AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (27.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Foodborne toxin Aflatoxin B1 induced glomerular podocyte inflammation through proteolysis of RelA, downregulation of miR-9 and CXCR4/TXNIP/NLRP3 pathway

Jie Zhanga,b,Shuang YangbBaocai XucZihui Qinc,dXinyi Guoc,dBen Weic,dQinghua Wue,fKamil KucaeTushuai Lig,h( )Wenda Wuc,d,e( )
School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
College of Life Science, Yangtze University, Jingzhou 434025, China
Wuxi Medical College, Jiangnan University, Wuxi 214122, China
Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214013, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• AFB1 induced murine kidney disfunction and glomerular podocyte inflammation;

• AFB1-induced RelA ubiquitin-proteasome degradation brought about downregulation of miR-9;

• miR-9 low-expression to upregulate CXCR4 was sufficient to induce podocyte inflammation through increase of TXNIP to initiate NLRP3 inflammasome activation in response to AFB1 exposure.

Graphical Abstract

Abstract

Aflatoxin B1 (AFB1) is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin, particularly causing damages to kidney. Glomerular podocytes are terminally differentiated epithelial cells. AFB1 induces podocyte inflammation, proteinuria and renal dysfunction. Studying the mechanism of AFB1-induced podocyte inflammation and murine kidney dysfunction, we detected that AFB1 increased ubiquitin-dependent degradation of the transcription factor RelA through enhanced interaction of RelA with E3 ubiquitin ligase tripartite motif containing 7 (TRIM7) in mouse podocyte clone-5 (MPC-5) and mouse glomeruli. Reduction of RelA resulted in decreasing microRNA-9 (miR-9) and activating the chemokine receptor 4 (CXCR4), thioredoxin interacting protein (TXNIP), and NOD-like receptor pyrin domain-containing 3 (NLRP3) signaling axis (CXCR4/TXNIP/NLRP3 pathway), leading to podocyte inflammation. We also determined that downregulation of miR-9 led to CXCR4 expression and the downstream TXNIP/NLRP3 pathway activation. Overexpression of miR-9 or deletion of CXCR4 suppressed AFB1-induced CXCR4/TXNIP/NLRP3 pathway, resulting in alleviating podocyte inflammation and kidney dysfunction. Our findings indicated that ubiquitin-dependent proteolysis of RelA, downregulation of miR-9, and activation of CXCR4/TXNIP/NLRP3 pathway played an essential role in AFB1-induced glomerular podocyte inflammation. Our study revealed a novel mechanism, via RelA, for the control of AFB1’s nephrotoxicity, leading to an effective protection of food safety and public health.

Electronic Supplementary Material

Download File(s)
fshw-13-4-2289_ESM.docx (1.7 MB)

References

[1]

Y. Guo, L. Zhao, Q. Ma, et al., Novel strategies for degradation of aflatoxins in food and feed: a review, Food Res. Int. 140 (2021) 109878. http://dx.doi.org/10.1016/j.foodres.2020.109878.

[2]

B. Ivanovics, G. Gazsi, M. Reining, et al., Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish, J. Hazard. Mater. 416 (2021) 125788. http://dx.doi.org/10.1016/j.jhazmat.2021.125788.

[3]

V.S. Suphakarn, P.M. Newberne, M. Goldman, et al., Vitamin A and aflatoxin: effect on liver and colon cancer, Nutr. Cancer 5 (1983) 41-50. http://dx.doi.org/10.1080/01635588309513777.

[4]

S. Marchese, A. Polo, A. Ariano, et al., Aflatoxin B1 and M1: biological properties and their involvement in cancer development, Toxins 10 (2018) 214. http://dx.doi.org/10.3390/toxins10060214.

[5]

K.A. McGlynn, E.A. Rosvold, E.D. Lustbader, et al., Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1, Proc. Natl. Acad. Sci. 92 (1995) 2384-2387. http://dx.doi.org/10.1073/pnas.92.6.2384.

[6]

Y. Tong, P. Tonui, O. Orang’O, et al., Association of detection of aflatoxin in plasma of Kenyan women with increased detection of oncogenic HPV, J. Clin. Oncol. 37 (2019) 5530-5530. http://dx.doi.org/10.21203/rs.3.rs-2468599/v1.

[7]

R. Zhou, M. Liu, X.L. Liang, et al., Clinical features of aflatoxin B1-exposed patients with liver cancer and the molecular mechanism of aflatoxin B1 on liver cancer cells, Environ. Toxicol. Pharmacol. 71 (2019) 103225. http://dx.doi.org/10.1016/j.etap.2019.103225.

[8]

Q.Q. Cao, L.X. Lin, T.T. Xu, et al., Aflatoxin B1 alters meat quality associated with oxidative stress, inflammation, and gut-microbiota in sheep, Ecotoxicol. Environ. Saf. 225 (2021) 112754. http://dx.doi.org/10.1016/j.ecoenv.2021.112754.

[9]

X.X. Gao, J.N. Xu, L.Q. Jiang, et al., Morin alleviates aflatoxin B1-induced liver and kidney injury by inhibiting heterophil extracellular traps release, oxidative stress and inflammatory responses in chicks, Poult. Sci. 100 (2021) 101513. http://dx.doi.org/10.1016/j.psj.2021.101513.

[10]

S. Yilmaz, E. Kaya, A. Karaca, et al., Aflatoxin B1 induced renal and cardiac damage in rats: protective effect of lycopene, Res. Vet. Sci. 119 (2018) 268-275. http://dx.doi.org/10.1016/j.rvsc.2018.07.007.

[11]

K.Y. Yu, J. Zhang, Z. Cao, et al., Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice, Food Funct. 9 (2018) 6427-6434. http://dx.doi.org/10.1039/c8fo01301b.

[12]

A.B. Fogo, Causes and pathogenesis of focal segmental glomerulosclerosis, Nat. Rev. Nephrol. 11 (2015) 76-87. http://dx.doi.org/10.1038/nrneph.2014.216.

[13]

F. Grahammer, C. Schell, T.B. Huber, The podocyte slit diaphragm-from a thin grey line to a complex signalling hub, Nat. Rev. Nephrol. 9 (2013) 587-598. http://dx.doi.org/10.1038/nrneph.2013.169.

[14]

S.J. Schunk, J. Floege, D. Fliser, et al., WNT-β-catenin signalling: a versatile player in kidney injury and repair, Nat. Rev. Nephrol. 17 (2021) 172-184. http://dx.doi.org/10.1038/s41581-020-00343.

[15]

L.L. Zhou, Y.H. Liu, Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease, Nat. Rev. Nephrol. 11 (2015) 535-545. http://dx.doi.org/10.1038/nrneph.2015.88.

[16]

W.W. Zhang, Z.L. Ma, Y.R. Wu, et al., SARS-CoV-2 3C-like protease antagonizes interferon-beta production by facilitating the degradation of IRF3, Cytokine 148 (2021) 155697. http://dx.doi.org/10.1016/j.cyto.2021.155697.

[17]

M. Lesina, S.M. Wörmann, J. Morton, et al., RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis, J. Clin. Invest. 126 (2016) 2919-2932. http://dx.doi.org/10.1172/JCI86477.

[18]

H.J. Sun, S.P. Xiong, X. Cao, et al., Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3, Redox. Biol. 38 (2021) 101813. http://dx.doi.org/10.1016/j.redox.2020.101813.

[19]

W. J. Lukiw, NF-κB-regulated micro RNAs (miRNAs) in primary human brain cells, Exp. Neurol. 235 (2012) 484-490. http://dx.doi.org/10.1016/j.expneurol.2011.11.022.

[20]

B. Wang, D.P. Li, J. Filkowski, et al., A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382, Oncogenesis 7 (2018) 54. http://dx.doi.org/10.1038/s41389-018-0063-5.

[21]

Q.D. Yang, W.H. Zhao, Y.Y. Chen, et al., RelA/MicroRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages, Cell. Death. Dis. 12 (2021) 1060. http://dx.doi.org/10.1038/s41419-021-04349-5.

[22]

D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116 (2004) 281-297. http://dx.doi.org/10.1016/s0092-8674(04)00045-5.

[23]

H. Schwarzenbach, N. Nishida, G.A. Calin, et al., Clinical relevance of circulating cell-free microRNAs in cancer, Nat. Rev. Clin. Oncol. 11 (2014) 145-156. http://dx.doi.org/10.1038/nrclinonc.2014.5.

[24]

J. Yi, Z.F. Gao, MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4, Int. J. Biol. Macromol. 130 (2019) 1-9. http://dx.doi.org/10.1016/j.ijbiomac.2019.02.003.

[25]

X. Dai, R.Y. Liao, C.Q. Liu, et al., Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy, Redox. Biol. 45 (2021) 102033. http://dx.doi.org/10.1016/j.redox.2021.102033.

[26]

J. Lu, H.N. Luo, X. Liu, et al., miR-9 targets CXCR4 and functions as a potential tumor suppressor in nasopharyngeal carcinoma, Carcinogenesis 35 (2014) 554-563. http://dx.doi.org/10.1093/carcin/bgt354.

[27]

H.Y. Mo, Q. Ren, D.Y. Song, et al., CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling, Theranostics 12 (2022) 767-781. http://dx.doi.org/10.7150/thno.65948.eCollection2022.

[28]

M. Schiraldi, A. Raucci, L.M. Muñoz, et al., HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4, J. Exp. Med. 209 (2012) 551-563. http://dx.doi.org/10.1084/jem.20111739.

[29]

Z.L. Zhang, W.W. Zhong, M.J. Hall, et al., CXCR4 but not CXCR7 is mainly implicated in ocular leukocyte trafficking during ovalbumin-induced acute uveitis, Exp. Eye. Res. 89 (2009) 522-531. http://dx.doi.org/10.1016/j.exer.2009.05.012.

[30]

L.J. Drury, J.J. Ziarek, S. Gravel, et al., Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways, Proc. Natl. Acad. Sci. 108 (2011) 17655-17660. http://dx.doi.org/10.1073/pnas.1101133108.

[31]

P. Tamamis, C.A. Floudas, Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4, J. Chem. Inf. Model. 54 (2014) 1174-1188. http://dx.doi.org/10.1021/ci500069y.

[32]

F. Balkwill, The significance of cancer cell expression of the chemokine receptor CXCR4, Semin. Cancer Biol. 14 (2004) 171-179. http://dx.doi.org/10.1016/j.semcancer.2003.10.003.

[33]

S. Chatterjee, B.B. Azad, S. Nimmagadda, The intricate role of CXCR4 in cancer, Adv. Cancer Res. 124 (2014) 31-82. http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1.

[34]

M.C.P. Smith, K.E. Luker, J.R. Garbow, et al., CXCR4 regulates growth of both primary and metastatic breast cancer, Cancer Res. 64 (2004) 8604-8612. http://dx.doi.org/10.1158/0008-5472.CAN-04-1844.

[35]

B.A. Teicher, S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer, Clin. Cancer Res. 16 (2010) 2927-2931. http://dx.doi.org/10.1158/1078-0432.CCR-09-2329.

[36]

Z.H. Ye, Y.Q. Xia, X.J. Zhou, et al., CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis, Int. Immunopharmacol. 107 (2022) 108677. http://dx.doi.org/10.1016/j.intimp.2022.108677.

[37]

Z.Q. Pan, Q. Shan, P. Gu, et al., miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis, J. Neuroinflammation 15 (2018) 29. http://dx.doi.org/10.1186/s12974-018-1073-0.

[38]

Q. Shan, G.H. Zheng, X.R. Han, et al., Troxerutin protects kidney tissue against BDE-47-induced inflammatory damage through CXCR4-TXNIP/NLRP3 signaling, Oxid. Med. Cell. Longev. 2018 (2018) 9865495. http://dx.doi.org/10.1155/2018/9865495.

[39]

K.I. Cheng, S.L. Chen, J.H. Hsu, et al., Loganin prevents CXCL12/CXCR4-regulated neuropathic pain via the NLRP3 inflammasome axis in nerve-injured rats, Phytomedicine 92 (2021) 153734. http://dx.doi.org/10.1016/j.phymed.2021.153734.

[40]

F.B. Xu, P.Y. Wang, Q.C. Yao, et al., Lycopene alleviates AFB1-induced immunosuppression by inhibiting oxidative stress and apoptosis in the spleen of mice, Food Funct. 10 (2019) 3868-3879. http://dx.doi.org/10.1039/c8fo02300j.

[41]

C.J. Rocca, S.N. Ur, F. Harrison, et al., rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study, Gene. Ther. 21 (2014) 618-628. http://dx.doi.org/10.1038/gt.2014.35.

[42]

W. Wang, X.Q. Ding, T.T. Gu, et al., Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377, Free. Radic. Biol. Med. 83 (2015) 214-226. http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.029.

[43]

T.S. Li, L. Chen, S.C. Wang, et al., Magnesium isoglycyrrhizinate ameliorates fructose-induced podocyte apoptosis through downregulation of miR-193a to increase WT1, Biochem. Pharmacol. 166 (2019) 139-152. http://dx.doi.org/10.1016/j.bcp.2019.05.016.

[44]

A.H. Fischer, K.A. Jacobson, J. Rose, et al., Hematoxylin and eosin staining of tissue and cell sections, CSH. Protoc. 2008 (2008) pdb.prot4986. http://dx.doi.org/10.1101/pdb.prot4986.

[45]

Q.J. Wu, W. Li, J. Zhao, et al., Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation, Biomed. Pharmacother. 137 (2021) 111308. http://dx.doi.org/10.1016/j.biopha.2021.111308.

[46]

J.S. Lin, E.M. Lai, Protein-protein interactions: co-immunoprecipitation, Methods Mol. Biol. 1615 (2017) 211-219. http://dx.doi.org/10.1007/978-1-4939-7033-9_17.

[47]

Z. Chen, L. Li, W.R. Wu, et al., Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis, Theranostics 10 (2020) 6448-6466. http://dx.doi.org/10.7150/thno.43577.eCollection2020.

[48]

H. Wei, X.L. Wang, Y.Q. He, et al., Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis, EMBO J. 40 (2021) e105086. http://dx.doi.org/10.15252/embj.2020105086.

[49]

L. Li, L.P. Huang, S.S.J. Sung, et al., NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J. Immuno. 178 (2007) 5899. http://dx.doi.org/10.4049/jimmunol.178.9.5899.

[50]

J.B. Jin, Z. Lu, X.M. Wang, et al., E3 ubiquitin ligase TRIM7 negatively regulates NF-kappa B signaling pathway by degrading p65 in lung cancer, Cell. Signal. 69 (2020) 109543. http://dx.doi.org/10.1016/j.cellsig.2020.109543.

[51]

Y.H. Sun, J.R. Su, Z.X. Liu, et al., Aflatoxin B1 promotes influenza replication and increases virus related lung damage via activation of TLR4 signaling, Front. Immunol. 9 (2018) 2297. http://dx.doi.org/10.3389/fimmu.2018.02297.

[52]

S.P. Liu, W.L. Kang, X.R. Mao, et al., Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice, J. Pineal. Res. 73 (2022) e12812. http://dx.doi.org/10.1111/jpi.12812.

[53]

Q.J. Lu, R.F. Wu, M. Zhao, et al., miRNAs as therapeutic targets in inflammatory disease, Trends. Pharmacol. Sci. 40 (2019) 853-865. http://dx.doi.org/10.1016/j.tips.2019.09.007.

[54]

M. Mirna, V. Paar, R. Rezar, et al., microRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: a potential scope for the future, Cells 8 (2019) 1352. http://dx.doi.org/10.3390/cells8111352.

[55]

S. Moein, M.V. Tabari, D. Qujeq, et al., MiRNAs and inflammatory bowel disease: an interesting new story, J. Cell. Physiol. 234 (2019) 3277-3293. http://dx.doi.org/10.1002/jcp.27173.

[56]

P.B. Saravanan, S. Vasu, G. Yoshimatsu, et al., Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress, Diabetologia 62 (2019) 1901-1914. http://dx.doi.org/10.1007/s00125-019-4950-x.

[57]

Y. Shen, C.J. Xue, G.L. You, et al., miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway, Exp. Ther. Med. 22 (2021) 795. http://dx.doi.org/10.3892/etm.2021.10227.

[58]

M.H. Ou, Y.F. Zhang, S.C. Cui, et al., Upregulated mir-9-5p protects against inflammatory response in rats with deep vein thrombosis via inhibition of NF-κB p50, Inflammation 42 (2019) 1925-1938. http://dx.doi.org/10.1007/s10753-022-01743-9.

[59]

A. Abderrazak, T. Syrovets, D. Couchie, et al., NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases, Redox Biol. 4 (2015) 296-307. http://dx.doi.org/10.1016/j.redox.2015.01.008.

[60]

M.J. Heo, T.H. Kim, J.S. You, et al., Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression, Gut 68 (2019) 708-720. http://dx.doi.org/10.1136/gutjnl-2017-315123.

[61]

Y.C. Cheng, L.W. Chu, J.Y. Chen, et al., Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation, Cells 9 (2020) 1948. http://dx.doi.org/10.3390/cells9091948.

[62]

B.Z. Ding, G.P. Ma, Z.N. Wang, et al., Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine, Evid. Based. Complement. Alternat. Med. 2021 (2021) 1173324. http://dx.doi.org/10.1155/2021/1173324.

[63]

Y.C. Han, X.X. Xu, C.Y. Tang, et al., Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ROS-TXNIP-NLRP3 biological axis, Redox Biol. 16 (2018) 32-46. http://dx.doi.org/10.1016/j.redox.2018.02.013.

[64]

H.Y. Mo, Q.Y. Wu, J.H. Miao, et al., C-X-C chemokine receptor type 4 plays a crucial role in mediating oxidative stress-induced podocyte injury, Antioxid. Redox. Signal. 27 (2017) 345-362. http://dx.doi.org/10.1089/ars.2016.6758.

[65]

W. Kriz, B. Hähnel, H. Hosser, et al., Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress, Front. Endocrinol. 5 (2014) 207. http://dx.doi.org/10.3389/fendo.2014.00207.

Food Science and Human Wellness
Pages 2289-2309
Cite this article:
Zhang J, Yang S, Xu B, et al. Foodborne toxin Aflatoxin B1 induced glomerular podocyte inflammation through proteolysis of RelA, downregulation of miR-9 and CXCR4/TXNIP/NLRP3 pathway. Food Science and Human Wellness, 2024, 13(4): 2289-2309. https://doi.org/10.26599/FSHW.2022.9250191

618

Views

70

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 February 2023
Revised: 09 April 2023
Accepted: 12 May 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return