AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Immunological disturbance effect of exogenous histamine towards key immune cells

Yanan LiuaHuan LiaChong WangaShanjun ChenaRenjie LianbWeiqiang WangcLinglin FuaYanbo Wanga,d( )
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
Jinghai Group Co., Ltd., Rongcheng 264307, China
Jinhua Jinnian Ham Co., Ltd., Jinhua 321041, China
School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Immunological influence of exogenous histamine on key immune cells was studied.

• Histamine resulted in imbalance of the levels of relevant immune factors.

• Maturation of dendritic cells and polarization towards Th2 cells were observed.

• The immune safety of histamine in food should not be underestimated.

Abstract

Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk. However, its influences on immunological components, especially the function of key immune cells, are still poorly known. In this work, we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells, dendritic cells, and T cells. The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine. Moreover, it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells, especially those related to allergy. At the same time, the proportion of MHC class Ⅱ-positive dendritic cells and the proportion of T helper 2 (Th2) cells in CD4+ T cells increased after histamine stimulation. We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines, disrupt the balance of the immune homeostasis, and potentially lead to adverse immune reactions. This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.

Electronic Supplementary Material

Download File(s)
fshw-13-4-1856_ESM.docx (78.5 KB)

References

[1]

R. Jia, W. Tian, H. Bai, et al., Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness, Nat. Commun. 10 (2019) 795. https://doi.org/10.1038/s41467-019-08675-3.

[2]

M.H. Silla Santos, Biogenic amines: their importance in foods, Int. J. Food Microbiol. 29 (1996) 213-231. https://doi.org/10.1016/0168-1605(95)00032-1.

[3]

H. Li, J. Gan, Q. Yang, et al., Colorimetric detection of food freshness based on amine-responsive dopamine polymerization on gold nanoparticles, Talanta 234 (2021) 122706. https://doi.org/10.1016/j.talanta.2021.122706.

[4]

V. Ladero, M. Calles-enríquez, M. Fernández, et al., Toxicological effects of dietary biogenic amines, Curr. Nutr. Food Sci. 6 (2010) 145-156. https://doi.org/10.2174/157340110791233256.

[5]

M. Gagic, E. Jamroz, S. Krizkova, et al., Current trends in detection of histamine in food and beverages, J. Agric. Food Chem. 67 (2019) 773-783. https://doi.org/10.1021/acs.jafc.8b05515.

[6]

D.M. Linares, B. Del Rio, B. Redruello, et al., Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine, Food Chem. 197 (2016) 658-663. https://doi.org/10.1016/j.foodchem.2015.11.013.

[7]

K.B. Biji, C.N. Ravishankar, R. Venkateswarlu, et al., Biogenic amines in seafood: a review, J. Food Sci. Technol. 53 (2016) 2210-2218. https://doi.org/10.1007/s13197-016-2224-x.

[8]

A. Toninello, M. Salvi, P. Pietrangeli, et al., Biogenic amines and apoptosis: minireview article, Amino Acids 26 (2004) 339-343. https://doi.org/10.1007/s00726-004-0080-x.

[9]

A.C.C.C. Branco, F.S.Y. Yoshikawa, A.J. Pietrobon, et al., Role of histamine in modulating the immune response and inflammation, Mediators Inflamm. 2018 (2018) 9524075. https://doi.org/10.1155/2018/9524075.

[10]

H. Hasala, M.A. Giembycz, M. Janka-Junttila, et al., Histamine reverses IL-5-afforded human eosinophil survival by inducing apoptosis: pharmacological evidence for a novel mechanism of action of histamine, Pulm. Pharmacol. Ther. 21 (2008) 222-233. https://doi.org/10.1016/j.pupt.2007.03.002.

[11]

K. Bando, T. Kuroishi, S. Sugawara, et al., Interleukin-1 and histamine are essential for inducing nickel allergy in mice, Clin. Exp. Allergy 49 (2019) 1362-1373. https://doi.org/10.1111/cea.13467.

[12]

B. Ruiter, W.G. Shreffler, The role of dendritic cells in food allergy, J. Allergy Clin. Immunol. 129 (2012) 921-928. https://doi.org/10.1016/j.jaci.2012.01.080.

[13]

C.H. Wu, T.C. Huang, B.F. Lin, Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation, J. Nutr. Biochem. 41 (2017) 65-72. https://doi.org/10.1016/j.jnutbio.2016.11.008.

[14]

K.G. Tournoy, C. Van Hove, J. Grooten, et al., Animal models of allergen-induced tolerance in asthma: are T-regulatory-1 cells (Tr-1) the solution for T-helper-2 cells (Th-2) in asthma?, Clin. Exp. Allergy 36 (2006) 8-20. https://doi.org/10.1111/j.1365-2222.2005.02385.x.

[15]

M.J. Predebon, D.R. Bond, J. Brzozowski, et al., The bispidinone derivative 3,7-bis-[2-(S)-amino-3-(1H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride induces an apoptosis-mediated cytotoxic effect on pancreatic cancer cells in vitro, Molecules 24 (2019) 524. https://doi.org/10.3390/molecules24030524.

[16]

L. Fu, M. Xie, C. Wang, et al., Lactobacillus casei Zhang alleviates shrimp tropomyosin-induced food allergy by switching antibody isotypes through the NF-κB-dependent immune tolerance, Mol. Nutr. Food Res. 64 (2020) 1900496. https://doi.org/10.1002/mnfr.201900496.

[17]

L. Fu, J. Song, C. Wang, et al., Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota, Front. Immunol. 8 (2017) 1536. https://doi.org/10.3389/fimmu.2017.01536.

[18]

S. Liang, X.K. Guo, J. Ou, et al., Nutrient sensing by the intestinal epithelium orchestrates mucosal antimicrobial defense via translational control of Hes1, Cell Host Microbe 25 (2019) 706-718. https://doi.org/10.1016/j.chom.2019.03.012.

[19]

M. Shale, S. Ghosh, How intestinal epithelial cells tolerise dendritic cells and its relevance to inflammatory bowel disease, Gut 58 (2009) 1291-1299. https://doi.org/10.1136/gut.2006.098475.

[20]

Q. Liu, Y. Zhang, Z. Shu, et al., Sulfated oligosaccharide of Gracilaria lemaneiformis protect against food allergic response in mice by up-regulating immunosuppression, Carbohydr. Polym. 230 (2020) 115567. https://doi.org/10.1016/j.carbpol.2019.115567.

[21]

P. Satitsuksanoa, K. Jansen, A. Głobińska, et al., Regulatory immune mechanisms in tolerance to food allergy, Front. Immunol. 9 (2018) 141-147. https://doi.org/10.3389/fimmu.2018.02939.

[22]

Y. Zhang, Y. Zhang, Y. Zhou, et al., A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010, J. Chromatogr. A 1605 (2019) 360361. https://doi.org/10.1016/j.chroma.2019.07.015.

[23]

P. Derivatization, E.S. Plakidi, N.C. Maragou, et al., Liquid chromatographic determination of biogenic amines in fish based on pyrene sulfonyl chloride, Foods 9 (2020) 609. https://doi.org/10.3390/foods9050609.

[24]

F. Salazar, A.M. Ghaemmaghami, Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells, Front. Immunol. 4 (2013) 356. https://doi.org/10.3389/fimmu.2013.00356.

[25]

K.M. Vannella, T.R. Ramalingam, L.A. Borthwick, et al., Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis, Sci. Transl. Med. 8 (2016) 337ra65. https://doi.org/10.1126/scitranslmed.aaf1938.

[26]

C. Wang, W. Lin, Y. Wang, et al., Suppression of hippo pathway by food allergen exacerbates intestinal epithelia instability and facilitates hypersensitivity, Mol. Nutr. Food Res. 65 (2021) e2000593. https://doi.org/10.1002/mnfr.202000593.

[27]

C.Y. Yeh, T.H. Yeh, C.J. Jung, et al., Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens, PLoS ONE 8 (2013) e55472. https://doi.org/10.1371/journal.pone.0055472.

[28]

G. Caron, Y. Delneste, E. Roelandts, et al., Histamine induces CD86 expression and chemokine production by human immature dendritic cells, J. Immunol. 166 (2001) 6000-6006. https://doi.org/10.4049/jimmunol.166.10.6000.

[29]

K. Sugamura, N. Ishii, A.D. Weinberg, Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40, Nat. Rev. Immunol. 4 (2004) 420-431. https://doi.org/10.1038/nri1371.

[30]

Y. Jin, L. Fuller, G. Ciancio, et al., Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow, Hum. Immunol. 65 (2004) 93-103. https://doi.org/10.1016/j.humimm.2003.11.002.

[31]

Y. Li, C. Wang, Research progress in IL-10 induction the mechanism of transplant immune tolerance, Med. Recapitul. 17 (2011) 9-11. https://doi.org/10.3969/j.issn.1006-2084.2011.06.004.

[32]

B. Spoto, C. Zoccali, Spleen IL-10, a key player in obesity-driven renal risk, Nephrol. Dial. Transplant. 28 (2013) 1061-1064. https://doi.org/10.1093/ndt/gft094.

[33]

R. de W. Malefyt, H.S. John Haanen, M.G. Koncarolo, et al., Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class Ⅱ major histocompatibility complex expression, J. Exp. Med. 174 (1991) 915-924. https://doi.org/10.1084/jem.174.4.915.

[34]

M. Jutel, M. Akdis, F. Budak, et al., IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy, Eur. J. Immunol. 33 (2003) 1205–1214. https://doi.org/10.1002/eji.200322919.

[35]

J. Xie, J. Feng, G. Zhang, et al., Study on the changes of serum IL-2, IL-6 and TNF-α levels in patients with chronic glomerulonephritis, J. Radiommunology. 1 (2003) 32-35. https://doi.org/10.3969/j.issn.1008-9810.2003.06.015.

[36]

A. Salazar-Montes, A.R. Rincón, A. Panduro, et al., Chemically induced liver regeneration is characterized by specific IL-6 gene expression, Hepatol. Res. 15 (1999) 10-21. https://doi.org/10.1016/s1386-6346(98)00056-4.

[37]

A. Salazar-Montes, V. Delgado-Rizo, J. Armendáriz-Borunda, Differential gene expression of pro-inflammatory and anti-inflammatory cytokines in acute and chronic liver injury, Hepatol. Res. 16 (2000) 181-194. https://doi.org/10.1016/S1386-6346(99)00048-0.

[38]

W. Zhou, Z. Wu, Q. Wan, et al., Effect of biogenic amines in Huangjiu on amine oxidase and immune function of mice, China Brew. 37 (2018) 67-71. https://doi.org/10.11882/j.issn.0254-5071.2018.0.

[39]

J. Zhu, H. Yamane, W.E. Paul, Differentiation of effector CD4+ T cell populations, Annu. Rev. Immunol. 28 (2010) 445-489. https://doi.org/10.1146/annurev-immunol-030409-101212.

[40]

G.R. Bantug, L. Galluzzi, G. Kroemer, et al., The spectrum of T cell metabolism in health and disease, Nat. Rev. Immunol. 18 (2018) 19-34. https://doi.org/10.1038/nri.2017.99.

[41]

A. Miya, A. Nakamura, H. Miyoshi, et al., Impact of glucose loading on variations in CD4+ and CD8+ T cells in Japanese participants with or without type 2 diabetes, Front. Endocrinol. (Lausanne) 9 (2018) 4-11. https://doi.org/10.3389/fendo.2018.00081.

[42]

L.L. Zhang, X. Chen, P.Y. Zheng, et al., Oral Bifidobacterium modulates intestinal immune inflammation in mice with food allergy, J. Gastroenterol. Hepatol. 25 (2010) 928-934. https://doi.org/10.1111/j.1440-1746.2009.06193.x.

[43]

T. Jiang, H. Ji, L. Zhang, et al., Chitosan oligosaccharide exerts anti-allergic effect against shrimp tropomyosin-induced food allergy by affecting Th1 and Th2 cytokines, Int. Arch. Allergy Immunol. 180 (2019) 10-16. https://doi.org/10.1159/000500720.

[44]

S.S. Xu, Q.M. Liu, A.F. Xiao, et al., Eucheuma cottonii sulfated oligosaccharides decrease food allergic responses in animal models by up-regulating regulatory T (Treg) cells, J. Agric. Food Chem. 65 (2017) 3212-3222. https://doi.org/10.1021/acs.jafc.7b00389.

[45]

E.N.C. Mills, H. Breiteneder, Food allergy and its relevance to industrial food proteins, Biotechnol. Adv. 23 (2005) 409-414. https://doi.org/10.1016/j.biotechadv.2005.05.006.

[46]

W. Zheng, R.A. Flavell, The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells, Cell. 89 (1997) 587-596. https://doi.org/10.1016/s0092-8674(00)80240-8.

[47]

C. Shi, T. Pan, M. Cao, et al., Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice, Int. Immunopharmacol. 24 (2015) 211-218. https://doi.org/10.1016/j.intimp.2014.11.019.

[48]

A. Mazzoni, H.A. Young, J.H. Spitzer, et al., Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization, J. Clin. Invest. 108 (2001) 1865-1873. https://doi.org/10.1172/JCI200113930.

[49]

S.J. Szabo, S.T. Kim, G.L. Costa, et al., A novel transcription factor, T-bet, directs Th1 lineage commitment, Cell 100 (2000) 655-669. https://doi.org/10.1016/S0092-8674(00)80702-3.

[50]

L.M. de Mello, M.I.S. Bechara, D. Solé, et al., TH1/TH2 balance in concomitant immediate and delayed-type hypersensitivity diseases, Immunol. Lett. 124 (2009) 88-94. https://doi.org/10.1016/j.imlet.2009.04.011.

[51]

T. Ariyasu, T. Tanaka, N. Fujioka, et al., Effects of interferon-alpha subtypes on the Th1/Th2 balance in peripheral blood mononuclear cells from patients with hepatitis virus infection-associated liver disorders, Vitr. Cell. Dev. Biol.-Anim. 41 (2005) 50-56. https://doi.org/10.1290/0501008.1.

[52]

G. Cui, J. Florholmen, Polarization of cytokine profile from Th1 into Th2 along colorectal adenoma-carcinoma sequence: implications for the biotherapeutic target?, Inflamm. Allergy-Drug Targets 7 (2008) 94-97. https://doi.org/10.2174/187152808785107589.

[53]

S.H. Sicherer, H.A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immunol. 133 (2014) 291-307. https://doi.org/10.1016/j.jaci.2013.11.020.

[54]

J.H. Mah, H.K. Han, Y.J. Oh, et al., Biogenic amines in Jeotkals, Korean salted and fermented fish products, Food Chem. 79 (2002) 239-243. https://doi.org/10.1016/S0308-8146(02)00150-4.

[55]

A. Cicero, G. Cammilleri, F.G. Galluzzo, et al., Histamine in fish products randomly collected in Southern Italy: a 6-year study, J. Food Prot. 83 (2020) 241-248. https://doi.org/10.4315/0362-028X.JFP-19-305.

[56]

J.S. Moon, Y. Kim, K.I. Jiang, et al., Analysis of biogenic amines in fermented fish products consumed in Korea, Food Sci. Biotechnol. 19 (2010) 1689-1692. https://doi.org/10.1007/s10068-010-0240-6.

[57]

E. Rauscher-Gabernig, R. Grossgut, F. Bauer, et al., Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods, Food Control 20 (2009) 423-429. https://doi.org/10.1016/j.foodcont.2008.07.011.

[58]

H. Li, X. Chen, Q. Zhao, et al., Effects of Streptococcus, Helicobacter pylori and Mycoplasma pneumoniae on children with allergic purpura, Jiangxi Med. J. 54 (2019) 1087-1088, 1111. https://doi.org/10.3969/j.issn.1006-2238.2019.9.032.

[59]

M. Deng, J. Miao, W. Zheng, et al., The expression and significance of serum interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-α and immunoglobulin A with Henoch-Schonlein puroura in children, Jiangxi Med. J. 51 (2016) 762-764. https://doi.org/10.3969/j.issn.1006-2238.2016.08.012.

Food Science and Human Wellness
Pages 1856-1863
Cite this article:
Liu Y, Li H, Wang C, et al. Immunological disturbance effect of exogenous histamine towards key immune cells. Food Science and Human Wellness, 2024, 13(4): 1856-1863. https://doi.org/10.26599/FSHW.2022.9250154

864

Views

120

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 September 2022
Revised: 15 January 2023
Accepted: 05 February 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return