PDF (2.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Open Access

Overview on signal transduction cascades regulation roles of garlic and its bioactive constituents

Ammad Ahmad FarooqiaIqra MobeenbRukset AttarcKhalida I. NoeldBaojun Xue()William C. Chof()
Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
Khursheed Rasheed Hospital Lahore, Lahore 53720, Pakistan
Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir 34755, Turkey
Human Anatomy Department, College of Medicine, Al-Mustansiriyah University, Baghdad 10036, Iraq
Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong G51 4TF, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and their mechanistic regulation by dietary agents and bioactive molecules at unprecedented dimensionality and resolution. Extra-ordinary breakthroughs in the field of nutrigenomics have leveraged our understanding altogether to a new level of maturity. Interdisciplinary researchers have extensively analyzed health promoting and pharmacologically significant properties of garlic (Allium sativum). Importantly, garlic and its biologically active chemicals targeted oncogenic signaling cascades. In this mini-review we have attempted to summarize how garlic and its bioactive constituents regulated signal transduction cascades in cell culture studies and tumor-bearing mice.

References

[1]

M.K. Bakht, Y. Yamada, S.Y. Ku, et al., Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer, Nat. Cancer 4(10) (2023) 699-715. https://doi.org/10.1038/s43018-023-00539-6.

[2]

Y. Totoki, M. Saito-Adachi, Y. Shiraishi, et al., Multiancestry genomic and transcriptomic analysis of gastric cancer, Nat. Genet. 55(4) (2023) 581-594. https://doi.org/10.1038/s41588-023-01333-x.

[3]

A. Ravi, M.D. Hellmann, M.B. Arniella, et al., Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer, Nat. Genet. 4(6) (2023) 807-819. https://doi.org/10.1038/s41588-023-01355-5.

[4]

N.L. Burdett, M.O. Willis, K. Alsop, et al., Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer, Nat. Genet. 55(3) (2023) 437-450. https://doi.org/10.1038/s41588-023-01320-2.

[5]

C.E. Weeden, V. Gayevskiy, C. Marceaux, et al., Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer, Cancer Cell 41(5) (2023) 837-852. https://doi.org/10.1016/j.ccell.2023.03.019.

[6]

S. Jana, S. Brahma, S. Arora, et al., Transcriptional-translational conflict is a barrier to cellular transformation and cancer progression, Cancer Cell 41(5) (2023) 853-870. https://doi.org/10.1016/j.ccell.2023.03.021.

[7]

H.B. Lengel, B. Mastrogiacomo, J.G. Connolly, et al., Genomic mapping of metastatic organotropism in lung adenocarcinoma, Cancer Cell 41(5) (2023) 970-985. https://doi.org/10.1016/j.ccell.2023.03.018.

[8]

S.J. Vervoort, S.A. Welsh, J.R. Devlin, et al., The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer, Cell 184(12) (2021) 3143-3162. https://doi.org/10.1016/j.cell.2021.04.022.

[9]

J.R. Lin, S. Wang, S. Coy, et al., Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer, Cell 186(2) (2023) 363-381. https://doi.org/10.1016/j.cell.2022.12.028.

[10]

M.V. Huynh, G.A. Hobbs, A. Schaefer, et al., Functional and biological heterogeneity of KRASQ61 mutations, Sci. Signal. 15(746) (2022) eabn2694. https://doi.org/10.1126/scisignal.abn2694.

[11]

S. Valastyan, R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms, Cell 147(2) (2011) 275-292. https://doi.org/10.1016/j.cell.2011.09.024.

[12]

A. Puisieux, T. Brabletz, J. Caramel, Oncogenic roles of EMT-inducing transcription factors, Nat. Cell Biol. 16(6) (2014) 488-494. https://doi.org/10.1038/ncb2976.

[13]

A. Dongre, R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer, Nat. Rev. Mol. Cell Biol. 20(2) (2019) 69-84. https://doi.org/10.1038/s41580-018-0080-4.

[14]

L. Bejarano, M.J.C. Jordāo, J.A. Joyce, Therapeutic targeting of the tumor microenvironment, Cancer Discov. 11(4) (2021) 933-959. https://doi.org/10.1158/2159-8290.CD-20-1808.

[15]

C. Eifert, R.S. Powers, From cancer genomes to oncogenic drivers, tumor dependencies and therapeutic targets, Nat. Rev. Cancer. 12(8) (2012) 572-578. https://doi.org/10.1038/nrc3299.

[16]

Z.P. Germon, J.R. Sillar, A. Mannan, et al., Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies, Sci. Signal. 16(778) (2023) eabp9586. https://doi.org/10.1126/scisignal.abp9586.

[17]

S. Kassel, A.J. Hanson, H. Benchabane, et al., USP47 deubiquitylates Groucho/TLE to promote Wnt-β-catenin signaling, Sci. Signal. 16(771) (2023) eabn8372. https://doi.org/10.1126/scisignal.abn8372.

[18]

J.G. Lombardino, J.A. Lowe, The role of the medicinal chemist in drug discovery--then and now, Nat. Rev. Drug Discov. 3(10) (2004) 853-862. https://doi.org/10.1038/nrd1523.

[19]

L.G. Hamann, Synthetic strategy: natural products on demand, Nat. Chem. 6(6) (2014) 460-461. https://doi.org/10.1038/nchem.1964.

[20]

J. Mann, Natural products in cancer chemotherapy: past, present and future, Nat. Rev. Cancer 2(2) (2002) 143-148. https://doi.org/10.1038/nrc723.

[21]

M.M. Hann, G.M. Keserü, Finding the sweet spot: the role of nature and nurture in medicinal chemistry, Nat. Rev. Drug. Discov. 11(5) (2012) 355-365. https://doi.org/10.1038/nrd3701.

[22]

G.M. Keserü, G.M. Makara, The influence of lead discovery strategies on the properties of drug candidates, Nat. Rev. Drug Discov. 8(3) (2009) 203-212. https://doi.org/10.1038/nrd2796.

[23]

S.T. Mayne, M.C. Playdon, C.L. Rock, Diet, nutrition, and cancer: past, present and future, Nat. Rev. Clin. Oncol. 13(8) (2016) 504-515. https://doi.org/10.1038/nrclinonc.2016.24.

[24]

E.C. Lien, M.G. Vander Heiden, A framework for examining how diet impacts tumor metabolism, Nat. Rev. Cancer 19(11) (2019) 651-661. https://doi.org/10.1038/s41568-019-0198-5.

[25]

S. Bingham, E. Riboli, Diet and cancer–the European prospective investigation into cancer and nutrition, Nat. Rev. Cancer 4(3) (2004) 206-215. https://doi.org/10.1038/nrc1298.

[26]

V. Venkateswaran, L.H. Klotz, Diet and prostate cancer: mechanisms of action and implications for chemoprevention, Nat. Rev. Urol. 7(8) (2010) 442-453. https://doi.org/10.1038/nrurol.2010.102.

[27]

X. Kou, M. Kirberger, Y. Yang, et al., Natural products for cancer prevention associated with Nrf2–ARE pathway, Food Sci. Hum. Wellness 2 (2013) 22-28. https://doi.org/10.1016/J.FSHW.2013.01.001.

[28]

S.R. Taylor, J.N. Falcone, L.C. Cantley, et al., Developing dietary interventions as therapy for cancer, Nat. Rev. Cancer 25 (2022) 452-466. https://doi.org/10.1038/s41568-022-00485-y.

[29]

N. Kanarek, B. Petrova, D.M. Sabatini, Dietary modifications for enhanced cancer therapy, Nature 579(7800) (2020) 507-517. https://doi.org/10.1038/s41586-020-2124-0.

[30]

A. Mondal, S. Banerjee, S. Bose, et al., Garlic constituents for cancer prevention and therapy: from phytochemistry to novel formulations, Pharmacol. Res. 175 (2022) 105837. https://doi.org/10.1016/j.phrs.2021.105837.

[31]

Y. Zhang, X. Liu, J. Ruan, et al., Phytochemicals of garlic: promising candidates for cancer therapy, Biomed. Pharmacother. 123 (2020) 109730. https://doi.org/10.1016/j.biopha.2019.109730.

[32]

Y.L. Agbana, Y. Ni, M. Zhou, et al., Garlic-derived bioactive compound S-allylcysteine inhibits cancer progression through diverse molecular mechanisms, Nutr. Res. 73 (2020) 1-14. https://doi.org/10.1016/j.nutres.2019.11.002.

[33]

H.L. Nicastro, S.A. Ross, J.A. Milner, Garlic and onions: their cancer prevention properties, Cancer Prev. Res. (Phila). 8(3) (2015) 181-189. https://doi.org/10.1158/1940-6207.CAPR-14-0172.

[34]

K. Oravetz, A.V. Todea, O. Balacescu, et al., Potential antitumor activity of garlic against colorectal cancer: focus on the molecular mechanisms of action, Eur. J. Nutr. (2023). https://doi.org/10.1007/s00394-023-03166-0.

[35]

Y. Shukla, N. Kalra. Cancer chemoprevention with garlic and its constituents, Cancer Lett. 247(2) (2007) 167-181. https://doi.org/10.1016/j.canlet.2006.05.009.

[36]

İ. Özkan, P. Koçak, M. Yıldırım, et al., Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis, Sci. Rep. 11(1) (2021) 14773. https://doi.org/10.1038/s41598-021-93876-4.

[37]

S. Gao, K. Yang, T. Nohara, et al., Garlicnin B1, an active cyclic sulfide from garlic, exhibits potent anti-inflammatory and anti-tumor activities, Antioxidants (Basel) 12(4) (2023) 869. https://doi.org/10.3390/antiox12040869.

[38]

T. Yoneda, N. Kojima, T. Matsumoto, et al., Construction of sulfur-containing compounds with anti-cancer stem cell activity using thioacrolein derived from garlic based on nature-inspired scaffolds, Org. Biomol. Chem. 20(1) (2021) 196-207. https://doi.org/10.1039/d1ob01992a.

[39]

M. Dalmartello, F. Turati, Z.F. Zhang, et al., Allium vegetables intake and the risk of gastric cancer in the Stomach cancer Pooling (StoP) Project, Br. J. Cancer 126(12) (2022) 1755-1764. https://doi.org/10.1038/s41416-022-01750-5.

[40]

T.L. Livingstone, S. Saha, F. Bernuzzi, et al., Accumulation of sulforaphane and alliin in human prostate tissue, Nutrients 14(16) (2022) 3263. https://doi.org/10.3390/nu14163263.

[41]

M.C. Speciani, G. Gargari, R. Penagini, et al., Garlic consumption in relation to colorectal cancer risk and to alterations of blood bacterial DNA, Eur. J. Nutr. 62(5) (2023) 2279-2292. https://doi.org/10.1007/s00394-023-03110-2.

[42]

S. Xu, H. Huang, D. Tang, et al., Diallyl disulfide attenuates ionizing radiation-induced migration and invasion by suppressing Nrf2 signaling in non-small-cell lung cancer, Dose Response. 19(3) (2021) 15593258211033114. https://doi.org/10.1177/15593258211033114.

[43]

R, Marni, D.B. Kundrapu, A. Chakraborti, et al., Insight into drug sensitizing effect of diallyl disulfide and diallyl trisulfide from Allium sativum L. on paclitaxel-resistant triple-negative breast cancer cells, J. Ethnopharmacol. 296 (2022) 115452. https://doi.org/10.1016/j.jep.2022.115452.

[44]

E.A. Nelson, S.R. Walker, E. Weisberg, et al., The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors, Blood 117(12) (2011) 3421-3429. https://doi.org/10.1182/blood-2009-11-255232.

[45]

J. Turkson, D. Ryan, J.S. Kim, et al., Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation, J. Biol. Chem. 276(48) (2001) 45443-45455. https://doi.org/10.1074/jbc.M107527200.

[46]

K. Siddiquee, S. Zhang, W.C. Guida, et al., Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity, Proc. Natl. Acad. Sci. U.S.A. 104(18) (2007) 7391-7396. https://doi.org/10.1073/pnas.0609757104.

[47]

H.F. Lu, J.S. Yang, Y.T. Lin, et al., Diallyl disulfide induced signal transducer and activator of transcription 1 expression in human colon cancer colo 205 cells using differential display RT-PCR, Cancer Genomics Proteomics 4(2) (2007) 93-97.

[48]

H. Chen, B. Zhu, L. Zhao, et al., Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma, Cell Physiol. Biochem. 47(2) (2018) 641-653. https://doi.org/10.1159/000490019.

[49]

K. Chandra-Kuntal, S.V. Singh. Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo, Cancer Prev. Res. (Phila). 3(11) (2010) 1473-1483. https://doi.org/10.1158/1940-6207.CAPR-10-0123.

[50]

X. Li, J. Ni, Y. Tang, et al., Allicin inhibits mouse colorectal tumorigenesis through suppressing the activation of STAT3 signaling pathway, Nat. Prod. Res. 33(18) (2019) 2722-2725. https://doi.org/10.1080/14786419.2018.1465425.

[51]

Z.W. Li, W. Chu, Y. Hu, et al., The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis, J. Exp. Med. 189(11) (1999) 1839-1845. https://doi.org/10.1084/jem.189.11.1839.

[52]

J.L. Luo, H. Kamata, M. Karin, IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy, J. Clin. Invest. 115(10) (2005) 2625-2632. https://doi.org/10.1172/JCI26322.

[53]

E. Pikarsky, R.M. Porat, I. Stein, et al., NF-kappaB functions as a tumour promoter in inflammation-associated cancer, Nature 431(7007) (2004) 461-466. https://doi.org/10.1038/nature02924.

[54]

U. Senftleben, Y. Cao, G. Xiao, et al., Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway, Science 293(5534) (2001) 1495-1499. https://doi.org/10.1126/science.1062677.

[55]

Z. Shigemi, Y. Furukawa, K. Hosokawa, et al., Diallyl trisulfide induces apoptosis by suppressing NF-κB signaling through destabilization of TRAF6 in primary effusion lymphoma, Int. J. Oncol. 48(1) (2016) 293-304. https://doi.org/10.3892/ijo.2015.3247.

[56]

S. Lin, X. Wang, Y. Pan, et al., Transcription factor myeloid zinc-finger 1 suppresses human gastric carcinogenesis by interacting with metallothionein 2A, Clin. Cancer Res. 25(3) (2019) 1050-1062. https://doi.org/10.1158/1078-0432.CCR-18-1281.

[57]

Y. Pan, S. Lin, R. Xing, et al., Epigenetic upregulation of metallothionein 2A by diallyl trisulfide enhances chemosensitivity of human gastric cancer cells to docetaxel through attenuating NF-κB activation, Antioxid. Redox. Signal. 24(15) (2016) 839-854. https://doi.org/10.1089/ars.2014.6128.

[58]

Y. Liu, P. Zhu, Y. Wang, et al., Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways, PLoS One 10(4) (2015) e0123781. https://doi.org/10.1371/journal.pone.0123781.

[59]

S.M. Saud, W. Li, Z. Gray, et al., Diallyl disulfide (DADS), a constituent of garlic, inactivates NF-κB and prevents colitis-induced colorectal cancer by inhibiting GSK-3β, Cancer Prev. Res. (Phila). 9(7) (2016) 607-615. https://doi.org/10.1158/1940-6207.CAPR-16-0044.

[60]

J.A. Engelman, Targeting PI3K signalling in cancer: opportunities, challenges and limitations, Nat. Rev. Cancer 9(8) (2009) 550-562. https://doi.org/10.1038/nrc2664.

[61]

P. Liu, H. Cheng, T.M. Roberts, et al., Targeting the phosphoinositide 3-kinase pathway in cancer, Nat. Rev. Drug Discov. 8(8) (2009) 627-644. https://doi.org/10.1038/nrd2926.

[62]

Y. Samuels, Z. Wang, A. Bardelli, et al., High frequency of mutations of the PIK3CA gene in human cancers, Science 304(5670) (2004) 554. https://doi.org/10.1126/science.1096502.

[63]

J.A. Engelman, L. Chen, X. Tan, et al., Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers, Nat. Med. 14(12) (2008) 1351-1356. https://doi.org/10.1038/nm.1890.

[64]

K.M. Kinross, K.G. Montgomery, M. Kleinschmidt, et al., An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice, J. Clin. Invest. 122(2) (2012) 553-557. https://doi.org/10.1172/JCI59309.

[65]

Z. Yue, X. Guan, R. Chao, et al., Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma MG-63 cells through the PI3K/Akt/mTOR pathway, Molecules 24(14) (2019) 2665. https://doi.org/10.3390/molecules24142665.

[66]

F.Y. Tang, E.P. Chiang, M.H. Pai, Consumption of S-allylcysteine inhibits the growth of human non-small-cell lung carcinoma in a mouse xenograft model, J. Agric. Food Chem. 58(20) (2010) 11156-11164. https://doi.org/10.1021/jf102539k.

[67]

X.Y. Jiang, X.S. Zhu, H.Y. Xu, et al., Diallyl trisulfide suppresses tumor growth through the attenuation of Nrf2/Akt and activation of p38/JNK and potentiates cisplatin efficacy in gastric cancer treatment, Acta Pharmacol. Sin. 38(7) (2017) 1048-1058. https://doi.org/10.1038/aps.2016.176.

[68]

D. Xiao, S.V. Singh, Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells, Carcinogenesis 27(3) (2006) 533-540. https://doi.org/10.1093/carcin/bgi228.

[69]

M.H. Pai, Y.H. Kuo, E.P. Chiang, et al., S-Allylcysteine inhibits tumour progression and the epithelial-mesenchymal transition in a mouse xenograft model of oral cancer, Br. J. Nutr. 108(1) (2012) 28-38. https://doi.org/10.1017/S0007114511005307.

[70]

R.M. Pitti, S.A. Marsters, S. Ruppert, et al., Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family, J. Biol. Chem. 271(22) (1996) 12687-12690.

[71]

H. Walczak, R.E. Miller, K. Ariail, et al., Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat. Med. 5(2) (1999) 157-163.

[72]

G. Pan, K. O’Rourke, A.M. Chinnaiyan, et al., The receptor for the cytotoxic ligand TRAIL, Science 276(5309) (1997) 111-113.

[73]

X.D. Zhang, A. Franco, K. Myers, et al., Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma, Cancer Res. 59(11) (1999) 2747-2753.

[74]

B. Gliniak, T. Le, Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11, Cancer Res. 59(24) (1999) 6153-6458.

[75]

W. Roth, S. Isenmann, U. Naumann, et al., Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity, Biochem. Biophys. Res. Commun. 265(2) (1999) 479-483.

[76]

H.J. Kim, S. Kang, D.Y. Kim, et al., Diallyl disulfide (DADS) boosts TRAIL-Mediated apoptosis in colorectal cancer cells by inhibiting Bcl-2, Food Chem. Toxicol. 125 (2019) 354-360. https://doi.org/10.1016/j.fct.2019.01.023.

[77]

J.S. Hwang, Y.Y. Lee, D.H. Lee, et al., DATS sensitizes glioma cells to TRAIL-mediated apoptosis by up-regulation of death receptor 5 via ROS, Food Chem. Toxicol. 106(Pt A) (2017) 514-521. https://doi.org/10.1016/j.fct.2017.05.056.

[78]

M. Murai, T. Inoue, M. Suzuki-Karasaki, et al., Diallyl trisulfide sensitizes human melanoma cells to TRAIL-induced cell death by promoting endoplasmic reticulum-mediated apoptosis, Int. J. Oncol. 41(6) (2012) 2029-2037. https://doi.org/10.3892/ijo.2012.1656.

[79]

S. Shankar, Q. Chen, S. Ganapathy, et al., Diallyl trisulfide increases the effectiveness of TRAIL and inhibits prostate cancer growth in an orthotopic model: molecular mechanisms, Mol. Cancer Ther. 7(8) (2008) 2328-2338. https://doi.org/10.1158/1535-7163.MCT-08-0216.

[80]

D. Xiao, S. Choi, D.E. Johnson, et al., Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2, Oncogene 23(33) (2004) 5594-5606. https://doi.org/10.1038/sj.onc.1207747.

[81]

S.J. Marciniak, J.E. Chambers, D. Ron, Pharmacological targeting of endoplasmic reticulum stress in disease, Nat. Rev. Drug Discov. 21(2) (2022) 115-140. https://doi.org/10.1038/s41573-021-00320-3.

[82]

I. Kim, W. Xu, J.C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities, Nat. Rev. Drug Discov. 7(12) (2008) 1013-1030. https://doi.org/10.1038/nrd2755.

[83]

X. Chen, J.R. Cubillos-Ruiz, Endoplasmic reticulum stress signals in the tumor and its microenvironment, Nat. Rev. Cancer 21(2) (2021) 71-88. https://doi.org/10.1038/s41568-020-00312-2.

[84]

A.S. Lee, Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential, Nat. Rev. Cancer 14(4) (2014) 263-276. https://doi.org/10.1038/nrc3701.

[85]

V. Petrovic, A. Nepal, C. Olaisen, et al., Anti-cancer potential of homemade fresh garlic extract is related to increased endoplasmic reticulum stress, Nutrients 10(4) (2018) 450. https://doi.org/10.3390/nu10040450.

[86]

V. Siyo, G. Schäfer, R. Hunter, et al., The cytotoxicity of the ajoene analogue BisPMB in WHCO1 oesophageal cancer cells is mediated by CHOP/GADD153, Molecules 22(6) (2017) 892. https://doi.org/10.3390/molecules22060892.

[87]

Y.C. Tung, M.L. Tsai, F.L. Kuo, et al., Se-Methyl-L-selenocysteine induces apoptosis via endoplasmic reticulum stress and the death receptor pathway in human colon adenocarcinoma COLO 205 cells, J. Agric. Food Chem. 63(20) (2015) 5008-5016. https://doi.org/10.1021/acs.jafc.5b01779.

[88]

H.C. Wang, S.C. Hsieh, J.H. Yang, et al., Diallyl trisulfide induces apoptosis of human basal cell carcinoma cells via endoplasmic reticulum stress and the mitochondrial pathway, Nutr. Cancer 64(5) (2012) 770-780. https://doi.org/10.1080/01635581.2012.676142.

[89]

A. Das, N.L. Banik, S.K. Ray, Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells, Cancer 110(5) (2007) 1083-1095. https://doi.org/10.1002/cncr.22888.

[90]

S. Volinia, G.A. Calin, C.G. Liu, et al., A microRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci. U.S.A. 103(7) (2006) 2257-2261.

[91]

J.R. Lytle, T.A. Yario, J.A. Steitz, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR, Proc. Natl. Acad. Sci. U.S.A. 104(23) (2007) 9667-9672.

[92]

B. Khraiwesh, M.A. Arif, G.I. Seumel, et al., Transcriptional control of gene expression by microRNAs, Cell 140(1) (2010) 111-122.

[93]

M.N. Cabili, M.C. Dunagin, P.D. McClanahan, et al., Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution, Genome Biol. 16(1) (2015) 20. https://doi.org/10.1186/s13059-015-0586-4.

[94]

M.K. Iyer, Y.S. Niknafs, R. Malik, et al., The landscape of long noncoding RNAs in the human transcriptome, Nat. Genet. 47(3) (2015) 199-208.

[95]

M. Guttman, I. Amit, M. Garber, et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature 458(7235) (2009) 223-227.

[96]

H.S. Chiu, S. Somvanshi, E. Patel, et al., Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context, Cell Rep. 23(1) (2018) 297-312.

[97]

W. He, Y. Fu, Y. Zheng, et al., Diallyl thiosulfinate enhanced the anti-cancer activity of dexamethasone in the side population cells of multiple myeloma by promoting miR-127-3p and deactivating the PI3K/AKT signaling pathway, BMC Cancer 21(1) (2021) 125. https://doi.org/10.1186/s12885-021-07833-5.

[98]

V. Kasina, A. Wahane, C.H. Liu, et al., Next-generation poly-L-histidine formulations for miRNA mimic delivery, Mol. Ther. Methods Clin. Dev. 29 (2023) 271-283. https://doi.org/10.1016/j.omtm.2023.03.015.

[99]

D. Sun, Y. Wu, S. Zhang, et al., Distinct roles of miR-34 family members on suppression of lung squamous cell carcinoma, Biomed. Pharmacother. 142 (2021) 111967. https://doi.org/10.1016/j.biopha.2021.111967.

[100]

X. Li, S. Zhao, Y. Fu, et al., miR-34a-5p functions as a tumor suppressor in head and neck squamous cell cancer progression by targeting Flotillin-2, Int. J. Biol. Sci. 17(15) (2021) 4327-4339. https://doi.org/10.7150/ijbs.64851.

[101]

X. Xiao, B. Chen, X. Liu, et al., Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a, PLoS One 9(11) (2014) e112720. https://doi.org/10.1371/journal.pone.0112720.

[102]

Z. Jiang, L. Pei, Y. Xie, et al., Ruyiping formula inhibits metastasis via the microRNA-134-SLUG axis in breast cancer, BMC Complement Med. Ther. 21(1) (2021) 191. https://doi.org/10.1186/s12906-021-03365-4.

[103]

Y. Wei, Z. Wang, Y. Zong, et al., LncRNA MFI2-AS1 promotes HCC progression and metastasis by acting as a competing endogenous RNA of miR-134 to upregulate FOXM1 expression, Biomed. Pharmacother. 125 (2020) 109890. https://doi.org/10.1016/j.biopha.2020.109890.

[104]

C. Wu, J. Su, W. Long, et al., LINC00470 promotes tumour proliferation and invasion, and attenuates chemosensitivity through the LINC00470/miR-134/Myc/ABCC1 axis in glioma, J. Cell Mol. Med. 24(20) (2020) 12094-12106. https://doi.org/10.1111/jcmm.15846.

[105]

H. Xue, Z. Wu, D. Rao, et al., Long non-coding RNA LINC00858 aggravates the oncogenic phenotypes of ovarian cancer cells through miR-134-5p/RAD18 signaling, Arch. Gynecol. Obstet. 302(5) (2020) 1243-1254. https://doi.org/10.1007/s00404-020-05722-z.

[106]

G. Yang, Y. Zhang, H. Lin, et al., CircRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis, Bioengineered 13(4) (2022) 10578-10593. https://doi.org/10.1080/21655979.2022.2063562.

[107]

H. Zhang, J. Jiang, X. He, et al., Circ_0002111/miR-134-5p/FSTL1 signal axis regulates tumor progression and glycolytic metabolism in papillary thyroid carcinoma cells, J. Endocrinol. Invest. 46(4) (2023) 713-725. https://doi.org/10.1007/s40618-022-01921-4.

[108]

X. Yin, J. Wang, C. Shan, et al., Circular RNA ZNF609 promotes laryngeal squamous cell carcinoma progression by upregulating epidermal growth factor receptor via sponging microRNA-134-5p, Bioengineered. 13(3) (2022) 6929-6941. https://doi.org/10.1080/21655979.2022.2034703.

[109]

Y. Li, Z. Wang, J. Li, et al., Diallyl disulfide suppresses FOXM1-mediated proliferation and invasion in osteosarcoma by upregulating miR-134, J. Cell Biochem. 120 (2019) 7286-7296. https://doi.org/10.1002/jcb.28003.

[110]

Y. Liu, R. Fu, S. Tu, et al., Extracellular microparticles encapsulated with diallyl trisulfide interfere with the inflammatory tumor microenvironment and lung metastasis of invasive melanoma, Mol. Pharm. 18(3) (2021) 822-835. https://doi.org/10.1021/acs.molpharmaceut.0c00696.

[111]

A. Khan, F.A. Alhumaydhi, A.S.S. Alwashmi, et al., Diallyl sulfide-mediated modulation of the fatty acid synthase (FASN) leads to cancer cell death in BaP-induced lung carcinogenesis in Swiss mice, J. Inflamm. Res. 13 (2020) 1075-1087. https://doi.org/10.2147/JIR.S284279.

[112]

Y. Liu, Y. Zhao, Z. Wei, et al., Targeting thioredoxin system with an organosulfur compound, diallyl trisulfide (DATS), attenuates progression and metastasis of triple-negative breast cancer (TNBC), Cell Physiol. Biochem. 50(5) (2018) 1945-1963. https://doi.org/10.1159/000494874.

[113]

J. Xiao, F. Xing, Y. Liu, et al., Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway, Acta. Pharm. Sin. B. 8(4) (2018) 575-586. https://doi.org/10.1016/j.apsb.2017.10.003.

[114]

Z. Wei, Y. Shan, L. Tao, et al., Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1α synthesis, and decreases breast cancer metastasis, Mol. Carcinog. 56(10) (2017) 2317-2331. https://doi.org/10.1002/mc.22686.

[115]

K.T. Ng, D.Y. Guo, Q. Cheng, et al., A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma, PLoS One 7(2) (2012) 31655. https://doi.org/10.1371/journal.pone.0031655.

[116]

S.V. Singh, A.A. Powolny, S.D. Stan, et al., Garlic constituent diallyl trisulfide prevents development of poorly differentiated prostate cancer and pulmonary metastasis multiplicity in TRAMP mice, Cancer Res. 68(22) (2008) 9503-9511. https://doi.org/10.1158/0008-5472.CAN-08-1677.

[117]

X. Jiang, X. Zhu, W. Huang, et al., Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice, Int. Immunopharmacol. 48 (2017) 135-145. https://doi.org/10.1016/j.intimp.2017.05.004.

[118]

J. Wu, S. Zhao, J. Zhang, et al., Over-expression of survivin is a factor responsible for differential responses of ovarian cancer cells to S-allylmercaptocysteine (SAMC), Exp. Mol. Pathol. 100(2) (2016) 294-302. https://doi.org/10.1016/j.yexmp.2016.02.003.

[119]

D. Liang, Y. Qin, W. Zhao, et al., S-Allylmercaptocysteine effectively inhibits the proliferation of colorectal cancer cells under in vitro and in vivo conditions, Cancer Lett. 310(1) (2011) 69-76. https://doi.org/10.1016/j.canlet.2011.06.019.

[120]

E.W. Howard, M.T. Ling, C.W. Chua, et al., Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer, Clin. Cancer Res. 13(6) (2007) 1847-1856. https://doi.org/10.1158/1078-0432.CCR-06-2074.

[121]

S. Kaowinn, C. Kaewpiboon, J.E. Kim, et al., N-Benzyl-N-methyl-dodecan-1-amine, a novel compound from garlic, exerts anti-cancer effects on human A549 lung cancer cells overexpressing cancer upregulated gene (CUG)2, Eur. J. Pharmacol. 841 (2018) 19-27. https://doi.org/10.1016/j.ejphar.2018.09.035.

[122]
G.C. 4th Wallace, C.P. Haar, W.A. 3rd Vandergrift, et al., Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition, J. Neurooncol. 114(1) (2013) 43-50. https://doi.org/10.1007/s11060-013-1165-8.
[123]

J. Huang, B. Yang, T. Xiang, et al., Diallyl disulfide inhibits growth and metastatic potential of human triple-negative breast cancer cells through inactivation of the β-catenin signaling pathway, Mol. Nutr. Food Res. 59(6) (2015) 1063-1075. https://doi.org/10.1002/mnfr.201400668.

[124]

X. Zhu, X. Jiang, A. Li, et al., S-Allylmercaptocysteine suppresses the growth of human gastric cancer xenografts through induction of apoptosis and regulation of MAPK and PI3K/Akt signaling pathways, Biochem. Biophys. Res. Commun. 491(3) (2017) 821-826. https://doi.org/10.1016/j.bbrc.2017.06.107.

[125]

L. Xia, J. Lin, J. Su, et al., Diallyl disulfide inhibits colon cancer metastasis by suppressing Rac1-mediated epithelial-mesenchymal transition, Onco. Targets Ther. 12 (2019) 5713-5728. https://doi.org/10.2147/OTT.S208738.

Food Science and Human Wellness
Pages 2353-2362
Cite this article:
Farooqi AA, Mobeen I, Attar R, et al. Overview on signal transduction cascades regulation roles of garlic and its bioactive constituents. Food Science and Human Wellness, 2024, 13(5): 2353-2362. https://doi.org/10.26599/FSHW.2022.9250196
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return