Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1 (LAB-RRTJ) on modulating gut microbiota in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Compared to control group, DSS induction decreased body weight of mice, indexes of Shannon, Simpson, Chao1 and Faith_pd, and increased disease activity index (DAI) and levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF -α) and interferon-γ (IFN-γ); And this induction also led to an increase in Proteobacteria, Verrucomicrobia and Actinobacteria at phylum level, harmful bacterial species richness at genus level, and relative richness of S. sciuri, Desulfovibrio C21_c20, R. gnavus and Akkermansia muciniphila at species level, and a decrease in Firmicutes at phylum level and relative richness of B. acidifaciens in mice. LAB-RRTJ increased body weight of mice with DSS induced ulcerative colitis (UC) and indexes of Shannon, Simpson, Chao1 and Faith_pd, reduced DAI and the content of four inflammatory factors and improved gut microbiota imbalance in DSS induced UC mice. Besides, the number of operational taxonomic units (OTUs) increased, α-diversity and β-diversity were restored and similar to those in mice in the control group after LAB-RRTJ treatment. Compared with the positive drug treatment group, LAB-RRTJ has a better effect on regulating gut microbiota diversity in colitis mice. Correlation analysis showed that inflammatory factors were positively correlated with harmful bacteria and negatively correlated with beneficial bacteria which commonly found in some colitis mice. Taken together, our study demonstrated that LAB-RRTJ could alleviate DSS-induced colitis in mice through the modulation of inflammatory cytokines and gut microbiota composition.
S. Bonovas, C. Pansieri, D. Piovani, et al., Use of biologics and small molecule drugs for the management of moderate to severe ulcerative colitis: ig-ibd clinical guidelines based on the grade methodology, Digest. Liver Dis. 54 (2022) 440-451. https://doi.org/10.1016/j.dld.2022.01.127.
L.L. Ni, Q. Lu, M. Tang, et al., Periplaneta americana extract ameliorates dextran sulfate sodium-induced ulcerative colitis via immunoregulatory and PI3K/AKT/NF-κB signaling pathways, Inflammopharmacology 30 (2022) 907-918. https://doi.org/10.1007/s10787-022-00955-7.
X.J. Yan, C.H. Yang, M. Yang, et al., All-in-one theranostic nano-platform based on polymer nanoparticles for BRET/FRET-initiated bioluminescence imaging and synergistically anti-inflammatory therapy for ulcerative colitis, J. Nanobiotechnol. 20 (2022) 99. https://doi.org/10.1186/s12951-022-01299-8.
N.A. Molodecky, I.S. Soon, D.M. Rabi, et al., Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review, Gastroenterology 142 (2012) 46-54. https://doi.org/10.1053/j.gastro.2011.10.001.
B. de Mattos, M. Garcia, J.B. Nogueira, et al., Inflammatory bowel disease: an overview of immune mechanisms and biological treatments, Mediat. Inflamm. 2015 (2015) 11. https://doi.org/10.1155/2015/493012.
N. Ding, D. Tassone, I. Al Bakir, et al., Systematic review: the impact and importance of body composition in inflammatory bowel disease, J. Crohns Colitis. 16 (2022) I539.
W. Niu, F.Y. Yang, Z.W. Fu, et al., The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease, Microb. Pathogenesis 165 (2022) 105381. https://doi.org/10.1016/j.micpath.2021.105381.
W.X. Chen, L.H. Ren, R.H. Shi, Enteric microbiota leads to new therapeutic strategies for ulcerative colitis, World J. Gastroenterol. 20 (2014) 15657-15663. https://doi.org/10.3748/wjg.v20.i42.15657.
J. Stofilova, M. Kvakova, A. Kamlarova, et al., Probiotic-based intervention in the treatment of ulcerative colitis: conventional and new approaches, Biomedicines 10 (2022) 2236. https://doi.org/10.3390/biomedicines10092236.
J.F. Leblanc, J.P. Segal, L. Braz, et al., The microbiome as a therapy in pouchitis and ulcerative colitis, Nutrients 13 (2021) 1780. https://doi.org/10.3390/nu13061780.
L.T. Wang, M.J. Lv, J.Y. An, et al., Botanical characteristics, phytochemistry and related biological activities of Rosa Roxburghii tratt fruit, and its potential use in functional foods: a review, Food Funct. 12 (2021) 1432-1451. https://doi.org/10.1039/d0fo02603d.
L. Wang, B. Zhang, J. Xiao, et al., Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa Roxburghii Tratt fruit, Food Chem. 249 (2018) 127-135. https://doi.org/10.1016/j.foodchem.2018.01.011.
J.C. Ji, S. Zhang, L. Tang, et al., Integrative analysis of fecal metabolome and gut microbiota in high-fat diet-induced hyperlipidemic rats treated with Rosa Roxburghii Tratt juice, J. Funct. Foods 90 (2022) 104978. https://doi.org/10.1016/j.jff.2022.104978.
S.J. Xu, X. Wang, T.Y. Wang, et al., Flavonoids from Rosa Roxburghii Tratt prevent reactive oxygen species-mediated dna damage in thymus cells both combined with and without PARP-1 expression after exposure to radiation in vivo, Aging-Us, 12 (2020) 16368-16389.
J.Y. He, Y.H. Zhang, N. Ma, et al., Comparative analysis of multiple ingredients in Rosa Roxburghii and R. sterilis fruits and their antioxidant activities, J. Funct. Foods 27 (2016) 29-41. https://doi.org/10.1016/j.jff.2016.08.058.
P.H. Wu, S. Han, M.H. Wu, Beneficial effects of hydroalcoholic extract from Rosa Roxburghii Tratt fruit on hyperlipidemia in high-fat-fed rats, Acta Cardiol. Sin. 36 (2020) 148-159. https://doi.org/10.6515/ACS.202003_36(2).20190709A.
L. Wang, C. Li, Q. Huang, et al., Polysaccharide from Rosa Roxburghii tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice, J. Agr. Food Chem. 68 (2020) 147-159. https://doi.org/10.1021/acs.jafc.9b06247.
L. Dong, S. Xia, B. Sun, et al., Potential value and mechanism of Rosa Roxburghii Tratt juice on pro-inflammatory responses in peripheral blood of patients with arsenic poisoning, Hum. Exp. Toxicol. 41 (2022) 774827743. https://doi.org/10.1177/09603271221121313.
L. Chen, L.N. Wang, J.K. Li, et al., Antihypertensive potential of fermented milk: the contribution of lactic acid bacteria proteolysis system and the resultant angiotensin-converting enzyme inhibitory peptide, Food Funct. 12 (2021) 11121-11131. https://doi.org/10.1039/d1fo02435c.
D. Dahiya, P.S. Nigam, The gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer, Microorganisms 10 (2022) 665. https://doi.org/10.3390/microorganisms10030665.
R. Vemuri, R. Gundamaraju, R. Eri, Role of lactic acid probiotic bacteria in IBD, Curr. Pharm. Design 23 (2017) 2352-2355. https://doi.org/10.2174/1381612823666170207100025.
E. Torres-Maravilla, A. Boucard, A.H. Mohseni, et al., Role of gut microbiota and probiotics in colorectal cancer: onset and progression, Microorganisms 9 (2021) 1021. https://doi.org/10.3390/microorganisms9051021.
H. Rabah, F.L.R. Do Carmo, R.D.D.O. Carvalho, et al., Beneficial propionibacteria within a probiotic emmental cheese: impact on dextran sodium sulphate-induced colitis in mice, Microorganisms 8 (2020) 380. https://doi.org/10.3390/microorganisms8030380.
C.C. Ren, M.M. Faas, P. de Vos, Disease managing capacities and mechanisms of host effects of lactic acid bacteria, Crit. Rev. Food Sci. 61 (2021) 1365-1393. https://doi.org/10.1080/10408398.2020.1758625.
T. Saraiva, K. Morais, V.B. Pereira, et al., Milk fermented with a 15-lipoxygenase-1-producing lactococcus lactis alleviates symptoms of colitis in a murine model, Curr. Pharm. Biotechno. 16 (2015) 424-429. https://doi.org/10.2174/1389201015666141113123502.
Y.L. Zhang, P. Hu, X.Y. Wang, et al., Tolerance and function of lactic acid bacteria with high antioxidant ability isolated from fermented sour meat consumed by dong people, Bioprocessing 14 (2016) 35-40.
D.D. Feng, P. Hu, H.X. Xu, et al., Hypoglycemic and hypolipidemic activities of Rosa Roxburghii juice fermented by lactic acid bacteria in vitro, Food and Fermentation Industries 48 (2022) 212-219.
H.X. Xu, Effects of Rosa Roxburghii juice fermented by lactic acid bacteria on immunity and intestinal microecology in mice, Guizhou University, 2021, 94.
B. Dou, W. Hu, M. Song, et al., Anti-inflammation of erianin in dextran sulphate sodium-induced ulcerative colitis mice model via collaborative regulation of TLR4 and STAT3, Chem Biol Interact 324 (2020) 109089. https://doi.org/10.1016/j.cbi.2020.109089.
B. Liu, Q.L. Lin, T. Yang, et al., Oat beta-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice, Food Funct. 6 (2015) 3454-3463. https://doi.org/10.1039/c5fo00563a.
H. Wang, C. Wang, M. Guo, Autogenic successions of bacteria and fungi in kefir grains from different origins when sub-cultured in goat milk, Food Res. Int. 138 (2020) 109784. https://doi.org/10.1016/j.foodres.2020.109784.
N. Osman, D. Adawi, S. Ahrne, et al., Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis, Digest. Dis. Sci. 53 (2008) 2464-2473. https://doi.org/10.1007/s10620-007-0174-x.
Y.Y. Li, W.F. Xie, Q.W. Li, Characterisation of the bacterial community structures in the intestine of Lampetra morii, Anton. Leeuw. Int. J. G. 109 (2016) 979-986. https://doi.org/10.1007/s10482-016-0699-0.
G.J. Britton, E.J. Contijoch, I. Mogno, et al., Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice, Immunity 50 (2019) 212-224. https://doi.org/10.1016/j.immuni.2018.12.015.
L. Wang, P. Zhang, C. Li, et al., A polysaccharide from Rosa Roxburghii Tratt fruit attenuates high-fat diet-induced intestinal barrier dysfunction and inflammation in mice by modulating the gut microbiota, Food Funct. 13 (2022) 530-547. https://doi.org/10.1039/d1fo03190b.
A.D. Kostic, R.J. Xavier, D. Gevers, The microbiome in inflammatory bowel disease: current status and the future ahead, Gastroenterology 146 (2014) 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009.
K. Machiels, M. Joossens, J. Sabino, et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis, Gut 63 (2014) 1275-1283. https://doi.org/10.1136/gutjnl-2013-304833.
S.J. Ott, S. Plamondon, A. Hart, et al., Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse, J. Clin. Microbiol. 46 (2008) 3510-3513. https://doi.org/10.1128/JCM.01512-08.
L.E. Ritchie, J.M. Sturino, R.J. Carroll, et al., Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis, Fems. Microbiol. Ecol. 91 (2015). https://doi.org/10.1093/femsec/fiv008.
Y. Yeom, B.S. Kim, S.J. Kim, et al., Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice, Bmc Complem. Altern. M. 16 (2016) 697. https://doi.org/10.1186/s12906-016-1456-7.
V. Baldelli, F. Scaldaferri, L. Putignani, et al., The role of enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases, Microorganisms 9 (2021) 697. https://doi.org/10.3390/microorganisms9040697.
G. Lo Sasso, L. Khachatryan, A. Kondylis, et al., Inflammatory bowel disease-associated changes in the gut: focus on kazan patients, Inflamm. Bowel Dis. 27 (2021) 418-433. https://doi.org/10.1093/ibd/izaa188.
A. Quagliariello, F. Del Chierico, S. Reddel, et al., Fecal microbiota transplant in two ulcerative colitis pediatric cases: gut microbiota and clinical course correlations, Microorganisms 8 (2020) 1486. https://doi.org/10.3390/microorganisms8101486.
G. Jin, Q. Tang, J.H. Ma, et al., Maternal emulsifier p80 intake induces gut dysbiosis in offspring and increases their susceptibility to colitis in adulthood, mSystems 6 (2021) e1320-e1337. https://doi.org/10.1128/mSystems.01337-20.
S. Khan, S. Waliullah, V. Godfrey, et al., Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice, Sci. Transl. Med. 12 (2020). https://doi.org/10.1126/scitranslmed.aay6218.
I. Mukhopadhya, R. Hansen, E.M. El-Omar, et al., IBD: what role do proteobacteria play? Nat. Rev. Gastro. Hepat. 9 (2012) 219-230. https://doi.org/10.1038/nrgastro.2012.14.
C.H. Wu, J.L. Ko, J.M. Liao, et al., D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation, Ther. Adv. Med. Oncol. 11 (2019). https://doi.org/10.1177/1758835918821021.
C. Bai, T.G. Liu, J.N. Xu, et al., Effect of high calorie diet on intestinal flora in lps-induced pneumonia rats, Sci. Rep. 10 (2020) 1701. https://doi.org/10.1038/s41598-020-58632-0.
P. Mahoro, H.J. Moon, H.J. Yang, et al., Protective effect of gochujang on inflammation in a DSS-induced colitis rat model, Foods 10 (2021) 1072. https://doi.org/10.3390/foods10051072.
Y.Y. Lam, C. Ha, J. Hoffmann, et al., Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice, Obesity 23 (2015) 1429-1439. https://doi.org/10.1002/oby.21122.
L. Deng, Y.C. Shi, P. Liu, et al., Gegen qinlian decoction alleviate influenza virus infectious pneumonia through intestinal flora, Biomed. Pharmacother. 141 (2021) 111896. https://doi.org/10.1016/j.biopha.2021.111896.
A.B. Hall, M. Yassour, J. Sauk, et al., A novel ruminococcus gnavus clade enriched in inflammatory bowel disease patients, Genome Med. 9 (2017) 103. https://doi.org/10.1186/s13073-017-0490-5.
E. Coletto, D. Latousakis, M.G. Pontifex, et al., The role of the mucin-glycan foraging Ruminococcus gnavus in the communication between the gut and the brain, Gut Microbes. 14 (2022). https://doi.org/10.1080/19490976.2022.2073784.
Y.P. Yang, X.J. Zheng, Y.Q. Wang, et al., Human fecal microbiota transplantation reduces the susceptibility to dextran sulfate sodium-induced germ-free mouse colitis, Front. Immunol. 13 (2022) 836542. https://doi.org/10.3389/fimmu.2022.836542.
C.X. He, M.F. Gao, X.H. Zhang, et al., The protective effect of sulforaphane on dextran sulfate sodium-induced colitis depends on gut microbial and Nrf2-related mechanism, Front. Nutr. 9 (2022). https://doi.org/10.3389/fnut.2022.893344.
G. Heo, Y. Lee, E. Im, Interplay between the gut microbiota and inflammatory mediators in the development of colorectal cancer, Cancers 13 (2021) 734. https://doi.org/10.3390/cancers13040734.
N. Tatiya-Aphiradee, W. Chatuphonprasert, K. Jarukamjorn, Immune response and inflammatory pathway of ulcerative colitis, J. Basic Clin. Physiol. Pharmacol. 30 (2018) 1-10. https://doi.org/10.1515/jbcpp-2018-0036.
Y. Li, F. Chen, Y. Xie, et al., Feiyangchangweiyan capsule protects against ulcerative colitis in mice by modulating the osm/osmr pathway and improving gut microbiota, Phytomedicine 80 (2021) 153372. https://doi.org/10.1016/j.phymed.2020.153372.
C.R. Marion, J. Lee, L. Sharma, et al., Toll-like receptors 2 and 4 modulate pulmonary inflammation and host factors mediated by outer membrane vesicles derived from Acinetobacter baumannii, Infect. Immun. 87 (2019) e219-e243. https://doi.org/10.1128/IAI.00243-19.
A.K. Singh, R.Y. Hertzberger, U.G. Knaus, Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis, Redox Biology 16 (2018) 11-20. https://doi.org/10.1016/j.redox.2018.02.003.
B. Yang, M.J. Li, S. Wang, et al., Lactobacillus ruminis alleviates DSS-induced colitis by inflammatory cytokines and gut microbiota modulation, Foods 10 (2021) 1349. https://doi.org/10.3390/foods10061349.
1083
Views
211
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).