405. https://doi.org/10.1271/bbb.64.2402.

[79]

Y.T. Zhang, L. Liu, L. Bao, et al., Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus, J. Antibiot. 71(9) (2018) 818-821. https://doi.org/10.1038/s41429-018-0065-8.

[80]

A.E. Autry, L.M. Monteggia, Brain-derived neurotrophic factor and neuropsychiatric disorders, Pharmacol. Rev. 64(2) (2012) 238-258. https://doi.org/10.1124/pr.111.005108.

[81]

Y.S. Park, H.S. Lee, M.H. Won, et al., Effect of an exo-polysaccharide from the culture broth of Hericium erinaceus on enhancement of growth and differentiation of rat adrenal nerve cells, Cytotechnology 39(3) (2002) 155-162. https://doi.org/10.1023/A:1023963509393.

[82]

N.S. Erekat, Apoptosis and its therapeutic implications in neurodegenerative diseases, Clinical Anatomy 35(1) (2022) 65-78.

[83]

K.A. Matthews, W. Xu, A.H. Gaglioti, et al., Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060)in adults aged ≥ 65 years, Alzheimers. Dement. 15(1) (2019) 17-24. https://doi.org/10.1016/j.jalz.2018.06.3063

[84]

E.V. Kolotushkina, M.G. Moldavan, K.Y. Voronin, et al., The influence of Hericium erinaceus extract on myelination process in vitro, Fiziolohichnyi Zhurnal (Kiev) 49(1) (2003) 38-45.

[85]

D. Ratto, F. Corana, B. Mannucci, et al., Hericium erinaceus improves recognition memory and induces hippocampal and cerebellar neurogenesis in frail mice during aging, Nutrients 11(4) (2019) 715. https://doi.org/10.3390/nu11040715.

[86]

K.H. Wong, M. Naidu, P. David, et al., Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers.(Aphyllophoromycetideae), Evid. Based Complementary Altern. Med. 2011 (2011) 580752. https://doi.org/10.1093/ecam/neq062.

[87]

T.T. Tzeng, C.C. Chen, C.C. Chen, et al., The cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate Alzheimer’s disease-related pathologies in APP/PS1 transgenic mice, Int. J. Mol. Sci. 19(2) (2018) 598. https://doi.org/10.3390/ijms19020598.

[88]

N. Koutsodendris, M.R. Nelson, A. Rao, et al., Apolipoprotein E and Alzheimer’s disease: findings, hypotheses, and potential mechanisms, Annu. Rev. Pathol. 17 (2022) 73-99. https://doi.org/10.1146/annurevpathmechdis-030421-112756.

[89]

K. Mori, Y. Obara, T. Moriya, et al., Effects of Hericium erinaceus on amyloid β25-35 peptide-induced learning and memory deficits in mice, Biomed. Res. (Tokyo) 32(1) (2011) 67-72. https://doi.org/10.2220/biomedres.32.67.

[90]

M. Cordaro, A.T. Salinaro, R. Siracusa, et al., Key mechanisms and potential implications of Hericium erinaceus in NLRP3 inflammasome activation by reactive oxygen species during Alzheimer’s disease, Antioxidants 10(11) (2021) 1664. https://doi.org/10.3390/antiox10111664.

[91]

D.Y. Hwang, J.S. Cho, C.K. Kim, et al., Aging-related correlation of insulin-degrading enzyme with gamma-secretase-generated products involving insulin and glucose levels in transgenic mice, Neurochem. Res. 30(9) (2005) 1171-1177. https://doi.org/10.1007/s11064-005-7952-7.

[92]

W. Farris, S. Mansourian, Y. Chang, et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo, Proc. Natl. Acad. Sci. 100(7) (2003) 4162-4167. https://doi.org/10.1073/pnas.0230450100

[93]

K. Mori, S. Inatomi, K. Ouchi, et al., Improving effects of the mushroom yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial, Phytother. Res. 23(3) (2009) 367-372. https://doi.org/10.1002/ptr.2634.

[94]

D.M. Teleanu, A.G. Niculescu, I.I. Lungu, et al., An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases, Int. J. Mol. Sci. 23(11) (2022) 5938. https://doi.org/10.3390/ijms23115938.

[95]

A. Trovato, R. Siracusa, R. Di Paola, et al., Redox modulation of cellular stress response and lipoxin A4 expression by Hericium erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis, Immun. Ageing 13(2016) 23. https://doi.org/10.1186/s12979-016-0078-8.

[96]

H.C. Kuo, C.C. Lu, C.H. Shen, et al., Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade, J. Transl. Med. 14 (2016) 78. https://doi.org/10.1186/s12967-016-0831-y.

[97]

C.L. Allen, U. Bayraktutan, Oxidative stress and its role in the pathogenesis of ischaemic stroke, Int. J. Stroke 4(6) (2009) 461-470. https://doi.org/10.1111/j.1747-4949.2009.00387.x.

[98]

K.F. Lee, J.H. Chen, C.C. Teng, et al., Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine, Int. J. Mol. Sci. 15(9) (2014) 15073-15089. https://doi.org/10.3390/ijms150915073.

[99]

C.H. Chiu, C.C. Chyau, C.C. Chen, et al., Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3 beta signaling in mice, Int. J. Mol. Sci. 19(2) (2018) 341. https://doi.org/10.3390/ijms19020341.

[100]

K.H. Wong, G. Kanagasabapathy, R. Bakar, et al., Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr.) Pers.through its neuroregenerative action, Food Sci. Technol. 35(4) (2015) 712-721. https://doi.org/10.1590/1678-457X.6838.

[101]

S.N. Rai, D. Mishra, P. Singh, et al., Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases, Biomed. Pharmacother. 137 (2021) 111377. https://doi.org/10.1016/j.biopha.2021.111377.

[102]

J.C.Y. Wang, S.H. Hu, J.T. Wang, et al., Hypoglycemic effect of extract of Hericium erinaceus, J. Sci. Food Agric. 85(4) (2005) 641-646. https://doi.org/10.1002/jsfa.1928.

[103]

B. Liang, Z.D. Guo, F. Xie, et al., Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats, BMC Complement. Altern. Med. 13 (2013) 253. https://doi.org/10.1186/1472-6882-13-253.

[104]

Y. Zhang, S.L. Yang, A.H. Wang, et al., Protective effect of ethanol extracts of Hericium erinaceus on alloxan-induced diabetic neuropathic pain in rats, Evid. Based Complement. Altern. Med. 2015 (2015) 595480. https://doi.org/10.1155/2015/595480.

[105]

S.K. Lee, S.H. Ryu, A. Turk, et al., Characterization of alpha-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom(Hericium erinaceus), J. Ethnopharmacol. 262 (2020) 113197. https://doi.org/10.1016/j.jep.2020.113197.

[106]

K. Wang, L. Bao, K. Ma, et al., Eight new alkaloids with PTP1B and alpha-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus, Tetrahedron 71(51) (2015) 9557-9563. https://doi.org/10.1016/j.tet.2015.10.068.

[107]

G. Wang, X. Zhang, S.E. Maier, et al., In vitro and in vivo inhibition of Helicobacter pylori by ethanolic extracts of lion’s mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), Int. J. Med. Mushrooms 21(1) (2019) 1-11. https://doi.org/10.1615/IntJMedMushrooms.2018029487.

[108]

L.T.M. Ngan, N.T. Vi, D.T. Tham, et al., Hieu, antioxidant and anti-Helicobacter pylori activities of Hericium erinaceus mycelium and culture filtrate, Biomed. Res. Therapy 8(3) (2021) 4267-4276, https://doi.org/10.15419/bmrat.v8i3.665.

[109]

X. Song, F. Gaascht, C. Schmidt-Dannert, et al., Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus, Molecules 25(4) (2020) 963. https://doi.org/10.3390/molecules25040963.

[110]

W. Li, W. Zhou, E.J. Kim, et al., Isolation and identification of aromatic compounds in lion’s mane mushroom and their anticancer activities, Food Chem. 170 (2015) 336-342. https://doi.org/10.1016/j.foodchem.2014.08.078.

[111]

K.C. Lee, K.F. Lee, S.Y. Tung, et al., Induction apoptosis of erinacine A in human colorectal cancer cells involving the expression of TNFR, Fas, and Fas ligand via the JNK/p300/p50 signaling pathway with histone acetylation, Front. Pharmacol. 10 (2019) 1174. https://doi.org/10.3389/fphar.2019.01174.

[112]

S.Y. Tung, K.C. Lee, K.F. Lee, et al., Apoptotic mechanisms of gastric cancer cells induced by isolated erinacine S through epigenetic histone H3 methylation of FasL and TRAIL, Food Funct. 12(8) (2021) 3455-3468. https://doi.org/10.1039/d0fo03089a.

[113]

G. Li, K. Yu, F. Li, et al., Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers, J. Ethnopharmacol. 153(2) (2014) 521-530. https://doi.org/10.1016/j.jep.2014.03.003.

[114]

F. Zhang, H. Lv, X. Zhang, Erinacerins, novel glioma inhibitors from Hericium erinaceus, induce apoptosis of U87 cells through Bax/Capase-2 pathway, Anti-Cancer Agent. Med. Chem. 20(17) (2020) 2082-2088. https://doi.org/10.2174/1871520620666200804104243.

[115]

J. Wu, K. Uchida, A.Y. Ridwan, et al., Erinachromanes A and B and erinaphenol A from the culture broth of Hericium erinaceus, J. Agric. Food Chem. 67(11) (2019) 3134-3139. https://doi.org/10.1021/acs.jafc.8b06050.

[116]

K. Mori, H. Kikuchi, Y. Obara, et al., Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation, Phytomedicine 17(14) (2010) 1082-1085. https://doi.org/10.1016/j.phymed.2010.05.004.

[117]

J.Q. Liu, C.X. Du, Y.F. Wang, et al., Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus, Exp. Ther. Med. 9(2) (2015) 483-487. https://doi.org/10.3892/etm.2014.2139.

[118]

F.Y. Cui, X. Gao, J.J. Zhang, et al., Protective effects of extracellular and intracellular polysaccharides on hepatotoxicity by Hericium erinaceus SG-02, Curr. Microbiol. 73(3) (2016) 379-385. https://doi.org/10.1007/s00284-016-1073-1.

[119]

D.D. Wang, D.D. Xu, D.Q. Zhao, et al., Screening and comparison of anti-intestinal inflammatory activities of three polysaccharides from the mycelium of lion’s mane culinary-medicinal mushroom, Hericium erinaceus(Agaricomycetes), Int. J. Med. Mushrooms 23(9) (2021) 63-71. https://doi.org/10.1615/IntJMedMushrooms.2021039951.

[120]

Y. Gao, W. Zheng, M.X. Wang, et al., Molecular properties, structure, and antioxidant activities of the oligosaccharide Hep-2 isolated from cultured mycelium of Hericium erinaceus, J. Food Biochem. 43(9) (2019) e12985. https://doi.org/10.1111/jfbc.12985.

[121]

D.D. Wang, D.D. Xu, Y.Q. Zhang, et al., A novel oligosaccharide isolated from Hericium erinaceus and its protection against LPS-induced Caco-2 cells via the TLR4/NF-kappa B pathway, J. Food Biochem. 44(3) (2020) e13135. https://doi.org/10.1111/jfbc.13135.

[122]

M.X. Wang, N. Kanako, Y.Q. Zhang, et al., A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell, PLoS ONE 12(7) (2017) e181546. https://doi.org/10.1371/journal.pone.0181546.

[123]

Y. Qin, Z.F. Zhang, T.T. Song, et al., Optimization of enzyme-assisted extraction of antitumor polysaccharides from Hericium erinaceus mycelia, Food Sci. Technol. Res. 23(1) (2017) 31-39. https://doi.org/10.3136/fstr.23.31.

[124]
X.M. Yi, Isolation, purification, structural characterization and functional activity of Hericium erinaceus polysaccharide, South China University of Technology, Guangzhou, China, 2017.
[125]

A. Wiater, A. Choma, I. Komaniecka, et al., Fruiting bodies of Hericium erinaceus (Bull.) Pers.– a new source of water-insoluble (1→3)-α-D-glucan, Acta Soc.Bot.Pol.85(3) (2016) 1-6. https://doi.org/10.5586/asbp.3506.

[126]

J.Q. Tu, H.P. Liu, Y.H. Wen, et al., A novel polysaccharide from Hericium erinaceus: preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro, J. Food Biochem. 45(9) (2021) e13871. https://doi.org/10.1111/jfbc.13871.

[127]

B.W. Liao, C.H. Zhou, T.T. Liu, et al., A novel Hericium erinaceus polysaccharide: structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells, Int. J. Biol. Macromol. 154 (2020) 1460-1470. https://doi.org/10.1016/j.ijbiomac.2019.11.027.

[128]

X.X. Hou, J.Y. Liu, Z.Y. Li, et al., Fruiting body polysaccharides of Hericium erinaceus induce apoptosis in human colorectal cancer cells via ROS generation mediating caspase-9-dependent signaling pathways, Food Funct. 11(7) (2020) 6128-6138. https://doi.org/10.1039/d0fo00916d.

[129]

W.D. Cai, Z.C. Ding, Y.Y. Wang, et al., Hypoglycemic benefit and potential mechanism of a polysaccharide from Hericium erinaceus in streptozotoxininduced diabetic rats, Process Biochem. 88 (2020) 180-188. https://doi.org/10.1016/j.procbio.2019.09.035.

[130]

F.F. Wu, C.H. Zhou, D.D. Zhou, et al., Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity, J. Funct. Foods (2017) 574-585. https://doi.org/10.1016/j.jff.2017.08.030.

[131]

Q.Z. Li, D. Wu, S. Zhou, et al., Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages, Carbohydr. Polym. 144 (2016) 196-204. https://doi.org/10.1016/j.carbpol.2016.02.051.

[132]

C.C. Zhang, X. Yin, C.Y. Cao, et al., Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells, Bioorganic Med. Chem. Lett. 25(22) (2015) 5078-5082. https://doi.org/10.1016/j.bmcl.2015.10.016.

[133]

H. Kawagishi, A. Masui, S. Tokuyama, et al., Erinacines J and K from the mycelia of Hericium erinaceum, Tetrahedron. 62(36) (2006) 8463-8466. https://doi.org/10.1016/j.tet.2006.06.091

[134]

B.J. Ma, Y. Zhou, L.Z. Li, et al., A new cyathane-xyloside from the mycelia of Hericium erinaceum, J. Chem. Sci. 63(10) (2008) 1241-1242. https://doi.org/10.1515/znb-2008-1017.

[135]

C.C. Chen, T.T. Tzeng, C.C. Chen, et al., Erinacine S, a rare sesterterpene from the mycelia of Hericium erinaceus, J. Nat. Prod. 79(2) (2016) 438-441. https://doi.org/10.1021/acs.jnatprod.5b00474.

[136]

Y. Yaoita, K. Danbara, M. Kikuchi, Two new aromatic compounds from Hericium erinaceum (Bull.: Fr.) Pers, Chem. Pharm. Bull. 53(9) (2005) 1202-1203. https://doi.org/10.1248/cpb.53.1202.

Food Science and Human Wellness
Pages 1825-1844
Cite this article:
Qiu Y, Lin G, Liu W, et al. Bioactive compounds in Hericium erinaceus and their biological properties: a review. Food Science and Human Wellness, 2024, 13(4): 1825-1844. https://doi.org/10.26599/FSHW.2022.9250152

2053

Views

825

Downloads

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 24 November 2022
Revised: 29 December 2022
Accepted: 13 February 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return