AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Electrochemical and colorimetric dual-signal detection of Staphylococcus aureus enterotoxin B based on AuPt bimetallic nanoparticles loaded Fe-N-C single atom nanocomposite

Huan Lianga,1,Hongcheng Liub,1Haojian Linc,1Guobao NingaXiaokang LuaSiying MadFei Liuc( )Hui Zhaod( )Canpeng Lia( )
School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Science, Supervision and Testing Center for Farm Product Quality, Ministry of Agriculture, Kunming 650223, China
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• An electrochemical and colorimetric dual-signal biosensor for Staphylococcus aureus enterotoxin B (SEB) was designed.

• The decreased electrochemical signal caused by methylene blue degradation was proportionate to increased concentration of SEB.

• The colorimetric signal was based on catalytic activity of AuPt@Fe-N-C by oxidation of 3,3′,5,5′-tetramethyl biphenyl.

• The proposed biosensor showed ultrasensitivity, ideal repeatability, and desirable stability.

Graphical Abstract

Abstract

Sensitive detection of Staphylococcus aureus enterotoxin B (SEB) is of importance for preventing food poisoning from threatening human health. In this work, an electrochemical and colorimetric dual-signal detection assay of SEB was developed. The probe (Ab2/AuPt@Fe-N-C) was bound to SEB captured by Ab1, where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal. Furthermore, the probe catalyzed the oxidation of 3, 3’, 5, 5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm. Once the target was captured and formed a sandwich-like complex, the color changed from colorless to blue. SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002–10.0000 and 0.0005–10.0000 ng/mL, with limits of detection of 0.0667 and 0.1670 pg/mL, respectively. The dual-signal biosensor was successfully used to detect SEB in milk and water samples, which has great potential in toxin detection in food and the environment.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2025_ESM.docx (2.6 MB)

References

[1]

S. Wu, N. Duan, H. Gu, et al., A review of the methods for detection of Staphylococcus aureus enterotoxins, Toxins 8 (2016) 176. https://doi.org/10.3390/toxins8070176.

[2]

D.G. Newell, M. Koopmans, L. Verhoef, et al., Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge, Int. J. Food Microbiol. 139 (2010) 3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021.

[3]

L. Grispoldi, M. Karama, A. Armani, et al., Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table, Ital. J. Anim. Sci. 20 (2021) 677-690. https://doi.org/10.1080/1828051X.2020.1871428.

[4]

M.B. Medina, A biosensor method for a competitive immunoassay detection of staphylococcal enterotoxin B (SEB) in milk, J. Rapid Meth. Aut. Mic. 13 (2005) 37-55. https://doi.org/10.1111/j.1745-4581.2005.00005.

[5]

M. Labib, M. Hedstrom, M. Amin, et al., A capacitive biosensor for detection of staphylococcal enterotoxin B, Anal. Bioanal. Chem. 393 (2009) 1539-1544. https://doi.org/10.1007/s00216-008-2559-x.

[6]

M.A. Poli, V.R. Rivera, D. Neal, Sensitive and specific colorimetric ELISAs for Staphylococcus aureus enterotoxins A and B in urine and buffer, Toxicon 40 (2002) 1723-1726. https://doi.org/10.1016/S0041-0101(02)00202-7.

[7]

S.L. Zhu, C.L. Du, Y.Q. Fu, Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B, Opt. Mater. 331 (2009) 1608-1613. https://doi.org/10.1016/j.optmat.2009.03.009.

[8]

Y.W. Du, H. Huang, Y. Peng, et al., Rapid determination of Staphylococcus aureus enterotoxin B in milk using Raman spectroscopy and chemometric methods, J. Raman Spectrosc. 53 (2022) 709-714. https://doi.org/10.1002/jrs.6296.

[9]

H. Du, T. Ping, W. Wu, et al., Sandwich fluorescence detection of foodborne pathogen Staphylococcus aureus with CD fluorescence signal amplification in food samples, Foods 11 (2022) 945. https://doi.org/10.3390/foods11070945.

[10]

T.Q. Sun, Z.Q. Zhao, W.T. Liu, et al., Development of sandwich chemiluminescent immunoassay based on an anti-staphylococcal enterotoxin B nanobody-alkaline phosphatase fusion protein for detection of staphylococcal enterotoxin B, Anal. Chim. Acta 1108 (2020) 28-36. https://doi.org/10.1016/j.aca.2020.01.032.

[11]

I. Sospedra, R. Marín, J. Mañes, et al., Rapid whole protein quantification of staphylococcal enterotoxin B by liquid chromatography, Food Chem. 133 (2012) 163-166. https://doi.org/10.1016/j.foodchem.2011.12.083.

[12]

E. Shimaa, Z. Mohammed, A dual electrochemical/colorimetric magnetic nanoparticle/peptide-based platform for the detection of Staphylococcus aureus, Analyst 145 (2020) 4606-4614. https://doi.org/10.1039/D0AN00673D.

[13]

D.P. Tang, J. Tang, B.L. Su, et al., Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification, J. Agric. Food Chem. 58 (2010) 10824-10830. https://doi.org/10.1021/jf102326m.

[14]

A.R.Y. Ghadeer, A. Sahar, Z. Mohammed, Rapid and low-cost biosensor for the detection of Staphylococcus aureus, Biosens. Bioelectron. 90 (2017) 230-237. https://doi.org/10.1016/j.bios.2016.11.047.

[15]

L. Huang, J. Chen, L. Gan, et al., Single-atom nanozymes, Sci. Adv. 5 (2019) 5490. https://doi.org/10.1126/sciadv.aav5490.

[16]

M.F. Huo, L.Y. Wang, Y.W. Wang, et al., Nanocatalytic tumor therapy by single-atom catalysts, ACS Nano 13 (2019) 2643-2653. https://doi.org/10.1021/acsnano.9b00457.

[17]

L.H. Shen, M. Arif Khan, X.Y. Wu, et al., Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants, Biosens. Bioelectron. 205 (2022) 114097. https://doi.org/10.1016/j.bios.2022.114097.

[18]

S. Furukawa, J. Reboul, S. Diring, et al., Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale, Chem. Soc. Rev. 43 (2014) 5700-5734. https://doi.org/10.1039/C4CS00106K.

[19]

K. Khan, A.K. Tareen, M. Aslam, et al., Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes, Prog. Solid State Chem. 59 (2020) 100283. https://doi.org/10.1016/j.progsolidstchem.2020.100283.

[20]

M. Yang, Z.J. Sun, H. Jin, et al., Urate oxidase-loaded MOF electrodeposited on boron nanosheet-doxorubicin complex as multifunctional nano-enzyme platform for enzymatic and ratiometric electrochemical biosensing, Talanta 243 (2022) 123359. https://doi.org/10.1016/j.talanta.2022.123359.

[21]

M. Yang, Z.J. Sun, H. Jin, et al., Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release. Microchem. J. 177 (2022) 107319. https://doi.org/10.1016/j.microc.2022.107319.

[22]

H.J. Lin, H.D. Shi, Z. Wang, et al., Scalable production of freestanding few-layer 12-borophene single crystalline sheets as efficient electrocatalysts for lithium-sulfur batteries, ACS Nano 15 (2021) 17327-17336. https://doi.org/10.1021/acsnano.1c04961.

[23]

R.N. Dsouza, U. Pischel, W.M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution, Chem. Rev. 111 (2011) 7941-7980. https://doi.org/10.1021/cr200213s.

[24]

H. Zhao, F. Liu, Y.X. Lu, et al., Ultrasensitive electrochemical detection of alternative cleavage and polyadenylation of CCND2 gene at the single-cell level, Sens. Sensor. Actuat. B: Chem. 285 (2019) 553-561. https://doi.org/10.1016/j.snb.2019.01.071

[25]

J.J. Wang, M. Yang, W.J. Dong, et al., Co (II) complexes loaded into metal-organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins, Catal. Sci. Technol. 6 (2016) 161-168. https://doi.org/10.1039/C5CY01099C.

[26]

G.B. Zhu, X. Zhang, P.B. Gai, et al., β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3, 4, 9, 10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid, Nanoscale 4 (2012) 5703-5709. https://doi.org/10.1039/C2NR31378B.

[27]

S.X. Sheng, J.B. Wu, X. Cong, et al., Raman spectroscopy of two-dimensional borophene sheets, ACS Nano 13 (2019) 4133-4139. https://doi.org/10.1021/acsnano.8b08909.

[28]

G. Ferey, C. Mellot-Draznieks, C. Serre, et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-2042. https://doi.org/10.1126/science.1116275.

[29]

W.D. Liu, L. Chu, C.H. Zhang, et al., Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes, Chem. Eng. J. 415 (2021) 128876. https://doi.org/10.1016/j.cej.2021.128876.

[30]

X.H. Niu, Q.R. Shi, W.L. Zhu, et al., Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon, Biosens. Bioelectron. 142 (2019) 111495. https://doi.org/10.1016/j.bios.2019.111495.

[31]

Z.Y. Lin, H. Huang, L. Cheng, et al., Atomically dispersed Mn within carbon frameworks as high-performance oxygen reduction electrocatalysts for zinc-air battery, ACS Sustain. Chem. Eng. 8 (2020) 427-434. https://doi.org/10.1021/acssuschemeng.9b05713.

[32]

Z.P. Zhang, J.T. Sun, F. Wang, et al., Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework, Angew. Chem. Int. Ed. Engl. 57 (2018) 9038-9043. https://doi.org/10.1002/anie.201804958.

[33]

J. Liang, R.F. Zhou, X.M. Chen, et al., Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction, Adv. Mater. 26 (2014) 6074-6079. https://doi.org/10.1002/adma.201401848.

[34]

Y. Wang, Y.J. Tang, K. Zhou, Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts, J. Am. Chem. Soc. 141 (2019) 14115-14119. https://doi.org/10.1021/jacs.9b07712.

[35]

L. Fan, Y.S. Tian, D.D. Lou, et al., Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting. Anal. Methods 11 (2019) 4586-4592. https://doi.org/10.1039/c9ay01308c.

[36]

H.J. Cheng, S.C. Lin, F. Muhammad, et al., Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sensors 1 (2016) 1336-1343. https://doi.org/10.1021/acssensors.6b00500.

[37]

H. Liang, H.B. Xu, Y.T. Zhao, et al., Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier, Biosens. Bioelectron. 144 (2019) 111691. https://doi.org/10.1016/j.bios.2019.111691.

[38]

L.Z. Gao, J. Zhuang, L. Nie, et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2 (2007) 577-583. https://doi.org/10.1038/nnano.2007.260.

[39]

X.L. Xie, Y.F. Wang, X.B. Zhou, et al., Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase, Analyst 146 (2021) 896-903. https://doi.org/10.1039/D0AN01846E.

[40]

L. Jiao, W.Q. Xu, H.Y. Yan, et al., Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection, Anal. Chem. 91 (2019) 11994-11999. https://doi.org/10.1021/acs.analchem.9b02901.

[41]

L. Jiao, W.Q. Xu, Y. Zhang, et al., Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity, Nano Today 35 (2020) 100971. https://doi.org/10.1016/j.nantod.2020.100971.

[42]

Y. Wu, J.B. Wu, L. Jiao, et al., Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing, Anal. Chem. 92 (2020) 3373-3379. https://doi.org/10.1021/acs.analchem.9b05437.

[43]

R.N. Deng, L. Wang, G.Z. Yi, et al., Target-induced aptamer release strategy based on electrochemical detection of staphylococcal enterotoxin B using GNPs-ZrO2-Chits film, Colloids Surf. B 120 (2014) 1-7. https://doi.org/10.1016/j.colsurfb.2014.04.028.

[44]

A. Sharma, V.H. Rao, D.V. Kamboj, et al., Relative efficiency of zinc sulfide (ZnS) quantum dots (QDs) based electrochemical and fluorescence immunoassay for the detection of staphylococcal enterotoxin B (SEB), Biotechnol. Rep. 6 (2015) 129-136. https://doi.org/10.1016/j.btre.2015.02.004.

[45]

X.H. Xiong, X.P. Shi, Y.J. Liu, et al., An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk, Ana. Methods 10 (2018) 365-370. https://doi.org/10.1039/C7AY02452E.

[46]

L.Y. Wu, B. Gao, F. Zhang, et al., A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk, Talanta 106 (2013) 360-366. https://doi.org/10.1016/j.talanta.2012.12.053.

[47]

X.Y. Chen, Y. Liu, Y.C. Lu, et al., Chronocoulometric aptamer-based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode, Microchim. Acta 186 (2019) 109. https://doi.org/10.1007/s00604-019-3236-9.

[48]

G.S. Rocha, M.K.L. Silva, I. Cesarino, Reduced graphene oxide-based impedimetric immunosensor for detection of enterotoxin A in milk samples, Materials 13 (2020) 1751. https://doi.org/10.3390/ma13071751.

[49]

A. Sharma, V.K. Rao, D.V. Kamboj, Electrochemical immunosensor for the detection of staphylococcal enterotoxin B using screen-printed electrodes, Indian J. Chem. 59 (2020) 174-180.

[50]

D.D. Zhou, G.M. Xie, X.Q. Cao, et al., Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles, Microchim. Acta 183 (2016) 2753-2760. https://doi.org/10.1007/s00604-016-1919-z.

[51]

A.P. Liu, Y.X. Zhang, W.F. Chen, et al., Gold nanoparticle-based colorimetric detection of staphylococcal enterotoxin B using ssDNA aptamers, Eur. Food Res. Technol. 237 (2013) 323-329. https://doi.org/10.1007/s00217-013-1995-9.

[52]

X.X. Xie, F. Tan, A.P. Xu, et al., UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout, Sensor. Actuat. B: Chem. 279 (2019) 289-297. https://doi.org/10.1016/j.snb.2018.10.019.

[53]

Y.N. Li, J.Y. Wang, S. Wang, et al., Rolling circle amplification based colorimetric determination of Staphylococcus aureus, Microchim. Acta 187 (2020) 119. https://doi.org/10.1007/s00604-019-4082-5.

[54]

R. Shahbazi, M. Shahbazi, B. Amini, et al., Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor, Mol. Cell. Probe. 41 (2018) 8-13. https://doi.org/10.1016/j.mcp.2018.07.004.

[55]

B. Mondal, S. Ramlal, P.S. Lavu, et al., Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles, Front. Microbiol. 9 (2018) 179. https://doi.org/10.3389/fmicb.2018.00179.

[56]

F. Tan, X.X. Xie, A.P. Xu, et al., Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B, Talanta 194 (2019) 634-642. https://doi.org/10.1016/j.talanta.2018.10.031.

Food Science and Human Wellness
Pages 2025-2035
Cite this article:
Liang H, Liu H, Lin H, et al. Electrochemical and colorimetric dual-signal detection of Staphylococcus aureus enterotoxin B based on AuPt bimetallic nanoparticles loaded Fe-N-C single atom nanocomposite. Food Science and Human Wellness, 2024, 13(4): 2025-2035. https://doi.org/10.26599/FSHW.2022.9250168

1066

Views

126

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 21 October 2022
Revised: 13 December 2022
Accepted: 30 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return