AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Fecal microbiota transplantation: whole grain highland barley improves glucose metabolism by changing gut microbiota

Xin RenaFulong ZhangaMin Zhanga( )Yuan FangaZenglong ChenbMeili Huanc
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Grain Industry Highland Barley Deep Processing Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
COFCO Nutrition and Health Research Institute, Beijing 102209, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Highland barley (HB) is a high-altitude cereal with rich nutritional components and potential health benefits. To clarify its hypoglycemic effect and mechanism, we investigated the effect of whole grain HB and fecal microbiota transplantation (FMT) on glucose metabolism and gut microbiota in high-fat diet and streptozotocin (HFD/STZ)-induced diabetic mice. The results showed that HB (40%) significantly decreased fasting blood glucose and the area under the glucose tolerance curve, significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice (P < 0.05). Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40% HB intervention (P < 0.05). Additionally, beneficial bacteria, such as Bifidobacterium and Akkermansia, were significantly enriched in the gut of diabetic mice after whole grain HB intervention. Meanwhile, the results of further FMT experiments verified that the fecal microbiota after the 40% HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice. Collectively, our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB, which could promote the development of precision nutrition.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2014_ESM.docx (132 KB)

References

[1]

E.G. Krug, Trends in diabetes: sounding the alarm, Lancet 387 (2016) 1485-1486. https://doi.org/10.1016/S0140-6736(16)30163-5.

[2]

H. Sun, P. Saeedi, S. Karuranga, et al., IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract. 183 (2022) 109119. https://doi.org/10.1016/j.diabres.2021.109119.

[3]

R. Williams, S. Karuranga, B. Malanda, et al., Global and regional estimates and projections of diabetes-related health expenditure: results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pract. 162 (2020) 108072. https://doi.org/10.1016/j.diabres.2020.108072.

[4]

S. Chatterjee, K. Khunti, M.J. Davies, Type 2 diabetes, Lancet 389 (2017) 2239-2251. https://doi.org/10.1016/S0140-6736(17)30058-2.

[5]

F. Karlsson, V. Tremaroli, J. Nielsen, et al., Assessing the human gut microbiota in metabolic diseases, Diabetes 62(10) (2013) 3341-3349. https://doi.org/10.2337/db13-0844.

[6]

M. Palau-Rodriguez, S. Tulipani, M.I. Queipo-Ortuño, et al., Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes, Front. Microbiol. 6 (2015) 1151. https://doi.org/10.3389/fmicb.2015.01151.

[7]

M. Diamant, E.E. Blaak, W.M. de Vos, Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?, Obes. Rev. 12(4) (2011) 272-281. https://doi.org/10.1111/j.1467-789X.2010.00797.x.

[8]

E. Holmes, J. Kinross, G.R. Gibson, et al., Therapeutic modulation of microbiota-host metabolic interactions, Sci. Transl. Med. 4(137) (2012) 137rv6. https://doi.org/10.1126/scitranslmed.3004244.

[9]

K.P. Lemon, G.C. Armitage, D.A. Relman, et al., Microbiota-targeted therapies: an ecological perspective, Sci. Transl. Med. 4(137) (2012) 137rv5. https://doi.org/10.1126/scitranslmed.3004183.

[10]

Y.M. Khazrai, G. Defeudis, P. Pozzilli, Effect of diet on type 2 diabetes mellitus: a review, Diabetes-Metab. Res. Rev. 30(S1) (2014) 24-33. https://doi.org/10.1002/dmrr.2515.

[11]

P. Pozzilli, F. Fallucca., Diet and diabetes: a cornerstone for therapy, Diabetes-Metab. Res. Rev. 30(S1) (2014) 1-3. https://doi.org/10.1002/dmrr.2512.

[12]

S.H. Ley, A.V. Ardisson Korat, Q. Sun, et al., Contribution of the nurses’ health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics, Am. J. Public Health 106(9) (2016) 1624-1630. https://doi.org/10.2105/AJPH.2016.303314.

[13]

P. Illiano, R. Brambilla, C. Parolini, The mutual interplay of gut microbiota, diet and human disease, FEBS J. 287(5) (2020) 833-855. https://doi.org/10.1111/febs.15217.

[14]

A.R. Conteh, R.X. Huang, Targeting the gut microbiota by Asian and Western dietary constituents: a new avenue for diabetes, Toxicol. Res. 9(4) (2020) 569-577. https://doi.org/10.1093/toxres/tfaa065.

[15]

A.B. Ross, J. van der Kamp, R. King, et al., Perspective: a definition for whole-grain food products: recommendations from the healthgrain forum, Adv. Nutr. 8(4) (2017) 525-531. https://doi.org/10.3945/an.116.014001.

[16]

F. Han, Y. Wang, Y.Y. Han, et al., Effects of whole-grain rice and wheat on composition of gut microbiota and short-chain fatty acids in rats, J. Agric. Food Chem. 66(25) (2018) 6326-6335. https://doi.org/10.1021/acs.jafc.8b01891.

[17]

K.C. Maki, A.K. Phillips, Dietary substitutions for refined carbohydrate that show promise for reducing risk of type 2 diabetes in men and women, J. Nutr. 145(1) (2015) 159S-163S. https://doi.org/10.3945/jn.114.195149.

[18]

C. Kyrø, A. Tjønneland, K. Overvad, et al., Higher whole-grain intake is associated with lower risk of type 2 diabetes among middle-aged men and women: the Danish diet, cancer, and health cohort, J. Nutr. 148(9) (2018) 1434-1444. https://doi.org/10.1093/jn/nxy112.

[19]

W.J. Wu, J. Qiu, A.L. Wang, et al., Impact of whole cereals and processing on type 2 diabetes mellitus: a review, Crit. Rev. Food Sci. Nutr. 60(9) (2020) 1447-1474. https://doi.org/10.1080/10408398.2019.1574708.

[20]

P. Xi, R.H. Liu, Whole food approach for type 2 diabetes prevention, Mol. Nutr. Food Res. 60(8) (2016) 1819-1836. https://doi.org/10.1002/mnfr.201500963.

[21]

D. Aune, T. Norat, P. Romundstad, et al., Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies, Eur. J. Epidemiol. 28(11) (2013) 845-858. https://doi.org/10.1007/s10654-013-9852-5.

[22]

C.J. Seal, A.P. Nugent, E. Tee, et al., Whole-grain dietary recommendations: the need for a unified global approach, Br. J. Nutr. 115(11) (2016) 2031-2038. https://doi.org/10.1017/S0007114516001161.

[23]

C.D. Society, Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition), Chin. J. Pract. Intern. Med. 41(8) (2021) 668-695. https://doi.org/10.19538/j.nk2021080106.

[24]

I.A. Shatwan, L.A. Ahmed, M.M. Badkook, Effect of barley flour, crude cinnamon, and their combination on glycemia, dyslipidemia, and adipose tissue hormones in type 2 diabetic rats, J. Med. Food 16(7) (2013) 656-662. https://doi.org/10.1089/jmf.2012.0083.

[25]

T. Osonoi, T. Matsuoka, K. Ofuchi, et al., Effects of barley intake on glycemic control in Japanese patients with type 2 diabetes mellitus undergoing antidiabetic therapy: a prospective study, Diabetol. Int. 13 (2022) 387-395. https://doi.org/10.1007/s13340-021-00552-z.

[26]

J.F. Garcia-Mazcorro, D.A. Mills, K. Murphy, et al., Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice, Eur. J. Nutr. 57(7) (2018) 2513-2528. https://doi.org/10.1007/s00394-017-1523-y.

[27]

M. Obadi, J. Sun, B. Xu, Highland barley: chemical composition, bioactive compounds, health effects, and applications, Food Res. Int. 140 (2021) 110065. https://doi.org/10.1016/j.foodres.2020.110065.

[28]

M. Obadi, Y. Qi, B. Xu, Highland barley starch (Qingke): structures, properties, modifications, and applications, Int. J. Biol. Macromol. 185 (2021) 725-738. https://doi.org/10.1016/j.ijbiomac.2021.06.204.

[29]

N. Deng, Z.Q. He, R.X. Guo, et al., Highland barley whole grain (Hordeum vulgare L.) ameliorates hyperlipidemia by modulating cecal microbiota, miRNAs, and AMPK pathways in leptin receptor-deficient db/db mice, J. Agric. Food Chem. 68(42) (2020) 11735-11746. https://doi.org/10.1021/acs.jafc.0c04780.

[30]

N. Deng, B.S. Zheng, T. Li, et al., Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties, Int. J. Mol. Sci. 21(4) (2020) 1175. https://doi.org/10.3390/ijms21041175.

[31]

H.H. Chen, Q.X. Nie, M. Xie, et al., Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions, Food Res. Int. 122 (2019) 157-166. https://doi.org/10.1016/j.foodres.2019.04.011.

[32]

N. Deng, R.X. Guo, B.S. Zheng, et al., IRS-1/PI3K/Akt pathway and miRNAs are involved in whole grain highland barley (Hordeum vulgare L.) ameliorating hyperglycemia of db/db mice, Food Funct. 11(11) (2020) 9535-9546. https://doi.org/10.1039/d0fo01990a.

[33]

X. Li, Y. Du, C.P. Zhang, et al., Modified highland barley regulates lipid metabolism, liver inflammation and gut microbiota in high-fat/cholesterol diet mice as revealed by LC-MS based metabonomics, Food Funct. 13(17) (2022) 9119-9142. https://doi.org/10.1039/D2FO00882C.

[34]

B. Zheng, S.W. Zhong, Y.K. Tang, et al., Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo, Food Chem. 310 (2020) 125979. https://doi.org/10.1016/j.foodchem.2019.125979.

[35]

D.R. Matthews, J.R Hosker, A.S. Rudenski, et al., Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia 28(7) (1985) 412-419. https://doi.org/10.1007/BF00280883.

[36]

M. Zhao, H. Zhang, J.M. Wang, et al., Serum metabolomics analysis of the intervention effect of whole grain oats on insulin resistance induced by high-fat diet in rats, Food Res. Int. 135 (2020) 109297. https://doi.org/10.1016/j.foodres.2020.109297.

[37]

J.J. Qin, Y.R. Li, Z.M. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490(7418) (2012) 55-60. https://doi.org/10.1038/nature11450.

[38]

J. Montonen, P. Knekt, R. Järvinen, et al., Whole-grain and fiber intake and the incidence of type 2 diabetes, Am. J. Clin. Nutr. 77(3) (2003) 622-629. https://doi.org/10.1093/ajcn/77.3.622.

[39]

A. Tura, A. Kautzky-Willer, G. Pacini., Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT, Diabetes Res. Clin. Pract. 72(3) (2006) 298-301. https://doi.org/10.1016/j.diabres.2005.10.005.

[40]

Q.F. Ban, J.J. Cheng, X.M. Sun, et al., Effects of a synbiotic yogurt using monk fruit extract as sweetener on glucose regulation and gut microbiota in rats with type 2 diabetes mellitus, J. Dairy Sci. 103(4) (2020) 2956-2968. https://doi.org/10.3168/jds.2019-17700.

[41]

B. Kim, E.L. Feldman, Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome, Exp. Mol. Med. 47(3) (2015) e149. https://doi.org/10.1038/emm.2015.3.

[42]

H.X. Cui, Y.N. Hu, J.W. Li, et al., Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress, Oxidative Med. Cell. Longev. 2018 (2018) 1-13. https://doi.org/10.1155/2018/8930374.

[43]

S.Q. Li, M.Q. Wang, C. Li, et al., Beneficial effects of partly milled highland barley on the prevention of high-fat diet-induced glycometabolic disorder and the modulation of gut microbiota in mice, Nutrients 14(4) (2022) 762. https://doi.org/10.3390/nu14040762.

[44]

Z.H. Liu, B. Li, Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation, Food Funct. 12(20) (2021) 10040-10052. https://doi.org/10.1039/D1FO01532J.

[45]

Y. Ren, H.Y. Xie, L. Liu, et al., Processing and prebiotics characteristics of β-glucan extract from highland barley, Appl. Sci. 8(9) (2018) 1481. https://doi.org/10.3390/app8091481.

[46]

Z.H. Liu, B. Li, Procyanidin B1 and p-coumaric acid from highland barley grain showed synergistic effect on modulating glucose metabolism via IRS-1/PI3K/Akt pathway, Mol. Nutr. Food Res. 65(8) (2021) e2100454. https://doi.org/10.1002/mnfr.202100454.

[47]

N. Deng, B.S. Zheng, T. Li, et al., Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties, Int. J. Mol. Sci. 21(4) (2020) 1175. https://doi.org/10.3390/ijms21041175.

[48]

Z.H. Liu, B. Li, (−)-Epicatechin and β-glucan from highland barley grain modulated glucose metabolism and showed synergistic effect via Akt pathway, J. Funct. Food 87 (2021) 104793. https://doi.org/10.1016/j.jff.2021.104793.

[49]

A.A. Rashed, F. Saparuddin, D.G. Rathi, et al., Effects of resistant starch interventions on metabolic biomarkers in pre-diabetes and diabetes adults, Front. Nutr. 8 (2022) 793414 https://doi.org/10.3389/fnut.2021.793414.

[50]

J. Bouchard, M. Malalgoda, J. Storsley, et al., Health benefits of cereal grain- and pulse-derived proteins, Molecules 27(12) (2022) 3746. https://doi.org/10.3390/molecules27123746.

[51]

Y. Yuan, Y.F. Zheng, J.H. Zhou, et al., Polyphenol-rich extracts from brown macroalgae Lessonia trabeculate attenuate hyperglycemia and modulate gut microbiota in high-fat diet and streptozotocin-induced diabetic rats, J. Agric. Food Chem. 67(45) (2019) 12472-12480. https://doi.org/10.1021/acs.jafc.9b05118.

[52]

S. Li, W.W. Yu, X. Guan, et al., Effects of millet whole grain supplementation on the lipid profile and gut bacteria in rats fed with high-fat diet, J. Funct. Food 59 (2019) 49-59. https://doi.org/10.1016/j.jff.2019.05.030.

[53]

P.L. Hollænder, A.B. Ross, M. Kristensen, Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies, Am. J. Clin. Nutr. 102(3) (2015) 556-572. https://doi.org/10.3945/ajcn.115.109165.

[54]

P. Surampudi, B. Enkhmaa, E. Anuurad, et al., Lipid lowering with soluble dietary fiber, Curr. Atheroscleros Rep. 18(12) (2016) 75. https://doi.org/10.1007/s11883-016-0624-z.

[55]

J.L. Pino, V. Mujica, M. Arredondo, Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: a randomized, double-blind, controlled clinical trial, J. Funct. Food 77 (2021) 104311. https://doi.org/10.1016/j.jff.2020.104311.

[56]

Q. Zhang, H.Y. Yu, X.H. Xiao, et al., Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats, PeerJ. 6 (2018) e4446. https://doi.org/10.7717/peerj.4446.

[57]

H.Y. Wang, L.X. Guo, W.H. Hu, et al., Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice, J. Funct. Food 63 (2019) 103593. https://doi.org/10.1016/j.jff.2019.103593.

[58]

Q.X. Nie, J.L. Hu, H.H. Chen, et al., Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites, Food Chem. 371 (2022) 131106. https://doi.org/10.1016/j.foodchem.2021.131106.

[59]

F.M. Zhang, B.T. Cui, X.X. He, et al., Microbiota transplantation: concept, methodology and strategy for its modernization, Protein Cell. 9(5) (2018) 462-473. https://doi.org/10.1007/s13238-018-0541-8.

[60]

Y. Liu, Y.K. Luo, X.H. Wang, et al., Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption, J. Agric. Food Chem. 68(24) (2020) 6615-6627. https://doi.org/10.1021/acs.jafc.0c01947.

[61]

S.S. Yan, J.H. Chen, L.F. Zhu, et al., Oryzanol alleviates high fat and cholesterol diet-induced hypercholesterolemia associated with the modulation of the gut microbiota in hamsters, Food Funct. 13(8) (2022) 4486-4501. https://doi.org/10.1039/D1FO03464B.

[62]

C.B. Yue, C.Q. Chu, J.X. Zhao, et al., Dietary strategies to promote the abundance of intestinal Akkermansia muciniphila, a focus on the effect of plant extracts, J. Funct. Food 93 (2022) 105093. https://doi.org/10.1016/j.jff.2022.105093.

[63]

M. Jayachandran, S. Chung, B. Xu, A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health, Crit. Rev. Food Sci. Nutr. 60(13) (2020) 2265-2276. https://doi.org/10.1080/10408398.2019.1632789.

[64]

Y.M. Zhou, Q.Y. Jiang, S. Zhao, et al., Impact of buckwheat fermented milk combined with high-fat diet on rats’ gut microbiota and short-chain fatty acids, J. Food Sci. 84(12) (2019) 3833-3842. https://doi.org/10.1111/1750-3841.14958.

[65]

H. Tilg, A.R. Moschen, Microbiota and diabetes: an evolving relationship, Gut 63(9) (2014) 1513-1521. https://doi.org/10.1136/gutjnl-2014-306928.

[66]

N. Shin, J. Lee, H. Lee, et al., An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut 63(5) (2014) 727-735. https://doi.org/10.1136/gutjnl-2012-303839.

[67]

M. Derrien, F. Turroni, M. Ventura, et al., Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood, Trends Microbiol. 30(10) (2022) 940-947. https://doi.org/10.1016/j.tim.2022.04.004.

[68]

F. Turroni, C. Milani, S. Duranti, et al., Glycan utilization and cross-feeding activities by bifidobacteria, Trends Microbiol. 26(4) (2018) 339-350. https://doi.org/10.1016/j.tim.2017.10.001.

[69]

X. Qian, Q. Si, G.P. Lin, et al., Bifidobacterium adolescentis is effective in relieving type 2 diabetes and may be related to its dominant core genome and gut microbiota modulation capacity, Nutrients 14(12) (2022) 2479. https://doi.org/10.3390/nu14122479.

[70]

C. Hidalgo-Cantabrana, S. Delgado, L. Ruiz, et al., Bifidobacteria and their health-promoting effects, Microbiol. Spectr. 5(3) (2017). https://doi.org/10.1128/microbiolspec.BAD-0010-2016.

[71]

V. Grimm, C. Westermann, C.U. Riedel, Bifidobacteria-host interactions-an update on colonisation factors, Biomed Res. Int. 2014 (2014) 1-10. https://doi.org/10.1155/2014/960826.

[72]

H. Wang, Y. Lu, Y. Yan, et al., Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets, Front. Cell. Infect. Microbiol. 9 (2020) 455. https://doi.org/10.3389/fcimb.2019.00455.

Food Science and Human Wellness
Pages 2014-2024
Cite this article:
Ren X, Zhang F, Zhang M, et al. Fecal microbiota transplantation: whole grain highland barley improves glucose metabolism by changing gut microbiota. Food Science and Human Wellness, 2024, 13(4): 2014-2024. https://doi.org/10.26599/FSHW.2022.9250167

971

Views

158

Downloads

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 08 October 2022
Revised: 25 November 2022
Accepted: 14 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return