AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Structural characterization and prebiotic potential of polysaccharides from Polygonatum sibiricum

Zihan Qia,b,#Tiexiang Gaob,#Jingjing LiaShuhan ZhouaZhigang ZhangaMingzhu YinaHaiming Hua( )Hongtao Liua( )
College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China

# These authors contributed equally to this work and should be considered co-fi rst authors.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• A low-molecular-weight polysaccharide was isolated from Polygonatum sibiricum.

Polygonatum sibiricum polysaccharide (PSP) was a glucofructan-type polysaccharide.

• PSP was indigestible in saliva-gastrointestinal digestion but could be degraded and utilized by intestinal bacteria.

• The diversity and abundance of gut microbiota were significantly affected by PSP.

• The PSP fermentation broth displayed an excellent scavenging effect on free radicals, including DPPH, superoxide, and hydroxyl radicals

Graphical Abstract

Abstract

Polygonatum sibiricum has been widely used due to its excellent biological activities. We prepared a novel polysaccharide from P. sibiricum (PSP) in this study. According a monosaccharide composition analysis, PSP was mainly composed of fructose and glucose with a molar percentage of 93.81:5.12. The main linkage types were identified as α-D-Glcp-1→ and →2-β-D-Fruf-1→. The molecular weight of PSP showed no significant change after simulated salivary and gastrointestinal digestion. However, PSP could be broken down by intestinal bacteria. Our findings revealed that PSP administration increased the abundance of probiotics such as Bifi dobacterium. Furthermore, the results showed that gut microbes could utilize PSP to produce short-chain fatty acids including acetic acid, propionic acid, and butyric acid. Also, the PSP fermentation broth displayed an excellent scavenging effect on free radicals, including 2, 2-diphenyl-1-picrylhydrazyl radical, superoxide radical, and hydroxyl radical. In summary, this study will help to promote the application of PSP as prebiotics in functional food and the medical industry.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2208_ESM.docx (574.9 KB)

References

[1]

G.R. Gibson, R. Hutkins, M.E. Sanders, et al., Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 491-502. https://doi.org/10.1038/nrgastro.2017.75.

[2]

L.B. Bindels, N.M. Delzenne, P.D. Cani, et al., Towards a more comprehensive concept for prebiotics, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 303-310. https://doi.org/10.1038/nrgastro.2015.47.

[3]

X. Li, R. Guo, X. Wu, et al., Dynamic digestion of tamarind seed polysaccharide: indigestibility in gastrointestinal simulations and gut microbiota changes in vitro, Carbohydr. Polym. 239 (2020) 116194. https://doi.org/10.1016/j.carbpol.2020.116194.

[4]

Y. Ding, Y. Yan, Y. Peng, et al., In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum, Int. J. Biol. Macromol. 125 (2019) 751-760. https://doi.org/10.1016/j.ijbiomac.2018.12.081.

[5]

W. Wujisguleng, Y. Liu, C. Long, Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China, Acta Soc. Bot. Pol. 81 (2012) 239-244. https://doi.org/10.5586/asbp.2012.045.

[6]

P. Zhao, C. Zhao, X. Li, et al., The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology, J. Ethnopharmacol. 214 (2018) 274-291. https://doi.org/10.1016/j.jep.2017.12.006.

[7]

K.H. Son, J.C. Do, S.S. Kang, Steroidal saponins from the rhizomes of Polygonatum sibiricum, J. Nat. Prod. 53 (1990) 333-339. https://doi.org/10.1021/np50068a010.

[8]

X. Zhao, J. Li, Chemical constituents of the genus Polygonatum and their role in medicinal treatment, Nat. Prod. Commun. 10 (2015) 683-688.

[9]

L.R. Sun, X. Li, S.X. Wang, Two new alkaloids from the rhizome of Polygonatum sibiricum, J. Asian Nat. Prod. Res. 7 (2005) 127-130. https://doi.org/10.1080/10286020310001625157.

[10]

S.D. Wang, B.S. Song, Y.L. Jin, et al., Analysis of trace elements and amino acids in rhizome and fibrous root of Polygonatum cyrtonema, Chinese Traditional Patent Medicine 23 (2001) 369-370.

[11]

X. Cui, S. Wang, H. Cao, et al., A review: the bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides, Molecules 23 (2018) 1170. https://doi.org/10.3390/molecules23051170.

[12]

T. Long, Z. Liu, J. Shang, et al., Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways, Int. J. Biol. Macromol. 111 (2018) 813-821. https://doi.org/10.1016/j.ijbiomac.2018.01.070.

[13]

X. Zhu, W. Wu, X. Chen, et al., Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats 1, Acta Cir. Bras. 33 (2018) 868-878. https://doi.org/10.1590/s0102-865020180100000001.

[14]

T.Y. Liu, L.L. Zhao, S.B. Chen, et al., Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway, Exp. Ther. Med. 20 (2020) 3733-3739. https://doi.org/10.3892/etm.2020.9097.

[15]

X. Zhao, S. Patil, A. Qian, et al., Bioactive compounds of Polygonatum sibiricum-therapeutic effect and biological activity, Endocr. Metab. Immune Disord. Drug Targets 22 (2022) 26-37. https://doi.org/10.2174/1871530321666210208221158.

[16]

K. Zhu, S. Yao, Y. Zhang, et al., Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) pulp, Food Hydrocoll. 87 (2019) 952-959. https://doi.org/10.1016/j.foodhyd.2018.09.014.

[17]

L. Sun, L. Wang, J. Li, et al., Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta, Food Chem. 160 (2014) 1-7. https://doi.org/10.1016/j.foodchem.2014.03.067.

[18]

Y. Yuan, C. Li, Q. Zheng, et al., Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota), Food Hydrocoll. 89 (2019) 735-741. https://doi.org/10.1016/j.foodhyd.2018.11.040.

[19]

T. Di, G. Chen, Y. Sun, et al., In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra, J. Funct. Foods 40 (2018) 18-27. https://doi.org/10.1016/j.jff.2017.10.040.

[20]

J. Zhang, H. Chen, L. Luo, et al., Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria, Carbohydr. Polym. 267 (2021) 118219. https://doi.org/10.1016/j.carbpol.2021.118219.

[21]

M. DuBois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017.

[22]

G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing, Anal. Chem. 31 (1959) 426-428. https://doi.org/10.1021/ac60147a030.

[23]

C.S. Wise, R.J. Dimler, H.A. Davis, et al., Determination of easily hydrolyzable fructose units in dextran preparations, Anal. Chem. 21 (1955) 33-36. https://doi.org/10.1021/ac60097a011.

[24]

S.Y. Xu, J.J. Aweya, N. Li, et al., Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota, Food Chem. 289(2019) 177-186. https://doi.org/10.1016/j.foodchem.2019.03.050.

[25]

Shao X, Sun C, Tang X, et al., Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis, J. Agric. Food Chem. 68 (2020) 12295-12309. https://doi.org/10.1021/acs.jafc.0c04773.

[26]

Q. Zhang, Y. Xu, J. Lü, et al., Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory, Int. J. Biol. Macromol. 113 (2018) 195-204. https://doi.org/10.1016/j.ijbiomac.2018.02.064.

[27]

A. Sundarram, T.P.K. Murthy, α-Amylase production and applications a review, Appl. Environ. Microb. 2 (2014) 166-175. https://doi.org/10.12691/jaem-2-4-10.

[28]

T.J. Ashaolu, J.O. Ashaolu, S.A.O. Adeyeye, Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review, J. Appl. Microbiol. 130 (2021) 677-687. https://doi.org/10.1111/jam.14843.

[29]

J. Wang, S. Hu, S. Nie, et al., Reviews on mechanisms of in vitro antioxidant activity of polysaccharides, Oxid. Med. Cell. Longev. 2016 (2016) 13. https://doi.org/10.1155/2016/5692852.

[30]

H.J. Flint, K.P. Scott, S.H. Duncan, et al., Microbial degradation of complex carbohydrates in the gut, Gut Microbes 3 (2012) 289-306. https://doi.org/10.4161/gmic.19897.

[31]

L.E. Comstock, Importance of glycans to the host-bacteroides mutualism in the mammalian intestine, Cell Host Microbe 5 (2009) 522-526. https://doi.org/10.1016/j.chom.2009.05.010.

[32]

S.Z. Xie, G. Yang, X.M. Jiang, et al., Polygonatum cyrtonema Hua polysaccharide promotes GLP-1 secretion from enteroendocrine L-cells through sweet taste receptor-mediated cAMP signaling, J. Agric. Food Chem. 68 (2020) 6864-6872. https://doi.org/10.1021/acs.jafc.0c02058.

[33]

X. Li, Q. Chen, G. Liu, et al., Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities, Int. J. Biol. Macromol. 190 (2021) 730-738. https://doi.org/10.1016/j.ijbiomac.2021.09.038.

[34]

N. Ramasubbu, V. Paloth, Y. Luo, et al., Structure of human salivary α-amylase at 1.6 A resolution implications for its role in the oral cavity, ActaCrystallogr. D (1996) 435-446.

[35]

C. Chen, B. Zhang, X. Fu, et al., The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions, Food Hydrocoll. 58 (2016) 171-178. https://doi.org/10.1016/j.foodhyd.2016.02.033.

[36]

H.D. Holscher, Dietary fiber and prebiotics and the gastrointestinal microbiota, Gut Microbes 8 (2017) 172-184. https://doi.org/10.1080/19490976.2017.1290756.

[37]
A.T. Reese, R.R. Dunn, Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance, mBio 9 (2018) e01294-18. https://doi.org/10.1128/mBio.01294-18.
[38]

S.H. Duncan, P. Louis, J.M. Thomson, et al., The role of pH in determining the species composition of the human colonic microbiota, Environ. Microbiol. 11 (2009) 2112-2122. https://doi.org/10.1111/j.1462-2920.2009.01931.x.

[39]

H. Yan, J. Lu, Y. Wang, et al., Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats, Phytomedicine 26 (2017) 45-54. https://doi.org/10.1016/j.phymed.2017.01.007.

[40]

M. Valles-Colomer, G. Falony, Y. Darzi, et al., The neuroactive potential of the human gut microbiota in quality of life and depression, Nat. Microbiol. 4 (2019) 623-632. https://doi.org/10.1038/s41564-018-0337-x.

[41]

A.U. Din, A. Hassan, Y. Zhu, et al., Inhibitory effect of Bifidobacterium Bifidum ATCC 29521 on colitis and its mechanism, J. Nutr. Biochem. 79(2020) 108353. https://doi.org/10.1016/j.jnutbio.2020.108353.

[42]

A. Jain, Y. Gupta, S.K. Jain, Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon, J. Pharm Pharm. Sci. 10 (2007) 86-128.

[43]

W. Scheppach, Effects of short chain fatty acids on gut morphology and function, Gut 1 (1994) S35-S38. https://doi.org/10.1136/gut.35.1_suppl.s35.

[44]

E. Hijova, A. Chmelarova, Short chain fatty acids and colonic health, Bratisl. Lek. Listy 108 (2007) 354-358.

[45]

S. Sakakibara, T. Yamauchi, Y. Oshima, et al., Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice, Biochem. Biophys. Res. Commun. 344 (2006) 597-604. https://doi.org/10.1016/j.bbrc.2006.03.176.

[46]

K.B. Guergoletto, A. Costabile, G. Flores, et al., In vitro fermentation of jucara pulp (Euterpe edulis) by human colonic microbiota, Food Chem. 196 (2016) 251-258. https://doi.org/10.1016/j.foodchem.2015.09.048.

[47]

G. Falony, A. Vlachou, K. Verbrugghe, et al., Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producingcolon bacteria during growth on oligofructose, Appl. Environ. Microbiol. 72 (2006) 7835-7841. https://doi.org/10.1128/AEM.01296-06.

[48]

L. Wang, S. Cen, G. Wang, et al., Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation, J. Funct. Foods 69 (2020) 103953. https://doi.org/10.1016/j.jff.2020.103953.

[49]

E. Heimann, M. Nyman, E. Degerman, Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes, Adipocyte 4 (2015) 81-88. https://doi.org/10.4161/21623945.2014.960694.

[50]

S.H. Al-Lahham, M.P. Peppelenbosch, H. Roelofsen, et al., Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms, Biochim. Biophys. Acta 1801 (2010) 1175-1183. https://doi.org/10.1016/j.bbalip.2010.07.007.

[51]

A.T. Johns, The mechanism of propionic acid formation by Veillonella gazogenes, Microbiology 5 (1951) 326-336. https://doi.org/10.1099/00221287-5-2-326.

[52]

E. Thursby, N. Juge, Introduction to the human gut microbiota, Biochem. J. 474 (2017) 1823-1836. https://doi.org/10.1042/BCJ20160510.

[53]

J. Fernández, S. Redondo-Blanco, I. Gutiérrez-del-Río, et al., Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review, J. Funct. Foods 25 (2016) 511-522. https://doi.org/10.1016/j.jff.2016.06.032.

[54]

M. Gio-Batta, F. Sjoberg, K. Jonsson, et al., Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema, Sci. Rep. 10 (2020) 22449. https://doi.org/10.1038/s41598-020-79737-6.

[55]

A. Amaretti, C. Gozzoli, M. Simone, et al., Profiling of protein degraders in cultures of human gut microbiota, Front. Microbiol. 10 (2019) 2614. https://doi.org/10.3389/fmicb.2019.02614.

[56]

V. Mishra, C. Shah, N. Mokashe, et al., Probiotics as potential antioxidants: a systematic review, J. Agric. Food Chem. 63 (2015) 3615-3626. https://doi.org/10.1021/jf506326t.

[57]

Y. Wang, Y. Wu, Y. Wang, et al., Antioxidant properties of probiotic bacteria, Nutrients 9 (2017) 521. https://doi.org/10.3390/nu9050521.

[58]

W.C. Zeng, Z. Zhang, L.R. Jia, Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara), Carbohydr. Polym. 108 (2014) 58-64. https://doi.org/10.1016/j.carbpol.2014.03.022.

[59]

M.R.S. Melo, J.P.A. Feitosa, A.L.P. Freitas, et al., Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea, Carbohydr. Polym. 49 (2002) 491-498.

[60]

J. Liu, J. Luo, H. Ye, et al., In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3, Carbohydr. Polym. 82 (2010) 1278-1283. https://doi.org/10.1016/j.carbpol.2010.07.008.

[61]

L. Meng, S. Sun, R. Li, et al., Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics, Carbohydr. Polym. 117 (2015) 452-457. https://doi.org/10.1016/j.carbpol.2014.09.076.

[62]

M.D. Rees, E.C. Kennett, J.M. Whitelock, et al., Oxidative damage to extracellular matrix and its role in human pathologies, Free Radic. Biol. Med. 44 (2008) 1973-2001. https://doi.org/10.1016/j.freeradbiomed.2008.03.016.

[63]

J. Wang, J. Zhang, B. Zhao, et al., A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: molecule weight and antioxidant activities evaluation, Carbohydr. Polym. 80 (2010) 84-93. https://doi.org/10.1016/j.carbpol.2009.10.073.

Food Science and Human Wellness
Pages 2208-2220
Cite this article:
Qi Z, Gao T, Li J, et al. Structural characterization and prebiotic potential of polysaccharides from Polygonatum sibiricum. Food Science and Human Wellness, 2024, 13(4): 2208-2220. https://doi.org/10.26599/FSHW.2022.9250184

5221

Views

780

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 08 December 2022
Revised: 02 January 2023
Accepted: 26 January 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return