AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (21.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Andrias davidianus bone peptides alleviates hyperuricemia-induced kidney damage in vitro and in vivo

Wei Lia,1Haihong Chena,b,1Hongliang ChenaZiyin LieWei HuaQinxuan ZhouaBing Xua,bYi Wangc,d( )Xinhui Xinga,b,c,d( )
Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 440300, China
Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Beijing 100084, China
Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China

1 Wei Li and Haihong Chen contributed equally to the work of this article.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

Andrias davidianus bone peptides (ADBP) with great potential of XOD inhibitory effect was yielded.

• ADBP displayed great anti-hyperuricemic and nephroprotective effects.

• ADBP alleviated hyperuricemia-induced CKD mice via regulating uric acid excretion and gut microbiota.

Graphical Abstract

Abstract

Hyperuricemia (HUA) is a vital risk factor for chronic kidney diseases (CKD) and development of functional foods capable of protecting CKD is of importance. This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides (ADBP) on HUA-induced kidney damage. In the present study, we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents. In vitro results found that ADBP protected uric acid (UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense. In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice, evidenced by a remarkable decrease in serum UA, creatinine and blood urea nitrogen, improving kidney UA excretion, antioxidant defense and histological kidney deterioration. Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction. Intriguingly, ADBP restored the gut microbiome homeostasis in CKD mice, especially with respect to the elevated helpful microbial abundance, and the decreased harmful bacterial abundance. This study demonstrated that ADBP displayed great nephroprotective effects, and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.

Electronic Supplementary Material

Download File(s)
fshw-13-4-1886_ESM.docx (1.1 MB)

References

[1]

A.A. Ejaz, T. Nakagawa, M. Kanbay, et al. Hyperuricemia in kidney disease: a major risk factor for cardiovascular events, vascular calcification, and renal damage, Semin. Nephrol. 40(6) (2020) 574-585. https://doi.org/10.1016/j.semnephrol.2020.12.004.

[2]

L. Shahin, K.M. Patel, M.K. Heydari, et al., Hyperuricemia and cardiovascular risk, Cureus 12(10) (2021) 1219-1225. http://doi.org/10.7759/cureus.14855.

[3]

A. Shirakabe, H. Okazaki, M. Matsushita, et al., Hyperuricemia complicated with acute kidney injury is associated with adverse outcomes in patients with severely decompensated acute heart failure, IJC Heart Vasc. 23 (2019) 100345. http://doi.org/10.1016/j.ijcha.2019.03.005.

[4]

D.L. Cui, S.Y. Liu, M.H. Tang, et al., Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption, Phytomedicine 66 (2020) 153111. http://doi.org/10.1016/j.phymed.2019.153111.

[5]

R.J. Johnson, G.L. Bakris, C. Borghi, et al., Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation, Am. J. Kidney Dis. 71 (2018) 851-865. http://doi.org/10.1053/j.ajkd.2017.12.009.

[6]

Q. Ren, L. Cheng, F. Guo, et al., Fisetin improves hyperuricemia-induced chronic kidney disease via regulating gut microbiota-mediated tryptophan metabolism and aryl hydrocarbon receptor activation, J. Agr. Food Chem. 69 (2021) 10932-10942. http://doi.org/10.1021/acs.jafc.1c03449.

[7]

M.Y. Sun, N. Hines, D. Scerbo, et al., Allopurinol lowers serum urate but does not reduce oxidative stress in CKD, Antioxidants 11 (2022) 1297. http://doi.org/10.3390/antiox11071297.

[8]

Y. Tsuruta, T. Mochizuki, T. Moriyama, et al., Switching from allopurinol to febuxostat for the treatment of hyperuricemia and renal function in patients with chronic kidney disease, Clin. Rheumatol. 33 (2014) 1643-1648. http://doi.org/10.1007/s10067-014-2745-5.

[9]

J. Pedraza-Chaverri, L.G. Sánchez-Lozada, H. Osorio-Alonso, et al., New pathogenic concepts and therapeutic approaches to oxidative stress in chronic kidney disease, Oxid. Med. Cell Longev. 2016 (2016) 1-21. http://doi.org/10.1155/2016/6043601.

[10]

J. Wang, Y. Chen, H. Zhong, et al., The gut microbiota as a target to control hyperuricemia pathogenesis: potential mechanisms and therapeutic strategies, Crit. Rev. Food Sci. Nutr. 62 (2022) 3979-3989. http://doi.org/10.1080/10408398.2021.1874287.

[11]

X.Q. Li, Y.H. Chen, X.X. Gao, et al., Antihyperuricemic effect of green alga Ulva lactuca ulvan through regulating urate transporters, J. Agr. Food Chem. 69 (2021) 11225-11235. http://doi.org/10.1021/acs.jafc.1c03607.

[12]

L. Sun, C.X. Ni, J.X. Zhao, et al., Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: a review, Crit. Rev. Food Sci. Nutr. (2022) 1-16. http://doi.org/10.1080/10408398.2022.2119934.

[13]

J.Y. Sun, X.F. Geng, J.L. Guo, et al., Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander, Comp. Biochem. Phys. D. 19 (2016) 71-77. https://doi.org/10.1016/j.cbd.2016.06.004.

[14]

D. He, W.M. Zhu, W. Zeng, et al., Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: a review, Food Science and Human Wellness 7 (2018) 1-10. http://doi.org/10.1016/j.fshw.2018.03.001.

[15]

W. M. Zhu, Y. Ji, Y. Wang, et al., Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage, Carbohyd. Polym. 196 (2018) 398-404. http://doi.org/10.1016/j.carbpol.2018.05.047.

[16]

Y.Q. Wu, H. He, T. Hou, Purification, identification, and computational analysis of xanthine oxidase inhibitory peptides from kidney bean, J. Food Sci. 86 (2021) 1081-1088. http://doi.org/10.1111/1750-3841.15603.

[17]

L. Li, D.Q. Cheng, X.X. An, et al., Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats, Int. Immunopharmacol. 99 (2021) 108000. http://doi.org/10.1016/j.intimp.2021.108000.

[18]

O. Akchurin, A. Sureshbabu, S. B. Doty, et al., Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease, Am. J. Physiol.-Renal. 311 (2016) F877-F889. http://doi.org/10.1152/ajprenal.00089.2016.

[19]

A. Mehmood, L. Zhao, M. Ishaq, et al., Anti-hyperuricemic potential of stevia (Stevia rebaudiana Bertoni) residue extract in hyperuricemic mice, Food Funct. 11 (2020) 6387-6406. http://doi.org/10.1039/c9fo02246e.

[20]

W. Li, Z.Y. Li, M.J. Peng, et al., Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in Caenorhabditis elegans, Food Funct. 11 (2020) 9157-9167. http://doi.org/10.1039/D0FO01635G.

[21]

J.M. Ramis, J. Calvo, A. Matas, et al., Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract, J. Mater. Sci.: Mater. M. 29 (2018) 1-8. https://doi.org/10.1007/s10856-018-6115-8.

[22]

N.X. Liu, Y. Wang, M.F. Yang, et al., New rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats, J. Agr. Food Chem. 67 (2018) 220-228. http://doi.org/10.1021/acs.jafc.8b05879.

[23]

L.H. Yang, Z.L. Guo, J.Q. Wei, et al., Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: impact on the antioxidant activities of the extracted peptides, LWT 146 (2021) 111470. http://doi.org/10.1016/j.lwt.2021.111470.

[24]

M.M. Wang, Q.H. Luo, H.L. Wang, et al., Determination and evaluation of mineral elements in muscle of giant salamander Zhangjiajie, Jiangsu Agricultural Sciences 5 (2014) 238-239. http://doi.org/10.15889/j.issn.1002-1302.2014.05.027.

[25]

M.F. Hou, X. Hu, X.Q. Yang, et al., Preparation and process optimization of xanthine oxidase inhibitory peptides from Trachinotus ovatus, Food and Fermentation Industries 47 (2021) 185-192. http://doi.org/10.13995/j.cnki.11-1802/ts.027276.

[26]

W.W. He, G.W. Su, D.X. Sun-Waterhouse, et al., In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions, Food Chem. 272 (2019) 453-461. http://doi.org/10.1016/j.foodchem.2018.08.057.

[27]

Y.J. Li, X.Y. Kang, Q.Y. Li, et al., Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity, Peptides 107 (2018) 45-53. http://doi.org/10.1016/j.peptides.2018.08.001.

[28]

M.A. Yu, L.G. Sánchez-Lozada, R. J. Johnson, et al., Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction, J. Hypertens. 28 (2010) 1234-1242. https://doi.org/10.1097/HJH.0b013e328337da1d.

[29]

L. Li, M. Lin, L.X. Zhang, et al., Cyclic helix B peptide protects HK2 cells from oxidative stress by inhibiting ER stress and activating Nrf2 signalling and autophagy, Mol. Med. Rep. 16 (2017) 8055-8061. http://doi.org/10.3892/mmr.2017.7588.

[30]

W. Li, X.Y. Zhang, Z.Q. He, et al., In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota, Food Res. Int. 136 (2020) 109302. http://doi.org/10.1016/j.foodres.2020.109302.

[31]

I. Murota, S. Taguchi, N. Sato, et al., Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation, J. Agr. Food Chem. 62 (2014) 2392-2397. http://doi.org/10.1021/jf405504u.

[32]

Y.J. Li, X.Y. Kang, Q.Y. Li, et al., Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity, Peptides 107 (2018) 45-53. https://doi.org/10.1016/j.peptides.2018.08.001.

[33]

X.F. Qi, H.R. Chen, K.F. Guan, et al., Anti-hyperuricemic and nephroprotective effects of whey protein hydrolysate in potassium oxonate induced hyperuricemic rats, J. Sci. Food Agr. 101(12) (2021) 4916-4924. http://doi.org/10.1002/jsfa.11135.

[34]

L.Q. Xu, Y.F. Shi, S.G. Zhuang, et al., Recent advances on uric acid transporters, Oncotarget 8(59) (2017) 100852. https://doi.org/10.18632/oncotarget.20135.

[35]

W.H. Xu, H.T. Wang, Y. Sun, et al., Antihyperuricemic and nephroprotective effects of extracts from Orthosiphon stamineus in hyperuricemic mice, J. Pharm. Pharmacol. 72(4) (2020) 551-560. https://doi.org/10.1111/jphp.13222.

[36]

G. Burckhardt, Drug transport by organic anion transporters (OATs), Pharmacol. Therapeut. 136(1) (2012) 106-130. https://doi.org/10.1016/j.pharmthera.2012.07.010.

[37]

C.Y. Lu, S.S. Tang, J.J. Han, et al., Apostichopus japonicus oligopeptide induced heterogeneity in the gastrointestinal tract microbiota and alleviated hyperuricemia in a microbiota-dependent manner, Mol. Nutr. Food Res. 65(14) (2021) 2100147. http://doi.org/10.1002/mnfr.202100147.

[38]

C. Fang, L.Y. Chen, M.Z. He, et al., Molecular mechanistic insight into the anti-hyperuricemic effect of Eucommia ulmoides in mice and rats, Pharm. Biol. 57 (2019) 112-119. http://doi.org/10.1080/13880209.2019.1568510.

[39]

H.J. Shin, M. Takeda, A. Enomoto, et al., Interactions of urate transporter URAT1 in human kidney with uricosuric drugs, Nephrology 16 (2011) 156-162. https://doi.org/10.1111/j.1440-1797.2010.01368.x.

[40]

X.X. Xu, C.H. Li, P. Zhou, et al., Uric acid transporters hiding in the intestine, Pharm. Biol. 54(12) (2016) 3151-3155. https://doi.org/10.1080/13880209.2016.1195847.

[41]

H. Matsuo, A. Nakayama, M. Sakiyama, et al., ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload, Sci. Rep. 4(1) (2014) 1-5. https://doi.org/10.1038/srep03755.

[42]

Y.H. Chen, R.P. Zhang, Y.M. Song, et al., RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer, The Analyst 134 (2009) 2003. http://doi.org/10.1039/b907243h.

[43]

M. Bylesjö, M. Rantalainen, O. Cloarec, et al., OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. Chemometr. 20 (2006) 341-351. https://doi.org/10.1002/cem.1006.

[44]

R.H. Chen, Q. Wang, Z.F. Li, et al., Studies on effect of Tongfengxiaofang in HUM model mice using a UPLC-ESI-Q-TOF/MS metabolomic approach, Biomed. Chromatogr. 35 (2021). http://doi.org/10.1002/bmc.5118.

[45]

Y.N. Zhang, H.Z. Zhang, D. Chang, et al., Metabolomics approach by 1H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout, Arthritis Res. Ther. 20 (2018) 1-11. http://doi.org/10.1186/s13075-018-1600-5.

[46]

S.M. Feng, S.J. Wu, F. Xie, et al., Natural compounds lower uric acid levels and hyperuricemia: molecular mechanisms and prospective, Trends Food Sci. Tech. 123 (2022) 87-102. http://doi.org/10.1016/j.tifs.2022.03.002.

[47]

A. James, H. Ke, T. Yao, et al., The role of probiotics in purine metabolism, hyperuricemia and gout: mechanisms and interventions, Food Rev. Int. (2021) 1-17. http://doi.org/10.1080/87559129.2021.1904412.

[48]

T. Maruhashi, I. Hisatome, Y. Kihara, et al., Hyperuricemia and endothelial function: from molecular background to clinical perspectives, Atherosclerosis 278 (2018) 226-231. http://doi.org/10.1016/j.atherosclerosis.2018.10.007.

[49]

G.Y. Wu, J.R. Lupton, N.D. Turner, et al., Glutathione metabolism and its implications for health, J. Nutr. 134 (2004) 489-492. http://doi.org/10.1093/jn/134.3.489.

[50]

M. Zeybel, O. Altay, M. Arif, et al., Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients, Mol. Syst. Biol. 17 (2021) e10459. http://doi.org/10.1101/2021.05.20.21257480.

[51]

J.J. Boza, D. Moennoz, C.E. Bournot, et al., Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells, Eur. J. Nutr. 39 (2000) 38-46. http://doi.org/10.1007/s003940050074.

[52]

T. Lau, W. Owen, Y.M. Yu, et al., Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients, The Journal of clinical investigation 105 (2000) 1217-1225. http://doi.org/10.1172/JCI7199.

[53]

L. Chang, W. Chun, Z. Yuan, et al., Lishi Huoxue formula to protect the vascular endothelial cells against hyperuricemia in rats, Journal of Beijing University of Traditional Chinese Medicine 39 (2016) 10-15.

[54]

Y.L. Liu, Y. Pan, X. Wang, et al., Betaine reduces serum uric acid levels and improves kidney function in hyperuricemic mice, Planta Med. 80 (2014) 39-47. http://doi.org/10.1055/s-0033-1360127.

[55]

Y.N. Wang, M. Zhao, Y. Xin, et al., 1H NMR and MS based metabolomics study of the therapeutic effect of Cortex Fraxini on hyperuricemic rats, J. Ethnopharmacol. 185 (2016) 272-281. http://doi.org/10.1016/j.jep.2016.03.043.

[56]

A.S. Lewis, L. Murphy, C. McCalla, et al., Inhibition of mammalian xanthine oxidase by folate compounds and amethopterin, J. Biol. Chem. 259 (1984) 12-15.

[57]

J.C. Sun, P.F. Zhuang, S. Wen, et al., Folic acid-modified lysozyme protected gold nanoclusters as an effective anti-inflammatory drug for rapid relief of gout flares in hyperuricemic rats, Mater. Design 217 (2022) 110642. http://doi.org/10.1016/j.matdes.2022.110642.

[58]

X.H. Qin, Y.B. Li, M.L. He, et al., Folic acid therapy reduces serum uric acid in hypertensive patients: a substudy of the China Stroke Primary Prevention Trial (CSPPT), Am. J. Clin. Nutr. 105 (2017) 882-889. http://doi.org/10.3945/ajcn.116.143131.

[59]

Y.Y. Zhang, H.B. Qiu, Folate, Vitamin B6 and Vitamin B12 intake in relation to hyperuricemia, J. Clin. Med. 7 (2018) 210. http://doi.org/10.3390/jcm7080210.

[60]

M. Ziętak, P. Kovatcheva-Datchary, L. H. Markiewicz, et al., Altered microbiota contributes to reduced diet-induced obesity upon cold exposure, Cell Metab. 23 (2016) 1216-1223. http://doi.org/10.1016/j.cmet.2016.05.001.

[61]

J.M. Wang, Q.X. Liang, Q.C. Zhao, et al., The effect of microbial composition and proteomic on improvement of functional constipation by Chrysanthemum morifolium polysaccharide, Food Chem. Toxicol. 153 (2021) 112305. https://doi.org/10.1016/j.fct.2021.112305.

[62]

J.J. Han, X.F. Wang, S.S. Tang, et al., Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota, FASEB J. 34 (2020) 5061-5076. http://doi.org/10.1096/fj.201902597RR.

[63]

S.C. Guldris, E.G. Parra, A.C. Amenos, Gut microbiota in chronic kidney disease, Nefrologia 37 (2017) 9-19. http://doi.org/10.1016/j.nefro.2016.05.008.

[64]

M.G. Langille, C.J. Meehan, J.E. Koenig, et al., Microbial shifts in the aging mouse gut, Microbiome 2 (2014) 50. http://doi.org/10.1186/s40168-014-0050-9.

[65]

N.B. Shah, A.S. Allegretti, S.U. Nigwekar, et al., Blood microbiome profile in CKD: a pilot study, Clin. J. Am. Soc. Nephro. 14 (2019) 692-701. http://doi.org/10.2215/CJN.12161018.

[66]

J.F. Lu, X.Y. Zhang, Y.H. Liu, et al., Effect of fermented corn-soybean meal on serum immunity, the expression of genes related to gut immunity, gut microbiota, and bacterial metabolites in grower-finisher pigs, Front Microbiol. 10 (2019) 2620. http://doi.org/10.3389/fmicb.2019.02620.

[67]

H.N. Wang, L. Mei, Y. Deng, et al., Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis, Nutrition 62 (2019) 63-73. http://doi.org/10.1016/j.nut.2018.11.018.

[68]

M. Salguero, M. Al Obaide, R. Singh, et al., Dysbiosis of Gram‑negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease, Exp. Ther. Med. 18 (2019) 3461-3469. http://doi.org/10.3892/etm.2019.7943.

[69]

M. Al-Asmakh, M.U. Sohail, O. Al-Jamal, et al., The effects of gum acacia on the composition of the gut microbiome and plasma levels of short-chain fatty acids in a rat model of chronic kidney disease, Front Pharmacol. 11 (2020) 569402. http://doi.org/10.3389/fphar.2020.569402.

[70]

J.B. Chen, C.C. Zhang, Q.L. Xia, et al., Treatment with subcritical water-hydrolyzed citrus pectin ameliorated cyclophosphamide-induced immunosuppression and modulated gut microbiota composition in ICR mice, Molecules 25 (2020) 1302. https://doi.org/10.3390/molecules25061302.

[71]

B.Y. Xu, W.X. Qin, Y.Z. Xu, et al., Dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets, Oxid. Med. Cell Longev. 2021 (2021) 1-19. http://doi.org/10.1155/2021/6221012.

[72]

Q.X. Chen, Q.G. Xie, C.Q. Jiang, et al., Infant formula supplemented with 1,3-olein-2-palmitin regulated the immunity, gut microbiota, and metabolites of mice colonized by feces from healthy infants, J. Dairy Sci. 105 (2022) 6405-6421. http://doi.org/10.3168/jds.2021-21736.

[73]

Z. Guo, J.C. Zhang, Z.L. Wang, et al., Intestinal microbiota distinguish gout patients from healthy humans, Sci. Rep. 6 (2016) 1-10. https://doi.org/10.1038/srep20602.

[74]

C.X. Ni, X. Li, L.L. Wang, et al., Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism, Food Funct. 12(15) (2021) 7054-7067. http://doi.org/10.1039/D1FO00198A.

[75]

H. Huang, K. Li, Y. Lee, et al., Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins, J. Agr. Food Chem. 69 (2021) 7353-7366. http://doi.org/10.1021/acs.jafc.1c01547.

[76]

N. El Husseini, O. Kaskar, L. B. Goldstein. Chronic kidney disease and stroke, Adv. Chronic Kidney D. 21 (2014) 500-508. http://doi.org/10.1053/j.ackd.2014.09.001.

[77]

X.W. Xiang, H.Z. Zheng, R. Wang, et al., Ameliorative effects of peptides derived from oyster (Crassostrea gigas) on immunomodulatory function and gut microbiota structure in cyclophosphamide-treated mice, Mar. Drugs 19 (2021) 456. http://doi.org/10.3390/md19080456.

[78]

Y. Wu, Z. Ye, P.Y. Feng, et al., Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid, Gut Microbes. 13 (2021) 1-18. http://doi.org/10.1080/19490976.2021.1897211.

[79]

Y. Wang, W.T. Qi, G. Song, et al., High-fructose diet increases inflammatory cytokines and alters gut microbiota composition in rats, Mediat. Inflamm. 2020 (2020) 1-10. http://doi.org/10.1155/2020/6672636.

[80]

T. Zhang, Q.Q. Li, L. Cheng, et al., Akkermansia muciniphila is a promising probiotic, Microb. Biotechnol. 12 (2019) 1109-1125. https://doi.org/10.1111/1751-7915.13410.

[81]

F.X. Li, M.H. Wang, J.P. Wang, et al., Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease, Front. Cell. Infect. Mi. 9 (2019) 206. http://doi.org/10.3389/fcimb.2019.00206.

[82]

Y. Gao, J. Sun, Y. Zhang, et al., Effect of a traditional Chinese medicine formula (CoTOL) on serum uric acid and intestinal flora in obese hyperuricemic mice inoculated with intestinal bacteria, Evid.-Based Compl. Alt. 2020 (2020) 1-10. http://doi.org/10.1155/2020/8831937.

[83]

M.M. Niu, C.Q. Zhao, X.Z. Li, et al., Effect of Akkermansia muciniphila on uric acid, liver and kidney function in mice with acute hyperuricemia, Laboratory Animal Science 39(19) (2022) 19. https://doi.org/10.3969/j.issn.1006-6179.2022.01.004.

Food Science and Human Wellness
Pages 1886-1905
Cite this article:
Li W, Chen H, Chen H, et al. Andrias davidianus bone peptides alleviates hyperuricemia-induced kidney damage in vitro and in vivo. Food Science and Human Wellness, 2024, 13(4): 1886-1905. https://doi.org/10.26599/FSHW.2022.9250157

1084

Views

245

Downloads

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 December 2022
Revised: 26 December 2022
Accepted: 12 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return