AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Probiotics administration alleviates cognitive impairment and circadian rhythm disturbance induced by sleep deprivation

Peijun Tiana,bYunfei Houa,b,cZheng Wanga,bJiaona Jianga,bXin Qiana,bZhihao Qua,bJianxin Zhaoa,b,c,dGang Wanga,b,c,d( )Wei Chena,b,c
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
Institute of Food Biotechnology (Yangzhou), Jiangnan University, Yangzhou 225004, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Probiotics alleviate sleep-deprivation-induced cognitive impairment.

• Probiotics could modulate the melatonin system in the striatum

• Probiotics could modulate the striatal circadian rhythms genes expression

• The mechanisms of action correlate with gut microbiome and metabolite changes

Graphical Abstract

Abstract

Gut microbiome is indispensable for maintaining normal brain function. Specifically, gut microbiota plays a causal role in sleep deprivation (SD)-induced cognitive impairment. In this study, neurobehavioral effects of the Bifidobacterium breve strain (CCFM1025) were assessed in sleep-deprived mice. CCFM1025 improved the body weight and food and water intake of the mice. It also alleviated SD-induced cognitive behavioural abnormalities (in the novel object recognition test), but did not show beneficial effects on mood- and spatial memory-related behaviours. CCFM1025 significantly altered the gut microbial composition and genome function. Key microbial metabolites that may regulate sleep function were also identified, such as isovaleric acid and γ-aminobutyric acid in the gut and purine metabolites in the serum. Those metabolites may participate in gut-brain communication by acting on the striatal melatonin system, for example to increase melatonin levels, and by regulating the expression of circadian clock genes such as those encoding the adenosine A2A receptor and period circadian regulator 1. Collectively, administration of probiotics alleviated cognitive impairment and circadian rhythm disturbance induced by SD via modulation of gut microbiome and its metabolites. These findings may help guide the treatment of insomnia or other sleep disorders via dietary strategies.

Electronic Supplementary Material

Download File(s)
fshw-13-4-1951_ESM.docx (346.1 KB)

References

[1]

E. Hertenstein, B. Feige, T. Gmeiner, et al., Insomnia as a predictor of mental disorders: a systematic review and meta-analysis, Sleep Med. Rev. 43 (2019) 96-105. https://doi.org/10.1016/j.smrv.2018.10.006.

[2]

J. Xiong, O. Lipsitz, F. Nasri, et al., Impact of COVID-19 pandemic on mental health in the general population: a systematic review, J. Affect. Disord. 277 (2020) 55-64. https://doi.org/10.1016/j.jad.2020.08.001.

[3]

J.C. Dunlap, J.J. Loros, Yes, circadian rhythms actually do affect almost everything, Cell Res. 26 (2016) 759-760. https://doi.org/10.1038/cr.2016.65.

[4]

B.A. Matenchuk, P.J. Mandhane, A.L. Kozyrskyj, Sleep, circadian rhythm, and gut microbiota, Sleep Med. Rev. 53 (2020) 101340. https://doi.org/10.1016/j.smrv.2020.101340.

[5]

V. Fencl, G. Koski, J.R. Pappenheimer, Factors in cerebrospinal fluid from goats that affect sleep and activity in rats, J. Physiol. 216 (1971) 565-589. https://doi.org/10.1113/jphysiol.1971.sp009541.

[6]

C.A. Thaiss, D. Zeevi, M. Levy, et al., Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis, Cell 159 (2014) 514-529. https://doi.org/10.1016/j.cell.2014.09.048.

[7]

E.V. Marcinkevicius, M.M. Shirasu-Hiza, Message in a biota: gut microbes signal to the circadian clock, Cell Host Microbe. 17 (2015) 541-543. https://doi.org/10.1016/j.chom.2015.04.013.

[8]

A. Kohsaka, A.D. Laposky, K.M. Ramsey, et al., High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metab. 6 (2007) 414-421. https://doi.org/10.1016/j.cmet.2007.09.006.

[9]

X. Liang, F.D. Bushman, G.A. FitzGerald, Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock, Proc. Natl. Acad. Sci. 112 (2015) 10479-10484. https://doi.org/10.1073/pnas.1501305112.

[10]

Z. Wang, W.H. Chen, S.X. Li, et al., Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation, Mol. Psychiatry 26 (2021) 6277-6292. https://doi.org/10.1038/s41380-021-01113-1.

[11]

Y. Li, L. Shao, Y. Mou, et al., Sleep, circadian rhythm and gut microbiota: alterations in Alzheimer’s disease and their potential links in the pathogenesis, Gut Microbes 13 (2021) 1957407. https://doi.org/10.1080/19490976.2021.1957407.

[12]

L.H. Cheng, Y.W. Liu, C.C. Wu, et al., Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders, J. Food Drug Anal. 27 (2019) 632-648. https://doi.org/10.1016/j.jfda.2019.01.002.

[13]

R. Sharma, D. Gupta, R. Mehrotra, et al., Psychobiotics: the next-generation probiotics for the brain, Curr. Microbiol. 78 (2021) 449-463. https://doi.org/10.1007/s00284-020-02289-5.

[14]

R.K. Yuan, M.R. Lopez, M.M. Ramos-Alvarez, et al., Differential effect of sleep deprivation on place cell representations, sleep architecture, and memory in young and old mice, Cell Rep. 35 (2021) 109234. https://doi.org/10.1016/j.celrep.2021.109234.

[15]

P. Tian, R. Zou, L. Song, et al., Ingestion of Bifidobacterium longum subspecies infantis strain CCFM687 regulated emotional behavior and the central BDNF pathway in chronic stress-induced depressive mice through reshaping the gut microbiota, Food Funct. 10 (2019) 7588-7598. https://doi.org/10.1039/C9FO01630A.

[16]

P. Tian, T.F. Bastiaanssen, L. Song, et al., Unravelling the microbial mechanisms underlying the psychobiotic potential of a Bifidobacterium breve strain, Mol. Nutr. Food Res. 65 (2021) 2000704. https://doi.org/10.1002/mnfr.202000704.

[17]

S. Gol, R.N. Pena, M.F. Rothschild, et al., A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs, Sci. Rep. 8 (2018) 1-9. DOI: 10.1038/s41598-018-32710-w.

[18]

M. Boehme, K.E. Guzzetta, T.F. Bastiaanssen, et al., Microbiota from young mice counteracts selective age-associated behavioral deficits, Nature Aging 1 (2021) 666-676. https://doi.org/10.1038/s43587-021-00093-9.

[19]

P. Tian, K.J. O’Riordan, Y.K. Lee, et al., Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice, Neurobiol. Stress 12 (2020) 100216. https://doi.org/10.1016/j.ynstr.2020.100216.

[20]

L. Yu, X. Han, S. Cen, et al., Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota, Microbiol. Res. 233 (2020) 126409. https://doi.org/10.1016/j.micres.2020.126409.

[21]

H. Chen, S. Liu, L. Ji, et al., Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial, Mediators Inflamm. 2016 (2016) 5912146. https://doi.org/10.1155/2016/5912146.

[22]

L.A. Poirier, C.K. Wise, R.R. Delongchamp, et al., Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: correlations with Diet, Cancer Epidemiol. Biomarkers Prev. 10 (2001) 649-655.

[23]

Z. Pang, J. Chong, G. Zhou, et al., MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights, Nucleic Acids Res. 49 (2021) W388-W396. https://doi.org/10.1093/nar/gkab382.

[24]

Z. Pang, G. Zhou, J. Ewald, et al., Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data, Nat. Protoc. 17 (2022) 1-27. https://doi.org/10.1038/s41596-022-00710-w.

[25]

P. Tian, H. Zhu, X. Qian, et al., Consumption of butylated starch alleviates the chronic restraint stress-induced neurobehavioral and gut barrier deficits through reshaping the gut microbiota, Front. Immunol. 12 (2021) 755481. https://doi.org/10.3389/fimmu.2021.755481.

[26]

M.T. Robins, J. Li, A.E. Ryabinin, Effects of housing conditions and circadian time on baseline c-Fos immunoreactivity in C57BL/6J mice, Neuroscience 431 (2020) 143-151. https://doi.org/10.1016/j.neuroscience.2020.02.006.

[27]

Y. D’Agostino, E. Frigato, T.M. Noviello, et al., Loss of circadian rhythmicity in bdnf knockout zebrafish larvae, Iscience 25 (2022) 104054. https://doi.org/10.1016/j.isci.2022.104054.

[28]

K.M. Zitting, M.Y. Münch, S.W. Cain, et al., Young adults are more vulnerable to chronic sleep deficiency and recurrent circadian disruption than older adults, Sci. Rep. 8 (2018) 1-14. DOI: 10.1038/s41598-018-29358-x.

[29]

A. Misrani, S. Tabassum, X. Chen, et al., Differential effects of citalopram on sleep-deprivation-induced depressive-like behavior and memory impairments in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry 88 (2019) 102-111. https://doi.org/10.1016/j.pnpbp.2018.07.013.

[30]

J. Cordeira, S.S. Kolluru, H. Rosenblatt, et al., Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation, Behav. Brain Res. 339 (2018) 124-129. https://doi.org/10.1016/j.bbr.2017.11.033.

[31]

J.K. Gjerstad, S.L. Lightman, F. Spiga, Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility, Stress 21 (2018) 403-416. https://doi.org/10.1080/10253890.2018.1470238.

[32]

J.P. Herman, The neuroendocrinology of stress: glucocorticoid signaling mechanisms, Psychoneuroendocrinology 137 (2022) 105641. https://doi.org/10.1016/j.psyneuen.2021.105641.

[33]

E.K. Tamura, K.S. Oliveira-Silva, F.A. Ferreira-Moraes, et al., Circadian rhythms and substance use disorders: a bidirectional relationship, Pharmacol. Biochem. Behav. 201 (2021) 173105. https://doi.org/10.1016/j.pbb.2021.173105.

[34]

J.S. Provost, A. Hanganu, O. Monchi, Neuroimaging studies of the striatum in cognition part Ⅰ: healthy individuals, Front. Syst. Neurosci. 9 (2015) 140. https://doi.org/10.3389/fnsys.2015.00140.

[35]

M. Akhisaroglu, R. Ahmed, M. Kurtuncu, et al., Diurnal rhythms in cocaine sensitization and in Period1 levels are common across rodent species, Pharmacol. Biochem. Behav. 79 (2004) 37-42. https://doi.org/10.1016/j.pbb.2004.06.014.

[36]

K. Brami-Cherrier, R.G. Lewis, M. Cervantes, et al., Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation, Nat. Commun. 11 (2020) 4448. https://doi.org/10.1038/s41467-020-18200-6.

[37]

X. Yu, W. Li, Y. Ma, et al., GABA and glutamate neurons in the VTA regulate sleep and wakefulness, Nat. Neurosci. 22 (2019) 106-119. https://doi.org/10.1038/s41593-018-0288-9.

[38]

D.T. Plante, J.E. Jensen, J.W. Winkelman, The role of GABA in primary insomnia, Sleep 35 (2012) 741-742. https://doi.org/10.5665/sleep.1854.

[39]

P. Hepsomali, J.A. Groeger, J. Nishihira, et al., Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review, Front. Neurosci. 14 (2020) 923. https://doi.org/10.3389/fnins.2020.00923.

[40]

E. Boonstra, R. De Kleijn, L.S. Colzato, et al., Neurotransmitters as food supplements: the effects of GABA on brain and behavior, Front. Psychol. (2015) 1520. https://doi.org/10.3389/fpsyg.2015.01520.

[41]

N.W. Bellono, J.R. Bayrer, D.B. Leitch, et al., Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways, Cell 170 (2017) 185-198. https://doi.org/10.1016/j.cell.2017.05.034.

[42]

B.A. Blakeney, M.S. Crowe, S. Mahavadi, et al., Branched short-chain fatty acid isovaleric acid causes colonic smooth muscle relaxation via cAMP/PKA pathway, Dig. Dis. Sci. 64 (2019) 1171-1181. https://doi.org/10.1007/s10620-018-5417-5.

[43]

J.M. Yano, K. Yu, G.P. Donaldson, et al., Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell 161 (2015) 264-276. https://doi.org/10.1016/j.cell.2015.02.047.

[44]

M.A. Engevik, B. Luck, C. Visuthranukul, et al., Human-derived bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis, Cell. Mol. Gastroenterol. Hepatol. 11 (2021) 221-248. https://doi.org/10.1016/j.jcmgh.2020.08.002.

[45]

C.S. Reigstad, C.E. Salmonson, J.F. Rainey, et al., Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells, FASEB J. 29 (2015) 1395-1403. https://doi.org/10.1096/fj.14-259598.

[46]

P. Tian, Y. Chen, H. Zhu, et al., Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: a randomized clinical trial, Brain. Behav. Immun. 100 (2022) 233-241. https://doi.org/10.1016/j.bbi.2021.11.023.

[47]

J.P.R. Jacobsen, Use of 5-hydroxytryptophan labeled with carbon 11 in social anxiety disorder, JAMA Psychiat. 73 (2016) 177-177. https://doi.org/10.1001/jamapsychiatry.2015.2466.

[48]

Z. Xie, F. Chen, W.A. Li, et al., A review of sleep disorders and melatonin, Neurol. Res. 39 (2017) 559-565. https://doi.org/10.1080/01616412.2017.1315864.

[49]

J.M. Monti, Serotonin control of sleep-wake behavior, Sleep Med. Rev. 15 (2011) 269-281. https://doi.org/10.1016/j.smrv.2010.11.003.

[50]

T. Bottiglieri, S-Adenosyl-L-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotrophic molecule, Am. J. Clin. Nutr. 76 (2002) 1151S-1157S. https://doi.org/10.1093/ajcn/76.5.1151S.

[51]

D. Mischoulon, M. Fava, Role of S-adenosyl-L-methionine in the treatment of depression: a review of the evidence, Am. J. Clin. Nutr. 76 (2002) 1158S-1161S. https://doi.org/10.1093/ajcn/76.5.1158S.

[52]

G.I. Papakostas, Evidence for S-adenosyl-L-methionine (SAM-e) for the treatment of major depressive disorder, J. Clin. Psychiat. 70 (2009) 6817. https://doi.org/10.4088/JCP.8157su1c.04.

[53]

R.A. Shippy, D. Mendez, K. Jones, et al., S-adenosylmethionine (SAM-e) for the treatment of depression in people living with HIV/AIDS, BMC Psychiatry 4 (2004) 1-6. https://doi.org/10.1186/1471-244X-4-38.

[54]

D. Mischoulon, L.H. Price, L.L. Carpenter, et al., A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder, J. Clin. Psychiat. 74 (2013) 4841. https://doi.org/10.4088/JCP.13m08591.

[55]

G. Stramentinoli, M. Gualano, M. Galli-Kienle, Intestinal absorption of S-adenosyl-L-methionine, J. Pharmacol. Exp. Ther. 209 (1979) 323-326.

[56]

Y. Zhou, X. Zeng, G. Li, et al., Inactivation of endothelial adenosine A2A receptors protects mice from cerebral ischaemia-induced brain injury, Br. J. Pharmacol. 176 (2019) 2250-2263. https://doi.org/10.1111/bph.14673.

[57]

S. Spichak, T.F.S. Bastiaanssen, K. Berding, et al., Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease, Neurosci. Biobehav. Rev. 125 (2021) 698-761. https://doi.org/10.1016/j.neubiorev.2021.02.044.

[58]

M. Garcia-Gil, M. Camici, S. Allegrini, et al., Emerging role of purine metabolizing enzymes in brain function and tumors, Int. J. Mol. Sci. 19 (2018) 3598. https://doi.org/10.3390/ijms19113598.

[59]

K.Q. Fan, Y.Y. Li, H.L. Wang, et al., Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior, Cell 179 (2019) 864-879. https://doi.org/10.1016/j.cell.2019.10.001.

Food Science and Human Wellness
Pages 1951-1961
Cite this article:
Tian P, Hou Y, Wang Z, et al. Probiotics administration alleviates cognitive impairment and circadian rhythm disturbance induced by sleep deprivation. Food Science and Human Wellness, 2024, 13(4): 1951-1961. https://doi.org/10.26599/FSHW.2022.9250162

1968

Views

491

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 21 July 2022
Revised: 22 November 2022
Accepted: 29 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return