AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Lacticaseibacillus rhamnosus Fmb14 ameliorates hyperuricemia-induced hepatocyte pyroptosis via NLRP3 inflammasome cascade inhibition

Hongyuan ZhaoaXiaoyu ChenaLi ZhangbFanqiang MengaLibang ZhouaZhaoxin Lua( )Yingjian Luc,( )
College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
Institute of Vegetable, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

L. rhamnosus Fmb14 decreased the ROS and MMP dysbiosis induced by uric acid in HepG2 cells.

L. rhamnosus Fmb14 prevented uric acid-induced pyroptosis through NLRP3 inflammasome inhibition and IL-1β reduction in HepG2 cells.

L. rhamnosus Fmb14 attenuated liver injury in purine-induced hyperuricaemic mice by decreasing pyroptosis, especially by reducing the effector GSDMD.

L. rhamnosus Fmb14 reduced the tumour process of the liver in hyperuricaemia.

Graphical Abstract

Abstract

Hyperuricemia is a high-risk factor for the development of gout and renal fibrosis, but the adverse effects of hyperuricemia on the liver have been seriously neglected. This research investigated the ameliorating effect of Lacticaseibacillus rhamnosus Fmb14 on hyperuricemia induced liver dysfunction both in vitro and in vivo. Cell free extracts of high dose L. rhamnosus Fmb14 treatment reduced the death rate of HepG2 cell lines from 24.1% to 14.9% by inhibiting NLRP3 recruitment, which was mainly activated by reactive oxygen species release and mitochondrial membrane potential disorder. In purine dietary induced hyperuricemia (PDIH) mice model, liver oedema and pyroptosis were ameliorated after L. rhamnosus Fmb14 administration through downregulating the expression levels of NLRP3, caspase-1 and gasdermin-D from 1.61 to 0.86, 3.15 to 1.01 and 5.63 to 2.02, respectively. L. rhamnosus Fmb14 administration restored mitochondrial inner membrane protein (MPV17) and connexin 43 from 2.83 and 0.73 to 0.80 and 0.98 respectively in PDIH mice, indicating that dysbiosis of mitochondrial membrane potential was restored in liver. Intriguingly, PDIH pyroptosis stimulates the process of apoptosis, which leads to severe leakage of hepatocytes, and both of pyroptosis and apoptosis were decreased after L. rhamnosus Fmb14 treatment. Therefore, L. rhamnosus Fmb14 is a promising biological resource to maintain homeostasis of the liver in hyperuricemia and the prevention of subsequent complications.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2174_ESM.docx (396.5 KB)

References

[1]

L.A.B. Joosten, T.O. Crisan, P. Bjornstad, et al., Asymptomatic hyperuricaemia: a silent activator of the innate immune system, Nat. Rev. Rheumatol. 16 (2020) 75-86. https://doi.org/10.1038/s41584-019-0334-3.

[2]

N. Dalbeth, H.K. Choi, L.A.B. Joosten, et al., Gout, Nat. Rev. Dis. Primers 5 (2019) 17.

[3]

T. Jensen, M.F. Abdelmalek, S. Sullivan, et al., Fructose and sugar: a major mediator of non-alcoholic fatty liver disease, J. Hepatol. 68 (2018) 1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019.

[4]

R.J. Johnson, G.L. Bakris, C. Borghi, et al., Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation, Am. J. Kidney Dis. 71 (2018) 851-865. https://doi.org/10.1053/j.ajkd.2017.12.009.

[5]

T. Neogi, T.R. Mikuls, To treat or not to treat (to target) in gout, Ann. Intern. Med. 166 (2017) 71. https://doi.org/https://doi.org/10.7326/M16-2401.

[6]

J. Tian, B. Wang, B. Xie, et al., Pyroptosis inhibition alleviates potassium oxonate-and monosodium urate-induced gouty arthritis in mice, Mod. Rheumatol. 32 (2022) 221-230. https://doi.org/10.1080/14397595.2021.1899569.

[7]

H.H. Chen, T.C. Yeh, P.W. Cheng, et al., Antihypertensive potential of coenzyme Q10 via free radical scavenging and enhanced Akt-nNOS signaling in the nucleus tractus solitarii in rats, Mol. Nutr. Food Res. 63 (2019) 1801042. https://doi.org/10.1002/mnfr.201801042.

[8]

C. Kaneko, J. Ogura, S. Sasaki, et al., Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation, BBA-Gen. Subjects 1861 (2017) 559-566. https://doi.org/10.1016/j.bbagen.2016.11.042.

[9]

Y. Wu, Z. Ye, P. Feng, et al., Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid, Gut Microbes 13 (2021) 1-18. https://doi.org/10.1080/19490976.2021.1897211.

[10]

K. Pavelcova, J. Bohata, M. Pavlikova, et al., Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout, J. Clin. Med. 9 (2020) 17. https://doi.org/10.3390/jcm9082510.

[11]

K.Y. Xu, S.R. Liu, X. Zhao, et al., Treating hyperuricemia related non-alcoholic fatty liver disease in rats with resveratrol, Biomed. Pharmacother. 110 (2019) 844-849. https://doi.org/10.1016/j.biopha.2018.12.039.

[12]

M.S.J. Mangan, E.J. Olhava, W.R. Roush, et al., Targeting the NLRP3 inflammasome in inflammatory diseases, Nat. Rev. Drug Discov. 17 (2018) 588-606. https://doi.org/10.1038/nrd.2018.97.

[13]

J. Tan, L. Wan, X. Chen, et al., Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway, Mol. Nutr. Food Res. 63 (2019) 1801402. https://doi.org/10.1002/mnfr.201801402.

[14]

R. Spiga, M.A. Marini, E. Mancuso, et al., Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells, Arterioscl. Throm. Vas. 37 (2017) 1241. https://doi.org/10.1161/ATVBAHA.117.309128.

[15]

Y. Itahana, R. Han, S. Barbier, et al., The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense, Oncogene 34 (2015) 1799-1810. https://doi.org/10.1038/onc.2014.119.

[16]

C.L. Gentile, T.L. Weir, The gut microbiota at the intersection of diet and human health, Science 362 (2018) 776-780. https://doi.org/10.1126/science.aau5812.

[17]

Y. Wu, B. Wang, Z. Zeng, et al., Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers, Poultry Sci. 98 (2019) 5028-5039. https://doi.org/10.3382/ps/pez226.

[18]

H. Zhao, Z. Lu, Y. Lu, The potential of probiotics in the amelioration of hyperuricemia, Food Funct. 13 (2022) 2394-2414. https://doi.org/10.1039/d1fo03206b.

[19]

K.V. Swanson, M. Deng, J.P.Y. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics, Nat. Rev. Immunol. 19 (2019) 477-489. https://doi.org/10.1038/s41577-019-0165-0.

[20]

Y. Yang, H.N. Wang, M. Kouadir, et al., Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors, Cell Death Dis. 10 (2019) 128. https://doi.org/10.1038/s41419-019-1413-8.

[21]

V. Karaffova, V. Revajova, J. Koscova, et al., Local intestinal immune response including NLRP3 inflammasome in broiler chicken infected withCampylobacter jejuniafter administration of Lactobacillus reuteri B1/1, Food Agr. Immunol. 31 (2020) 937-949. https://doi.org/10.1080/09540105.2020.1788516.

[22]

Y.J. Zou, J.J. Xu, X. Wang, et al., Lactobacillus johnsonii L531 ameliorates Escherichia coli-induced cell damage via inhibiting NLRP3 inflammasome activity and promoting ATG5/ATG16L1-mediated autophagy in porcine mammary epithelial cells, Vet. Sci. 7 (2020) 112. https://doi.org/10.3390/vetsci7030112.

[23]

H. Zhao, X. Chen, L. Zhang, et al., Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis, Pharmacol. Res. 182 (2022) 106350. https://doi.org/10.1016/j.phrs.2022.106350.

[24]

H. Zhao, X. Chen, F. Meng, et al., Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia, Food Sci. Hum. Wellness 12 (2023) 1379-1390. https://doi.org/10.1016/j.fshw.2022.10.031.

[25]

L.L. Liu, R. Jin, J.Q. Hao, et al., Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in protumor macrophages, Cancer Res. 80 (2020) 2564-2574. https://doi.org/10.1158/0008-5472.CAN-19-3184.

[26]

V.W.S. Wong, S. Chitturi, G.L.H. Wong, et al., Pathogenesis and novel treatment options for non-alcoholic steatohepatitis, Lancet Gastroenterol. 1 (2016) 56-67. https://doi.org/10.1016/S2468-1253(16)30011-5.

[27]

R. Terkeltaub, Update on gout: new therapeutic strategies and options, Nat. Rev. Rheumatol. 6 (2010) 30-38. https://doi.org/10.1038/nrrheum.2009.236.

[28]

Z. Li, Y. Sheng, C. Liu, et al., Nox4 has a crucial role in uric acid-induced oxidative stress and apoptosis in renal tubular cells, Mol. Med. Rep. 13 (2016) 4343-4348. https://doi.org/10.3892/mmr.2016.5083.

[29]

S. Shen, F. He, C. Cheng, et al., Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway, Biomed. Pharm. 133 (2021) 110990. https://doi.org/10.1016/j.biopha.2020.110990.

[30]

Y.Z. Zhang, Y.Q. Li, X.X. Ren, et al., The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds, Food Chem. 402 (2023) 134231. https://doi.org/10.1016/j.foodchem.2022.134231.

[31]

Z. Xian, Y.H. Choi, M. Zheng, et al., Imperatorin alleviates ROS-mediated airway remodeling by targeting the Nrf2/HO-1 signaling pathway, Biosci. Biotech. Bioch. 84 (2020) 898-910. https://doi.org/10.1080/09168451.2019.1710107.

[32]

L. Galluzzi, I. Vitale, S.A. Aaronson, et al., Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018, Cell Death Differ. 25 (2018) 486-541. https://doi.org/10.1038/s41418-017-0012-4.

[33]

Z.Y. Zhong, A. Umemura, E. Sanchez-Lopez, et al., NF-κB restricts inflammasome activation via elimination of damaged mitochondria, Cell 164 (2016) 896-910. https://doi.org/10.1038/s41418-017-0012-4.

[34]

F.J. Bock, S.W.G. Tait, Mitochondria as multifaceted regulators of cell death, Nat. Rev. Mol. Cell Bio. 21 (2020) 85-100. https://doi.org/10.1038/s41580-019-0173-8.

[35]

Y.L. Hsu, P.L. Kuo, L.C. Chiang, et al., Involvement of p53, nuclear factor kappa B and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines, Cancer Lett. 213 (2004) 213-221. https://doi.org/10.1016/j.canlet.2004.03.044.

[36]

I. Jorgensen, E.A. Miao, Pyroptotic cell death defends against intracellular pathogens, Immunol. Rev. 265 (2015) 130-142. https://doi.org/10.1111/imr.12287.

[37]

Y. Li, C. Qin, L.Z. Dong, et al., Whole grain benefit: synergistic effect of oat phenolic compounds and beta-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice, Food Funct. 13 (2022) 12686-12696. https://doi.org/10.1039/d2fo01746f.

[38]

M. Miettinen, T.E. Pietila, R.A. Kekkonen, et al., Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages, Gut Microbes 3 (2012) 510-522. https://doi.org/10.4161/gmic.21736.

[39]

Y.J. Choi, H.S. Shin, H.S. Choi, et al., Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes, Lab. Invest. 94 (2014) 1114-1125. https://doi.org/10.1038/labinvest.2014.98.

[40]

X.Y. Wan, C.F. Xu, Y.M. Lin, et al., Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism, J. Hepatol. 64 (2016) 925-932. https://doi.org/10.1016/j.jhep.2015.11.022.

[41]

A. Albillos, A. de Gottardi, M. Rescigno, The gut-liver axis in liver disease: pathophysiological basis for therapy, J. Hepatol. 72 (2020) 558-577. https://doi.org/10.1016/j.jhep.2019.10.003.

[42]

J. Shi, Y. Zhao, K. Wang, et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature 526 (2015) 660-665. https://doi.org/10.1038/nature15514.

[43]

B. Xu, M.Z. Jiang, Y. Chu, et al., Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice, J. Hepatol. 68 (2018) 773-782. https://doi.org/10.1016/j.jhep.2017.11.040.

[44]
S. Das, M. Miller, D.H. Broide, Chromosome 17q21 genes ORMDL3 and GSDMB in asthma and immune diseases, in: F.W. Alt (Eds.), Advances in Immunology, 2017, pp. 1-52. https://doi.org/10.1016/bs.ai.2017.06.001.
[45]

S.L. Fink, B.T. Cookson, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect. Immun. 73 (2005) 1907-1916. https://doi.org/10.1128/IAI.73.4.1907-1916.2005.

[46]

X.J. Xia, X. Wang, Z. Cheng, et al., The role of pyroptosis in cancer: pro-cancer or pro-“host”?, Cell Death Dis. 10 (2019) 650. https://doi.org/10.1038/s41419-019-1883-8.

[47]

J. Ding, K. Wang, W. Liu, et al., Pore-forming activity and structural autoinhibition of the gasdermin family, Nature 535 (2016) 111-116. https://doi.org/10.1038/nature18590.

[48]

J.R. Alonzo, C. Venkataraman, M.S. Field, et al., The mitochondrial inner membrane protein MPV17 prevents uracil accumulation in mitochondrial DNA, J. Bio. Chem. 293 (2018) 20285-20294. https://doi.org/10.1074/jbc.RA118.004788.

[49]

A. Kodani, M. Yamaguchi, R. Itoh, et al., A Drosophila model of the neurological symptoms in Mpv17-related diseases, Sci. Rep. 12 (2022) 22632. https://doi.org/10.1038/s41598-022-27329-x.

[50]

R.S. Tonkin, C. Bowles, C.J. Perera, et al., Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice, Exp. Neurol. 300 (2018) 1-12. https://doi.org/10.1016/j.expneurol.2017.10.016.

[51]

M. Dosch, J. Zindel, F. Jebbawi, et al., Connexin-43-dependent ATP release mediates macrophage activation during sepsis, eLife 8 (2019) e42670. https://doi.org/10.7554/eLife.42670.

[52]

R.S. Tonkin, Y. Mao, S.J. O’Carroll, et al., Gap junction proteins and their role in spinal cord injury, Front. Mol. Neurosci. 7 (2014) 102. https://doi.org/10.3389/fnmol.2014.00102.

[53]

F. Edlich, BCL-2 proteins and apoptosis: recent insights and unknowns, Biochem. Bioph. Res. Co. 500 (2018) 26-34. https://doi.org/10.1016/j.bbrc.2017.06.190.

[54]

L. Lartigue, Y. Kushnareva, Y. Seong, et al., Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release, Mol. Biol. Cell 20 (2009) 4871-4884. https://doi.org/10.1091/mbc.e09-07-0649.

[55]

M.S. D’Arcy, Cell death: a review of the major forms of apoptosis, necrosis and autophagy, Cell Bio. Int. 43 (2019) 582-592. https://doi.org/10.1002/cbin.11137.

[56]

M. Seehawer, F. Heinzmann, L. D’Artista, et al., Necroptosis microenvironment directs lineage commitment in liver cancer, Nature 562 (2018) 69. https://doi.org/10.1038/s41586-018-0519-y.

[57]

F.G. Bauernfeind, G. Horvath, A. Stutz, et al., Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression, J. Immunol. 183 (2009) 787-791. https://doi.org/10.4049/jimmunol.0901363.

[58]

E.M. Kim, C.H. Jung, J. Kim, et al., The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins, Cancer Res. 77 (2017) 3092-3100. https://doi.org/10.1158/0008-5472.CAN-16-2098.

[59]

Y. Yan, C.Y. Liu, S.M. Zhao, et al., Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease, AMB Express 10 (2020) 1-11. https://doi.org/10.1186/s13568-020-01038-y.

Food Science and Human Wellness
Pages 2174-2186
Cite this article:
Zhao H, Chen X, Zhang L, et al. Lacticaseibacillus rhamnosus Fmb14 ameliorates hyperuricemia-induced hepatocyte pyroptosis via NLRP3 inflammasome cascade inhibition. Food Science and Human Wellness, 2024, 13(4): 2174-2186. https://doi.org/10.26599/FSHW.2022.9250181

580

Views

39

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 December 2022
Revised: 19 December 2022
Accepted: 12 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return