PDF (6.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (10)

Show 1 more figures Hide 1 figures
Tables (2)
Table 1
Table 2
Open Access

Structural characterization of three acidic polysaccharides from Opuntia dillenii Haw. fruits and their protective effect against hydrogen peroxide-induced oxidative stress in Huh-7 cells

Rui Liua,b,1Fangxin Chua,b,1Zheng Yana,bHanqing Chena,b()
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Three novel acid polysaccharide fractions are isolated from Opuntia dillenii Haw. fruit.

• The compositions and structural features of OFPPs are characterized.

• The OFPPs can protect Huh-7 cells against oxidative stress induced by H2O2.

Graphical Abstract

View original image Download original image

Abstract

Three novel acidic polysaccharide fractions (OFPP-1, OFPP-2, OFPP-3) with different m olecular weights (803.7, 555.1 and 414.5 kDa) were isolated from the peeled Opuntia dillenii Haw. fruits by alkali-extraction, graded alcohol precipitation and column chromatography. Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose, arabinose and galactose residues. The backbone of OFPP-1 consisted of a repeating unit →6-α-D-GalpA-(1→2)-α-L-Rhap-(1→ with T-α-D-GalpA-(1→6)-α-D-GalpA-(1→4)-α-D-Glcp-(1→, T-β-D-Xylp-(1→6)-α-D-GalpA-(1→4)-α-D-Glcp-(1→ or T-α-D-GalpA-(1→3)-α-L-Araf-(1→as the side chains. The backbone of OFPP-2 consisted of a disaccharide repeating unit →2)-α-L-Rhap-(1→4)-β-D-GalpA-(1→ with T-β-L-Araf-(1→ as the branches substituted at the O-4 position of →2,4)-α-L-Rhap-(1→. Whereas the backbone of OFPP-3 was →2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or →2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-GalpA-(1→, which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→. Moreover, these three polysaccharide fractions could protect Huh -7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD, CAT, GSH-Px activities and the GSH level in the Huh-7 cells. These results suggest that OFPPs have the potential to be used as natural antioxidants.

References

[1]

C.E. Aruwa, S.O. Amoo, T. Kudanga, Opuntia (Cactaceae) plant compounds, biological activities and prospects: a comprehensive review, Food Res. Int. 112 (2018) 328-344. https://doi.org/10.1016/j.foodres.2018.06.047.

[2]

F.J. Barba, P. Putnik, D. Bursać Kovačević, et al., Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: from preservation of beverage to valorization of by-products, Trends Food Sci. Technol. 67 (2017) 260-270. https://doi.org/10.1016/j.tifs.2017.07.012.

[3]

E.M. Díaz-Medina, E.M. Rodríguez-Rodríguez, C. Díaz-Romero, Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits, Food Chem. 103 (2007) 38-45. https://doi.org/10.1016/j.foodchem.2006.06.064.

[4]

J.A. Fernández-López, L. Almela, J.M. Obón, et al., Determination of antioxidant constituents in cactus pear fruits, Plant Food Hum. Nutr. 65(3) (2010) 253-259. https://doi.org/10.1007/s11130-010-0189-x.

[5]

H.K. Jeong, D. Lee, H.P. Kim, et al., Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula, Carbohydr. Polym. 211 (2019) 100-108. https://doi.org/10.1016/j.carbpol.2019.01.097.

[6]

M. Kaur, A. Kaur, R. Sharma, Pharmacological actions of Opuntia ficus indica: a review, J. Appl. Pharm. Sci. 2(7) (2012) 15-18. http://dx.doi.org/10.7324/JAPS.2012.2703.

[7]

P. Mena, M. Tassotti, L. Andreu, et al., Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis, Food Res. Int. 108 (2018) 301-308. https://doi.org/10.1016/j.foodres.2018.03.062.

[8]

O. Osorio-Esquivel, Alicia-Ortiz-Moreno, V.B. Álvarez, et al., Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits, Food Res. Int. 44 (2011) 2160-2168. https://doi.org/10.1016/j.foodres.2011.02.011.

[9]

U. Osuna-Martínez, J. Reyes-Esparza, L. Rodríguez-Fragoso, Cactus (Opuntia ficus-indica): a review on its antioxidants properties and potential pharmacological use in chronic diseases, Nat. Prod. Chem. Res. 2(6) (2014) 1000153. https://doi.org/10.4172/2329-6836.1000153.

[10]

E. Salehi, Z. Emam-Djomeh, G. Askari, et al., Opuntia ficus indica fruit gum: extraction, characterization, antioxidant activity and functional properties, Carbohydr. Polym. 206 (2019) 565-572. https://doi.org/10.1016/j.carbpol.2018.11.035.

[11]

L. Tesoriere, D. Butera, A.M. Pintaudi, et al., Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C, Am. J. Clin. Nutr. 80(2) (2004) 391-395. https://doi.org/10.1093/ajcn/80.2.391.

[12]

E.M. Yahia, C. Mondragon-Jacobo, Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.), Food Res. Int. 44 (2011) 2311-2318. https://doi.org/10.1016/j.foodres.2011.02.042.

[13]

D.M. Zou, M. Brewer, F. Garcia, et al., Cactus pear: a natural product in cancer chemoprevention, Nutr. J. 4(1) (2005) 25. https://doi.org/10.1186/1475-2891-4-25.

[14]

B.B. Liang, H.G. Liu, J.T. Cao, Antitumor effect of polysaccharides from cactus pear fruit in S180-bearing mice, Chin. J. Cancer. 27(6) (2008) 580-584. http://dx.chinadoi.cn/10.3321/j.issn:1000-467X.2008.06.005.

[15]

X.K. Zhong, X. Jin, F.Y. Lai, et al., Chemical analysis and antioxidant activities in vitro of polysaccharide extracted from Opuntia ficus indica Mill. cultivated in China, Carbohydr. Polym. 82(3) (2010) 722-727. https://doi.org/10.1016/j.carbpol.2010.05.042.

[16]

J. Gao, Y.L. Han, Z.Y. Jin, et al., Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats, Carbohydr. Polym. 124 (2015) 25-34. https://doi.org/10.1016/j.carbpol.2015.01.068.

[17]

H.G. Liu, Q.Y. Liang, H.L. Meng, et al., Hypoglycemic effect of cactus pear fruit polysaccharide extract on rats, J. Chin. Med. Mater. 33(2) (2010) 240-242. http://dx.chinadoi.cn/10.13863/j.issn1001-4454.2010.02.030.

[18]

N.M. Ammar, A.N.B. Singab, S.H. El-Ahmady, et al., Phytochemical and biological studies of some polysaccharides isolated from Aloe, Tamarindus, Opuntia and Citrus, JASMR 5(2) (2010) 141-152.

[19]

Q.Y. Liang, H.X. Huang, J.T. Cao, et al., Protective effects of Cactus fruit polysaccharide extract on vascular endothelial function of spontaneous hypertensive rats, J. Chin. Med. Mater. 34(7) (2011) 1104-1107. http://dx.chinadoi.cn/10.13863/j.issn1001-4454.2011.07.036. (In Chinese)

[20]

Y. Habibi, M. Mahrouz, M.R. Vignon, Isolation and structure characterization of a (4-O-methyl-D-glucurono)-D-xylan from the skin of Opuntia ficus-indica prickly pear fruits, J. Carbohydr. Chem. 22(5) (2003) 331-337. https://doi.org/10.1081/CAR-120023476.

[21]

Y. Habibi, A. Heyraud, M. Mahrouz, et al., Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Res. 339(6) (2004) 1119-1127. https://doi.org/10.1016/j.carres.2004.02.005.

[22]

Y. Habibi, M. Mahrouz, M.F. Marais, et al., An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Res. 339 (2004) 1201-1205. https://doi.org/10.1016/j.carres.2004.02.004.

[23]

Y. Habibi, M. Mahrouz, M.R. Vignon, Isolation and structural characterization of protopectin from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Polym. 60(2) (2005a) 205-213. https://doi.org/10.1016/j.carbpol.2005.01.001.

[24]

Y. Habibi, M. Mahrouz, M.R. Vignon, Arabinan-rich polysaccharides isolated and characterized from the endosperm of the seed of Opuntia ficus-indica prickly pear fruits, Carbohydr. Polym. 60(3) (2005b) 319-329. https://doi.org/10.1016/j.carbpol.2005.01.019.

[25]

O. Ishurd, F. Zgheel, M. Elghazoun, et al., A novel (1→4)-α-D-glucan isolated from the fruits of Opuntia ficus indica (L.) Miller, Carbohydr. Polym. 82(3) (2010) 848-853. https://doi.org/10.1016/j.carbpol.2010.06.006.

[26]

E.N. Makarova, E.G. Shakhmatov, Structural characteristics of oxalate-soluble polysaccharides from Norway spruce (Picea abies) foliage, Carbohydr. Polym. 246 (2020) 116544. https://doi.org/10.1016/j.carbpol.2020.116544.

[27]

Y.J. Sun, S.T. Hou, S. Song, et al., Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides, Int. J. Biol. Macromol. 112 (2018) 985-995. https://doi.org/10.1016/j.ijbiomac.2018.02.066.

[28]

Y.X. Wang, T. Zhang, Y. Xin, et al., Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: comparison on structural characterization, Carbohydr. Polym. 255 (2021) 117502. https://doi.org/10.1016/j.carbpol.2020.117502.

[29]

T. Hu, P. Wu, J.F. Zhan, et al., Structure variety and its potential effects on biological activity of tea polysaccharides, Food Sci. Human Wellness 11(3) 2022 587-597. https://doi.org/10.1016/j.fshw.2021.12.015.

[30]

Y. Zhang, Y. Zeng, Y.S. Cui, et al., Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley, Carbohydr. Polym. 235 (2020) 115969. https://doi.org/10.1016/j.carbpol.2020.115969.

[31]

Y. Liu, Y.F. Ye, X.B. Hu, et al., Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra, Carbohydr. Polym. 265 (2021) 118081. https://doi.org/10.1016/j.carbpol.2021.118081.

[32]

J.J. Cao, Q.Q. Lv, B. Zhang, et al., Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem, Carbohydr. Polym. 212 (2019) 89-101. https://doi.org/10.1016/j.carbpol.2019.02.031.

[33]

H.J. Yuan, L. Dong, Z.Y. Zhang, et al., Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis, Food Sci. Human Wellness 11 (2022) 1010-1017. https://doi.org/10.1016/j.fshw.2022.03.030.

[34]

L.B. Wang, L.Y. Li, J.Y. Gao, et al., Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots, Carbohydr. Polym. 260 (2021) 117796. https://doi.org/10.1016/j.carbpol.2021.117796.

[35]

Q.Q. Lv, J.J. Cao, R. Liu, et al., Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran, Food Chem. 341 (2021) 128218. https://doi.org/10.1016/j.foodchem.2020.128218.

[36]

X.Y. Peng, G. Wu, A.R. Zhao, et al., Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway, Life Sci. 247 (2020) 117439. https://doi.org/10.1016/j.lfs.2020.117439.

[37]

T. Rudtanatip, C. Pariwatthanakun, S. Somintara, et al., Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans, Int. J. Biol. Macromol. 206 (2022) 51-63. https://doi.org/10.1016/j.ijbiomac.2022.02.125.

[38]

J. Gao, L.Z. Lin, B.G. Sun, et al., A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity, Food Funct. 8 (2017) 3043-3052. https://doi.org/10.1039/C7FO00218A.

[39]

Z.B. Wang, J.J. Pei, H.L. Ma, et al., Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides, Carbohydr. Polym. 109 (2014) 49-55. https://doi.org/10.1016/j.carbpol.2014.03.057.

[40]

M.Q. Wu, W. Li, Y.L. Zhang, et al., Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate × Rosa rugosa waste, Carbohydr. Polym. 253 (2021) 117190. https://doi.org/10.1016/j.carbpol.2020.117190.

[41]

Y.K. Jiao, D.H. Hua, D. Huang, Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type Ⅱ diabetes, Food Funct. 9(7) (2018) 3997-4007. https://doi.org/10.1039/C8FO00790J.

[42]

L.B. Wang, F.C. Liu, A.X. Wang, et al., Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds, Food Hydrocoll. 66 (2017) 357-364. https://doi.org/10.1016/j.foodhyd.2016.12.003.

[43]

Y. Tang, Z.Y. Zhu, Y. Liu, et al., The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds, Food Funct. 9(4) (2018) 2300-2312. https://doi.org/10.1039/C8FO00206A.

[44]

L. Hu, R. Liu, T. Wu, et al., Structural properties of homogeneous polysaccharide fraction released from wheat germ by hydrothermal treatment, Carbohydr. Polym. 240 (2020) 116-238. https://doi.org/10.1016/j.carbpol.2020.116238.

[45]

Y.J. Wan, T. Hong, H.F. Shi, et al., Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp, Carbohydr. Polym. 251 (2021) 117116. https://doi.org/10.1016/j.carbpol.2020.117116.

[46]

O.A. Patova, V.V. Smirnov, V.V. Golovchenko, Structural, rheological and antioxidant properties of pectins from Equisetum arvense L. and Equisetum sylvaticum L., Carbohydr. Polym. 209 (2019) 239-249. https://doi.org/10.1016/j.carbpol.2018.12.098.

[47]

F. Li, Y.L. Wei, L. Liang, et al., A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential, Carbohydr. Polym. 251 (2021) 117090. https://doi.org/10.1016/j.carbpol.2020.117090.

[48]

Y.S. Jing, L.J. Huang, W.J. Lv, et al., Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity, J. Agric. Food Chem. 62(4) (2014) 902-911. https://doi.org/10.1021/jf404752c.

[49]

F. Di Lorenzo, A. Silipo, A. Molinaro, et al., The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: structure and skin repairing properties, Carbohydr. Polym. 157 (2017) 128-136. https://doi.org/10.1016/j.carbpol.2016.09.073.

[50]

W. Liu, Y.M. Liu, R. Zhu, et al., Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L, Carbohydr. Polym. 147 (2016) 114-124. https://doi.org/10.1016/j.carbpol.2016.03.087.

[51]

Y.M. Yang, Z.C. Qiu, L.Y. Li, et al., Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: a comparison, Carbohydr. Polym. 261 (2021) 117879. https://doi.org/10.1016/j.carbpol.2021.117879.

[52]

M.Q. Zhu, R.M. Huang, P. Wen, et al., Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels, Carbohydr. Polym. 254 (2021) 117371. https://doi.org/10.1016/j.carbpol.2020.117371.

[53]

G.J. Chen, Q.X. Yuan, M. Saeeduddin, et al., Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities, Carbohydr. Polym. 153 (2016) 663-678. https://doi.org/10.1016/j.carbpol.2016.08.022.

[54]

T.W. Guan, X.Y. Wei, P. Xu, et al., Comparison of structural and antioxidant activity of polysaccharide extracted from truffles, J. Food Sci. 87(7) (2022) 2999-3012. https://doi.org/10.1111/1750-3841.16207.

[55]

C.H. Cho, E.A. Kim, J. Kim, et al., N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid beta-induced neuronal oxidative damage in cortical neurons, Free Radic. Res. 50(6) (2016) 678-690. https://doi.org/10.3109/10715762.2016.1167277.

[56]

M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24(10) (2014) R453-R462. https://doi.org/10.1016/j.cub.2014.03.034.

[57]

J. Wu, R.Z. Chen, L. Tan, et al., Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower, Carbohydr. Polym. 291 (2022) 119535. https://doi.org/10.1016/j.carbpol.2022.119535.

[58]

W. Tang, M.Y. Shen, J.H. Xie, et al., Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2, Carbohydr. Polym. 175 (2017) 538-546. https://doi.org/10.1016/j.carbpol.2017.08.018.

[59]

Y.H. Dong., C. Chun, Q. Huang, et al., Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity, Carbohydr. Polym. 256 (2021) 117516. https://doi.org/10.1016/j.carbpol.2020.117516.

[60]

L.X. Huang, M.Y. Shen, X.W. Zhang, et al., Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth, Carbohydr. Polym. 200 (2018) 191-199. https://doi.org/10.1016/j.carbpol.2018.07.087.

[61]

C. Li, Z.P. Dong, B. Zhang, et al., Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves, Carbohydr. Polym. 234 (2020) 115897. https://doi.org/10.1016/j.carbpol.2020.115897.

[62]

T.C.T. Lo, C.A. Chang, K.H. Chiu, et al., Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods, Carbohydr. Polym. 86 (2011) 320-327. https://doi.org/10.1016/j.carbpol.2011.04.056.

[63]

L.Q. Sun, C.H. Wang, Q.J. Shi, et al., Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities, Int. J. Biol. Macromol. 45(1) (2009) 42-47. https://doi.org/10.1016/j.ijbiomac.2009.03.013.

[64]

Y. Sun, X.Y. Zhou, Purification, initial characterization and immune activities of polysaccharides from the fungus, Polyporus umbellatus, Food Sci. Human Wellness 3(2) 2014 73-78. https://doi.org/10.1016/j.fshw.2014.06.002.

[65]

J.N. Wu, X.T. Chen, K. Qiao, et al., Purification, structural elucidation, and in vitro antitumor effects of novel polysaccharides from Bangia fuscopurpurea, Food Sci. Human Wellness 10(1) 2021 63-71. https://doi.org/10.1016/j.fshw.2020.05.003.

[66]

L.Y. Li, Z.C. Qiu, H.J. Dong, et al., Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: a comparison, Int. J. Biol. Macromol. 182 (2021) 187-196. https://doi.org/10.1016/j.ijbiomac.2021.03.177.

[67]

J.W. Sheng, Y.L. Sun, Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching, Carbohydr. Polym. 108 (2014) 41-45. https://doi.org/10.1016/j.carbpol.2014.03.011.

[68]

Z.W. Zhao, L. Wang, Y. Ruan, et al., Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods, Food Sci. Human Wellness 12(1) 2023 130-139. https://doi.org/10.1016/j.fshw.2022.07.031.

[69]

A.X. Luo, X.J. He, S.D. Zhou, et al., Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl, Carbohydr. Polym. 79 (2010) 1014-1019. https://doi.org/10.1016/j.carbpol.2009.10.033.

Food Science and Human Wellness
Pages 1929-1942
Cite this article:
Liu R, Chu F, Yan Z, et al. Structural characterization of three acidic polysaccharides from Opuntia dillenii Haw. fruits and their protective effect against hydrogen peroxide-induced oxidative stress in Huh-7 cells. Food Science and Human Wellness, 2024, 13(4): 1929-1942. https://doi.org/10.26599/FSHW.2022.9250160
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return