AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats

Jian Ouyanga,b,c,Xiuping Lia,b,cChangwei Liua,b,cDanmin Lua,b,cJie Ouyanga,b,cFang Zhoua,b,cQi Liua,b,cJianan Huanga,b,c,d( )Zhonghua Liua,b,c,d( )
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Hunan Agricultural University, Changsha 410128, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

Obesity is associated with gut dysbiosis and metabolic endotoxin. Junshanyinzhen tea extract (JSTE) reduced fat accumulation and body weight in obese mice. However, the effects and mechanism of JSTE in preventing obesity were unclear. Therefore, we used different doses of JSTE (75, 150 and 300 mg/(kg·day)) to evaluate the effect on high-fat diet (HFD) -induced rats under 8 weeks of intervention. Here, our results showed that JSTE could significantly reduce body weight gain, blood lipid levels and fat accumulation, improve fatty damage in liver tissue (P < 0.05). In addition, JSTE increased the expression of intestinal tight junction proteins (P < 0.05), relieved metabolic endotoxemia (P < 0.05) and chronic low- grade inflammation in HFD rats. Sequencing of fecal samples showed that JSTE could effectively reverse the microbial diversity and the ratio of Firmicutes to Bacteroidetes to normal levels in HFD- fed rats. Desulfovibrioceae and Erysipelotrichaceae, which are positively related to obesity, were decreased by JSTE intervention (P < 0.05). while Bifidobacteriaceae, Bacteroidaceae, Akkermansia, and Clostridium, which are negatively related to obesity, were increased. Together, these results suggested that JSTE might effectively prevent obesity by modulating gut microbiota dysbiosis, intestinal barrier dysfunction, metabolic endotoxemia and chronic low-grade inflammation in HFD-induced rats.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2036_ESM.docx (405.7 KB)

References

[1]

S. Guida, K. Venema, Gut microbiota and obesity: involvement of the adipose tissue, J. Funct. Foods 14 (2015) 407-423. https://doi.org/10.1007/s13679-020-00379-w.

[2]

M. Ezzati, J. Bentham, M.D. Cesare, et al., Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults, Lancet 390 (2017) 2627-2642. https://doi.org/10.1016/S0140-6736(17)32129-3.

[3]

J. Breda, J. Jewell, A. Keller, The importance of the World Health Organization sugar guidelines for dental health and obesity prevention, Caries Res 53 (2019) 149-152. https://doi.org/10.1159/000491556.

[4]

P. Dey, G.Y. Sasaki, P. Wei, et al., Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation, J. Nutr. Biochem. 67 (2019) 78-89. https://doi.org/10.1016/j.jnutbio.2019.01.017.

[5]

C. Zhang, A. Yin, H. Li, et al., Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children, eBioMedicine 2 (2015) 968-984. https://doi.org/10.1016/j.ebiom.2015.07.007.

[6]

I. Savini, M.V. Catani, D. Evangelista, et al., Obesity-associated oxidative stress: strategies finalized to improve redox state, Int. J. Mol. Sci. 14 (2013) 10497-10538. https://doi.org/10.3390/ijms140510497.

[7]

D. Song, L. Cheng, X. Zhang, et al., The modulatory effect and the mechanism of flavonoids on obesity, J. Food Biochem. 43 (2019) e12954. https://doi.org/10.1111/jfbc.12954.

[8]

G.J. Chen, M. Xie, P. Wan, et al., Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota, J. Agric. Food Chem. 66 (2018) 2783-2795. https://doi.org/10.1021/acs.jafc.8b00296.

[9]

C.J. Chang, C.S. Lin, C.C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015) 7489. https://doi.org/10.1038/ncomms8489.

[10]

P. Gerard, Gut microbiota and obesity, Cell Mol. Life Sci. 73 (2016) 147-162. https://doi.org/10.1007/s00018-015-2061-5.

[11]

A. Vrieze, E.V. Nood, F. Holleman, et al., Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, Gastroenterology 143 (2012) 913-916. https://doi.org/10.1053/j.gastro.2012.06.031.

[12]

E. Cremonini, Z. Wang, A. Bettaieb, et al., (−)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: implications for steatosis and insulin resistance, Redox Biol. 14 (2018) 588-599. https://doi.org/10.1016/j.redox.2017.11.002.

[13]

J.M. Wells, R.J. Brummer, M. Derrien, et al., Homeostasis of the gut barrier and potential biomarkers, Am. J. Physiol.-Gastr. L. 312 (2017) G171-G193. https://doi.org/10.1152/ajpgi.00048.2015.

[14]

M. Guerville, A. Leroy, A. Sinquin, et al., Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats, Am. J. Physiol. Endocrinol. Metab. 313 (2017) E107-E120. https://doi.org/10.1152/ajpendo.00372.2016.

[15]

P.D. Cani, J. Amar, M.A. Iglesias, et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes 56 (2007) 1761-1772. https://doi.org/10.2337/db06-1491.

[16]

L. Zhang, C.T. Ho, J. Zhou, et al., Chemistry and biological activities of processed Camellia sinensis teas: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1474-1495. https://doi.org/10.1111/1541-4337.12479.

[17]

X. Lu, J. Liu, N. Zhang, et al., Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition, J. Agric. Food Chem. 67 (2019) 6978-6994. https://doi.org/10.1021/acs.jafc.8b04909.

[18]

D.M. Liu, J. Huang, Y. Luo, et al., Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota, J. Agric. Food Chem. 67 (2019) 13589-13604. https://doi.org/10.1021/acs.jafc.9b05833.

[19]

F. Zhou, M.Z. Zhu, J.Y. Tang, et al., Six types of tea extracts attenuated high-fat diet-induced metabolic syndrome via modulating gut microbiota in rats, Food Res. Int. 161 (2022) 111788. https://doi.org/10.1016/j.foodres.2022.111788.

[20]

G.J Chen, M. Xie, Z. Dai, et al., Kudingcha and Fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice, Mol. Nutr. Food Res. 62 (2018) e1700485. https://doi.org/10.1002/mnfr.201700485.

[21]

J. Xu, M. Wang, J. Zhao, et al., Yellow tea (Camellia sinensis L.), a promising Chinese tea: processing, chemical constituents and health benefits, Food Res. Int. 107 (2018) 567-577. https://doi.org/10.1016/j.foodres.2018.01.063.

[22]

Y. Shi, M. Wang, Z. Dong, et al., Volatile components and key odorants of Chinese yellow tea (Camellia sinensis), LWT-Food Sci. Technol. 146 (2021) 111512. https://doi.org/10.1016/j.lwt.2021.111512.

[23]

R.Ma, Y. Lin, Q. F Yang. et al., Effects of Junshanyinzhen tea on reducing blood lipid and alleviating liver impairment of hyperlipidemia mice, Genomics and Applied Biology 36 (2017) 3346-3351. https://doi.org/10.13417/j.gab.036.003346.

[24]

P.Q. Cao, X.P. Li, J. Ouyang, et al., The protective effects of yellow tea extract against loperamide-induced constipation in mice, Food Funct. 12 (2021) 5621-5636. https://doi.org/10.1039/d0fo02969f.

[25]

R. Stillie, A.W. Stadnyk, Role of TNF receptors, TNFR1 and TNFR2, in dextran sodium sulfate-induced colitis, Inflamm. Bowel. Dis. 15 (2009) 1515-1525. https://doi.org/10.1002/ibd.20951.

[26]

F.F. Anhe, R.T. Nachbar, T.V. Varin, et al., Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice, Gut 68 (2019) 453-464. https://doi.org/10.1136/gutjnl-2017-315565.

[27]

J.L. Xu, M. Zhang, Y. Chu, et al., Huangjinya black tea alleviates obesity and insulin resistance via modulating fecal metabolome in high-fat diet-fed mice, Mol. Nutr. Food Res. 64 (2020) e2000353. https://doi.org/10.1002/mnfr.202000353.

[28]

C.H. Saely, K. Geiger, H. Drexel, Brown versus white adipose tissue: a mini-review, Gerontology 58 (2012) 15-23. https://doi.org/10.1159/000321319.

[29]

A. Fernandez-Sanchez, E. Madrigal-Santillan, M. Bautista, et al., Inflammation, oxidative stress, and obesity, Int. J. Mol. Sci. 12 (2011) 3117-3132. https://doi.org/10.3390/ijms12053117.

[30]

S. Li, M. Hong, H.Y. Tan, et al., Insights into the role and interdependence of oxidative stress and inflammation in liver diseases, Oxid. Med. Cell Longev. 2016 (2016) 4234061. https://doi.org/10.1155/2016/4234061.

[31]

J. Sinha, S.B. Duffull, B. Green, et al., Evaluating the relationship between lean liver volume and fat-free mass, Clin. Pharmacokinet. 59 (2020) 475-483. https://doi.org/10.1007/s40262-019-00824-7.

[32]

C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50 (2018) 1-9. https://doi.org/10.1038/s12276-018-0126-x.

[33]

S. Rabot, M. Membrez, A. Bruneau, et al., Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism, FASEB J. 24 (2010) 4948-4959. https://doi.org/10.1096/fj.10-164921.

[34]

F. Bäckhed, H. Ding, T. Wang, et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. 101 (2004) 15718-15723. https://doi.org/10.1073/pnas.0407076101.

[35]

M.Z. Zhu, F. Zhou, J. Ouyang, et al., Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism, Food Funct. 12 (2021) 4105-4116. https://doi.org/10.1039/d0fo01768j.

[36]

F. Zhou, Y.L. Li, X. Zhang, et al., Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function, J. Agric. Food Chem. 69 (2021) 14530-14543. https://doi.org/10.1021/acs.jafc.1c04553.

[37]

S.R. Sharpton, B. Schnabl, R. Knight, et al., Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease, Cell Metab. 33 (2021) 21-32. https://doi.org/10.1016/j.cmet.2020.11.010.

[38]

D.W. Kang, J.B. Adams, A.C. Gregory, et al., Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study, Microbiome 5 (2017) 10. https://doi.org/10.1186/s40168-016-0225-7.

[39]

Y. Peng, Y. Yan, P. Wan, et al., Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice, Free Radic. Biol. Med. 136 (2019) 96-108. https://doi.org/10.1016/j.freeradbiomed.2019.04.005.

[40]

N.O. Kaakoush, Insights into the role of Erysipelotrichaceae in the human host, Front. Cell Infect Microbiol. 5 (2015) 84. https://doi.org/10.3389/fcimb.2015.00084.

[41]

M. Pogribna, J. P. Freeman, D. Paine, et al, Effect of Aloe vera whole leaf extract on short chain fatty acids production by Bacteroides fragilis, Bifidobacterium infantis and Eubacterium limosum, Lett. Appl. Microbiol. 46 (2008) 575-580. https://doi.org/10.1111/j.1472-765X.2008.02346.x.

[42]

E.H. Deniz, O.R. Javier, L.H. Kasper, et al, Exploring the gut-brain axis for the control of cns inflammatory demyelination: immunomodulation by Bacteroides fragilis’ polysaccharide A, Front. Immunol. 12 (2021) 662807. https://doi.org/10.3389/fimmu.2021.662807.

[43]

J. Ye, Y. Zhao, X. Chen, et al., Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice, Food Res. Int. 144 (2021) 110360. https://doi.org/10.1016/j.foodres.2021.110360.

[44]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[45]

C. Petersen, R. Bell, K.A. Klag, et al., T cell-mediated regulation of the microbiota protects against obesity, Science 365 (2019) eaat9351. https://doi.org/10.1126/science.aat9351.

[46]

A. Wahlström, S.I. Sayin, H.U. Marschall, et al., Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism, Cell Metab. 24 (2016) 41-50. https://doi.org/10.1016/j.cmet.2016.05.005.

[47]

H. Lin, Y. An, H. Tang, et al., Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model, J. Agric. Food Chem. 67 (2019) 3624-3632. https://doi.org/10.1021/acs.jafc.9b00249.

Food Science and Human Wellness
Pages 2036-2047
Cite this article:
Ouyang J, Li X, Liu C, et al. Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats. Food Science and Human Wellness, 2024, 13(4): 2036-2047. https://doi.org/10.26599/FSHW.2022.9250169

725

Views

65

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 October 2022
Revised: 19 November 2022
Accepted: 25 December 2022
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return