Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Consumption of natto, a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis, has long been linked to healthy aging and longer human lifespan. As the key thrombolytic ingredient of natto, the serine protease nattokinase (NK) has been developed into a widely-used dietary supplement. NK has shown excellent anti-thrombus, thrombolytic, and anti-inflammation activities that potentially delay aging and provide therapeutic effects on aging-related diseases. In this review, we critically overview the experimental and clinical evidence in the past 20 years that support the beneficial function of NK in the prevention and treatment of aging-related diseases, including cardiovascular diseases, Alzheimer’s disease, other abnormalities and cancer. We focus on the underlying molecular mechanisms and recent advances in application methods that are aimed at further development of NK for healthier aging of modern society. The challenges and unsolved issues in this area are also discussed.
D. Melzer, L.C. Pilling, L. Ferrucci, The genetics of human ageing, Nat. Rev. Genet. 21 (2020) 88-101. https://doi.org/10.1038/s41576-019-0183-6.
J. Luo, K. Mills, S. le Cessie, et al., Ageing, age-related diseases and oxidative stress: what to do next? Ageing Res. Rev. 57 (2020) 100982. https://doi.org/10.1016/j.arr.2019.100982.
J. Campisi, P. Kapahi, G.J. Lithgow, et al., From discoveries in ageing research to therapeutics for healthy ageing, Nature 571 (2019) 183-192. https://doi.org/10.1038/s41586-019-1365-2.
A. Arafa, Y. Kokubo, R. Kashima, et al., The lifelong health support 10: a Japanese prescription for a long and healthy life, Environ. Health Prev. Med. 27 (2022) 23. https://doi.org/10.1265/EHPM.22-00085.
C. Nagata, K. Wada, T. Tamura, et al., Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study, Am. J. Clin. Nutr. 105 (2017) 426-431. https://doi.org/10.3945/ajcn.116.137281.
H. Chen, E.M. McGowan, N. Ren, et al., Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases, Biomark. Insights. 13 (2018) 1177271918785130. https://doi.org/10.1177/1177271918785130.
T. Li, C. Zhan, G. Guo, et al., Tofu processing wastewater as a low-cost substrate for high activity nattokinase production using Bacillus subtilis, BMC Biotechnol. 21 (2021) 57. https://doi.org/10.1186/s12896-021-00719-1.
Y. Li, L.Q. Chen, X.Y. Tang, et al., Biotechnology, bioengineering and applications of Bacillus nattokinase, Biomolecules 12 (2022) 980. https://doi.org/10.3390/biom12070980.
J. Liu, J. Xing, T. Chang, et al., Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio, Bioprocess Biosyst. Eng. 28 (2006) 267-273. https://doi.org/10.1007/s00449-005-0032-1.
R. Garg, B.N. Thorat, Nattokinase purification by three phase partitioning and impact of t-butanol on freeze drying, Sep. Purif. Technol. 131 (2014) 19-26. https://doi.org/10.1016/j.seppur.2014.04.011
D. Li, L. Hou, M. Hu, et al., Recent advances in nattokinase-enriched fermented soybean foods: a review, Foods 11 (2022) 1867. https://doi.org/10.3390/foods11131867.
T. Nakamura, Y. Yamagata, E. Ichishima, Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto), Biosci. Biotechnol. Biochem. 56 (1992) 1869-1871. https://doi.org/10.1271/bbb.56.1869.
T.T. Nguyen, T.D. Quyen, H.T. Le, Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800, Microb. Cell Fact. 12 (2013) 1. https://doi.org/10.1186/1475-2859-12-79.
U. Shinde, M. Inouye, Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism, J. Mol. Biol. 247 (1995) 390-395. https://doi.org/10.1006/jmbi.1994.0147.
Y. Jia, H. Liu, W. Bao, et al., Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase, FEBS Lett. 584 (2010) 4789-4796. https://doi.org/10.1016/j.febslet.2010.11.011.
Y. Jia, X. Cao, Y. Deng, et al., Four residues of propeptide are essential for precursor folding of nattokinase, Acta Biochim. Biophys. Sin. (Shanghai) 46 (2014) 957-964.
Y. Peng, X. Yang, Y. Zhang, Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo, Appl. Microbiol. Biotechnol. 69 (2005) 126-132. https://doi.org/10.1007/s00253-005-0159-7.
S. Wu, C. Feng, J. Zhong, et al., Roles of s3 site residues of nattokinase on its activity and substrate specificity, J. Biochem. 142 (2007) 357-364. https://doi.org/10.1093/jb/mvm142.
R. Kapoor, S. Khowal, B.P. Panda, et al., Comparative genomic analyses of Bacillus subtilis strains to study the biochemical and molecular attributes of nattokinases, Biotechnol. Lett. 44 (2022) 485-502. https://doi.org/10.1007/s10529-022-03226-1.
Z. Zheng, M. Ye, Z. Zuo, et al., Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation, Biochem. J. 395 (2006) 509-515. https://doi.org/10.1042/BJ20050772.
Z. Zheng, Z. Zuo, Z. Liu, et al., Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. a novel nucleophilic catalytic mechanism for nattokinase, J. Mol. Graph. Model. 23 (2005) 373-380. https://doi.org/10.1016/j.jmgm.2004.10.002.
J. Ren, Y. Zhang, Targeting autophagy in aging and aging-related cardiovascular diseases, Trends Pharmacol. Sci. 39 (2018) 1064-1076. https://doi.org/10.1016/j.tips.2018.10.005.
H. Sumi, H. Hamada, K. Nakanishi, et al., Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase, Acta Haematol. 84 (1990) 139-143. https://doi.org/10.1159/000205051.
M. Fujita, K. Hong, Y. Ito, et al., Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat, Biol. Pharm. Bull. 18 (1995) 1387-1391.
J. Xu, M. Du, X. Yang, et al., Thrombolytic effects in vivo of nattokinase in a carrageenan-induced rat model of thrombosis, Acta Haematol. 132 (2014) 247-253. https://doi.org/10.1159/000360360.
S. Kamiya, M. Hagimori, M. Ogasawara, et al., In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model, Acta Haematol. 124 (2010) 218-224. https://doi.org/10.1159/000321518.
H. Sumi, Y. Yanagisawa, C. Yatagai, et al., Natto Bacillus as an oral fibrinolytic agent: nattokinase activity and the ingestion effect of Bacillus subtilis natto, Food Sci. Technol. Res. 10 (2004) 17-20.
J. Jang, T.S. Kim, J. Cai, et al., Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation, Lab. Anim. Res. 29 (2013) 221. https://doi.org/10.5625/lar.2013.29.4.221.
Y. Kurosawa, S. Nirengi, T. Homma, et al., A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles, Sci. Rep. 5 (2015) 11601. https://doi.org/10.1038/srep11601.
M.R. Cesarone, G. Belcaro, A.N. Nicolaides, et al., Prevention of venous thrombosis in long-haul flights with Flite Tabs: The LONFLIT-FLITE randomized, controlled trial, Angiology 54 (2003) 531-539. https://doi.org/10.1177/000331970305400502.
J. Le Blanc, M. Lordkipanidzé, Platelet function in aging, Front. Cardiovasc. Med. 6 (2019) 109. https://doi.org/10.3389/fcvm.2019.00109.
H.J. Yoo, M. Kim, M. Kim, et al., The effects of nattokinase supplementation on collagen-epinephrine closure time, prothrombin time and activated partial thromboplastin time in nondiabetic and hypercholesterolemic subjects, Food Funct. 10 (2019) 2888-2893. https://doi.org/10.1039/c8fo02324g.
H. Sumi, H. Hamada, H. Tsushima, et al., A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet, Experientia. 43 (1987) 1110-1111. https://doi.org/10.1007/BF01956052.
H. Wu, H. Wang, W. Li, et al., Nattokinase-heparin exhibits beneficial efficacy and safety-an optimal strategy for CKD patients on hemodialysis, Glycoconj. J. 36 (2019) 93-101. https://doi.org/10.1007/s10719-019-09860-8.
C. Yatagai, M. Maruyama, T. Kawahara, et al., Nattokinase-promoted tissue plasminogen activator release from human cells, Pathophysiol. Haemost. Thromb. 36 (2008) 227-232. https://doi.org/10.1159/000252817.
T. Urano, H. Ihara, K. Umemura, et al., The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1, J. Biol. Chem. 276 (2001) 24690-24696. https://doi.org/10.1074/jbc.M101751200.
D.E. Vaughan, R. Rai, S.S. Khan, et al., Plasminogen activator inhibitor-1 is a marker and a mediator of senescence, Arterioscler. Thromb. Vasc. Biol. 37 (2017) 1446-1452. https://doi.org/10.1161/ATVBAHA.117.309451.
R.P. Tracy, A.M. Arnold, W. Ettinger, et al., The relationship of fibrinogen and factors Ⅶ and Ⅷ to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study, Arterioscler. Thromb. Vasc. Biol. 19 (1999) 1776-1783. https://doi.org/10.1161/01.atv.19.7.1776.
C.H. Hsia, M.C. Shen, J.S. Lin, et al., Nattokinase decreases plasma levels of fibrinogen, factor Ⅶ, and factor Ⅷ in human subjects, Nutr. Res. 29 (2009) 190-196. https://doi.org/10.1016/j.nutres.2009.01.009.
Y. Wang, H. Wang, Y. Zhang, et al., Stepwise strategy to identify thrombin as a hydrolytic substrate for nattokinase, J. Chem. Inf. Model. 62 (2022) 5780-5793. https://doi.org/10.1021/acs.jcim.2c00978.
B. Bora, D. Gogoi, D. Tripathy, et al., The N-terminal-truncated recombinant fibrin(ogen)olytic serine protease improves its functional property, demonstrates in vivo anticoagulant and plasma defibrinogenation activity as well as pre-clinical safety in rodent model, Int. J. Biol. Macromol. 111 (2018) 462-474. https://doi.org/10.1016/j.ijbiomac.2017.12.140.
L. Bencivenga, P. de Souto Barreto, Y. Rolland, et al., Blood pressure variability: a potential marker of aging, Ageing Res. Rev. 80 (2022) 101677. https://doi.org/10.1016/j.arr.2022.101677.
B.H. Lee, Y.S. Lai, S.C. Wu, Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea, J. Food Drug Anal. 23 (2015) 750-757. https://doi.org/10.1016/j.jfda.2015.06.008.
M. Fujita, K. Ohnishi, S. Takaoka, et al., Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats, Biol. Pharm. Bull. 34 (2011) 1696-1701. https://doi.org/10.1248/bpb.34.1696.
J.Y. Kim, S.N. Gum, J.K. Paik, et al., Effects of nattokinase on blood pressure: a randomized, controlled trial, Hypertens. Res. 31 (2008) 1583-1588. https://doi.org/10.1291/hypres.31.1583.
G.S. Jensen, M. Lenninger, M.P. Ero, et al., Consumption of nattokinase is associated with reduced blood pressure and von willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter north american clinical trial, Integr. Blood Press. Control 9 (2016) 95-104. https://doi.org/10.2147/IBPC.S99553.
K. Murakami, N. Yamanaka, K. Ohnishi, et al., Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food, Food Funct. 3 (2012) 674-678. https://doi.org/10.1039/c2fo10245e.
S.M. Keziah, C.S. Devi, Fibrinolytic and ACE inhibitory activity of nattokinase extracted from Bacillus subtilis VITMS 2: a strain isolated from fermented milk of Vigna unguiculata, Protein J. 40 (2021) 876-890. https://doi.org/10.1007/s10930-021-10023-8.
H. Chen, J. Chen, F. Zhang, et al., Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: a clinical study with 1062 participants, Front. Cardiovasc. Med. 9 (2022) 964977. https://doi.org/10.3389/fcvm.2022.964977.
N.N. Ren, H.J. Chen, Y. Li, et al., A clinical study on the effect of nattokinase on carotid artery atherosclerosis and hyperlipidaemia, Zhonghua Yi Xue Za Zhi 97 (2017) 2038-2042. https://doi.org/10.3760/cma.j.issn.0376-2491.2017.26.005.
S.J. Kang, Y. Lim, A.J. Kim, Korean red ginseng combined with nattokinase ameliorates dyslipidemia and the area of aortic plaques in high cholesterol-diet fed rabbits, Food Sci. Biotechnol. 23 (2014) 283-287. https://doi.org/10.1007/s10068-014-0039-y.
H.N. Hodis, W.J. Mack, H.J. Meiselman, et al., Nattokinase atherothrombotic prevention study: a randomized controlled trial, Clin. Hemorheol. Microcirc. 78 (2021) 339-353. https://doi.org/10.3233/CH-211147.
A.J. Lusis, Atherosclerosis, Nature 407 (2000) 233-241. https://doi.org/10.1038/35025203.
X. Pan, P. Liang, L. Teng, et al., Study on molecular mechanisms of nattokinase in pharmacological action based on label-free liquid chromatography–tandem mass spectrometry, Food Sci. Nutr. 7 (2019) 3185-3193. https://doi.org/10.1002/fsn3.1157.
P.P. Toth, S. Fazio, N.D. Wong, et al., Risk of cardiovascular events in patients with hypertriglyceridaemia: a review of real-world evidence, Diabetes. Obes. Metab. 22 (2020) 279-289. https://doi.org/10.1111/dom.13921.
N. C. Yang, C. W. Chou, C. Y. Chen, et al., Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia, Asia Pac. J. Clin. Nutr. 18 (2009) 310-317.
D.J. Wu, C.S. Lin, M.Y. Lee, Lipid-lowering effect of nattokinase in patients with primary hypercholesterolemia, Acta Cardiol. Sin. 25 (2009) 26-30.
Y. Wang, X. Ji, R.K. Leak, et al., Stem cell therapies in age-related neurodegenerative diseases and stroke, Ageing Res. Rev. 34 (2017) 39-50. https://doi.org/10.1016/j.arr.2016.11.002.
J.M. Wang, H.Y. Chen, S.M. Cheng, et al., Nattokinase reduces brain infarction, fibrinogen and activated partial thromboplastin time against cerebral ischemia-reperfusion injury, J. Food Drug Anal. 20 (2012) 686-691.
P.T. Pham, B. Han, B.X. Hoang, Nattospes as effective and safe functional supplements in management of stroke, J. Med. Food 23 (2020) 879-885. https://doi.org/10.1089/jmf.2019.0183.
H. Ji, L. Yu, K. Liu, et al., Mechanisms of nattokinase in protection of cerebral ischemia, Eur. J. Pharmacol. 745 (2014) 144-151. https://doi.org/10.1016/j.ejphar.2014.10.024.
N.N. Fadl, H.H. Ahmed, H.F. Booles, et al., Serrapeptase and nattokinase intervention for relieving Alzheimer’s disease pathophysiology in rat model, Hum. Exp. Toxicol. 32 (2013) 721-735. https://doi.org/10.1177/0960327112467040.
H. Hampel, J. Hardy, K. Blennow, et al., The amyloid-β pathway in Alzheimer’s disease, Mol. Psychiatry. 26 (2021) 5481-5503. https://doi.org/10.1038/s41380-021-01249-0.
S.K. Metkar, A. Girigoswami, D.D. Bondage, et al., The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ 1-42 peptide-an in vitro and in silico approach, Int. J. Neurosci. (2022) 1-12.
R.L. Hsu, K.T. Lee, J.H. Wang, et al., Amyloid-degrading ability of nattokinase from Bacillus subtilis natto, J. Agric. Food Chem. 57 (2009) 503-508. https://doi.org/10.1021/jf803072r.
S.K. Metkar, A. Girigoswami, R. Murugesan, et al., In vitro and in vivo insulin amyloid degradation mediated by Serratiopeptidase, Mater. Sci. Eng. C. 70 (2017) 728-735.
P.C. Bhatt, A. Verma, F.A. Al-Abbasi, et al., Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease, Int. J. Nanomedicine. 12 (2017) 8749-8768. https://doi.org/10.2147/IJN.S144545.
H.H. Ahmed, N. Fadl, A.E. Shamy, et al., Miracle enzymes serrapeptase and nattokinase mitigate neuroinflammation and apoptosis associated with Alzheimer’s disease in experimental model, J. Pharm. Pharm. Sci. 3 (2013) 876-891.
C. Franceschi, P. Garagnani, P. Parini, et al., Inflammaging: a new immune-metabolic viewpoint for age-related diseases, Nat. Rev. Endocrinol. 14 (2018) 576-590. https://doi.org/10.1038/s41574-018-0059-4.
H. Wu, Y. Wang, Y. Zhang, et al., Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress, Redox Biol. 32 (2020) 101500. https://doi.org/10.1016/j.redox.2020.101500.
L. Zhou, N. Hao, X. Li, et al., Nattokinase mitigated dextran sulfate sodium-induced chronic colitis by regulating microbiota and suppressing tryptophan metabolism via inhibiting IDO-1, J. Funct. Foods 75 (2020) 104251. https://doi.org/10.1016/j.jff.2020.104251.
Z. Huang, T.K. Ng, W. Chen, et al., Nattokinase attenuates retinal neovascularization via modulation of Nrf2/HO-1 and glial activation, Invest. Ophthalmol. Vis. Sci. 62 (2021) 25. https://doi.org/10.1167/iovs.62.6.25.
M.M.M. Elbakry, S.Z. Mansour, H. Helal, et al., Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats, Environ. Sci. Pollut. Res. 29 (2022) 75086-75100. https://doi.org/10.1007/s11356-022-21126-9.
Y. Yan, Y. Wang, J. Qian, et al., Nattokinase crude extract inhibits hepatocellular carcinoma growth in mice, J. Microbiol. Biotechnol. 29 (2019) 1281-1287. https://doi.org/10.4014/jmb.1812.12058.
B. Zhang, J. Chai, L. He, et al., Nattokinase produced by natto fermentation with Bacillus subtilis inhibits breast cancer growth, Int. J. Clin. Exp. Med. 12 (2019) 13380-13387.
A.Y.Y. Lee, E.A. Peterson, Treatment of cancer-associated thrombosis, Blood 122 (2013) 2310-2317. https://doi.org/10.1182/blood-2013-04-460162.
M. Huang, Y. Ji, J. Yan, et al., A nano polymer conjugate for dual drugs sequential release and combined treatment of colon cancer and thrombotic complications, Mater. Sci. Eng. C. Mater. Biol. Appl. 110 (2020) 110697. https://doi.org/10.1016/j.msec.2020.110697.
Y. Kou, R. Feng, J. Chen, et al., Development of a nattokinase–polysialic acid complex for advanced tumor treatment, Eur. J. Pharm. Sci. 145 (2020) 105241.
T. Merrill, A. Kanaan, Managing chronic rhinosinusitis with nasal polyps in the elderly: challenges and solutions, Clin. Interv. Aging 17 (2022) 685-698. https://doi.org/10.2147/CIA.S279765.
T. Takabayashi, Y. Imoto, M. Sakashita, et al., Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus, Allergol. Int. 66 (2017) 594-602. https://doi.org/10.1016/j.alit.2017.03.007.
A.K. Palmer, B. Gustafson, J.L. Kirkland, et al., Cellular senescence: at the nexus between ageing and diabetes, Diabetologia. 62 (2019) 1835-1841. https://doi.org/10.1007/s00125-019-4934-x.
H.J. Yang, M.J. Kim, D.Y. Kwon, et al., Combination of aronia, red ginseng, shiitake mushroom and nattokinase potentiated insulin secretion and reduced insulin resistance with improving gut microbiome dysbiosis in insulin deficient type 2 diabetic rats, Nutrients 10 (2018) 948. https://doi.org/10.3390/nu10070948.
S. Park, C.J. Kim, K.C. Ha, et al., Efficacy and safety of aronia, red ginseng, shiitake mushroom, and nattokinase mixture on insulin resistance in prediabetic adults: a randomized, double-blinded, placebo-controlled trial, Foods 10 (2021) 1558. https://doi.org/10.3390/foods10071558.
J.J. Joseph, P. Deedwania, T. Acharya, et al., Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the american heart association, Circulation 145 (2022) e722-e759. https://doi.org/10.1161/CIR.0000000000001040.
N. Wen, S. Lü, X. Xu, et al., A polysaccharide-based micelle-hydrogel synergistic therapy system for diabetes and vascular diabetes complications treatment, Mater. Sci. Eng. C. Mater. Biol. Appl. 100 (2019) 94-103. https://doi.org/10.1016/j.msec.2019.02.081.
X. Li, X. Yang, M. Umar, et al., Expression of a novel dual-functional polypeptide and its pharmacological action research, Life Sci. 267 (2021) 118890. https://doi.org/10.1016/j.lfs.2020.118890.
A. Takano, A. Hirata, K. Ogasawara, et al., Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis, Invest. Ophthalmol. Vis. Sci. 47 (2006) 2075-2079. https://doi.org/10.1167/iovs.05-0130.
T. Tanikawa, Y. Kiba, J. Yu, et al., Degradative effect of nattokinase on spike protein of SARS-CoV-2, Molecules 27 (2022) 6. https://doi.org/10.3390/molecules27175405.
H. Wu, H. Wang, F. Xu, et al., Acute toxicity and genotoxicity evaluations of Nattokinase, a promising agent for cardiovascular diseases prevention, Regul. Toxicol. Pharmacol. 103 (2019) 205-209. https://doi.org/10.1016/j.yrtph.2019.02.006.
R. Feng, J. Li, J. Chen, et al., Preparation and toxicity evaluation of a novel nattokinase-tauroursodeoxycholate complex, Asian J. Pharm. Sci. 13 (2018) 173-182. https://doi.org/10.1016/j.ajps.2017.11.001.
H. Guo, Y.H. Ban, Y. Cha, et al., Comparative anti-thrombotic activity and haemorrhagic adverse effect of nattokinase and tissue-type plasminogen activator, Food Sci. Biotechnol. 28 (2019) 1535-1542. https://doi.org/10.1007/s10068-019-00580-1.
B.J. Lampe, J.C. English, Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto, Food Chem. Toxicol. 88 (2016) 87-99. https://doi.org/10.1016/j.fct.2015.12.025.
G. Gallelli, G. Di Mizio, C. Palleria, et al., Data recorded in real life support the safety of nattokinase in patients with vascular diseases, Nutrients 13 (2021) 2031. https://doi.org/10.3390/nu13062031.
L. Ramachandran, A. Aqeel, A. Jafri, et al., Nattokinase-associated hemoperitoneum in an elderly woman, Cureus. 13 (2021) e20074. https://doi.org/10.7759/cureus.20074.
K. Awatani-Yoshidome, T. Hashimoto, T. Satoh, Anaphylaxis from nattokinase in a patient with fermented soybean (natto) allergy, Allergol. Int. 71 (2022) 153-154. https://doi.org/10.1016/j.alit.2021.08.004.
F. Zhang, J. Zhang, R.J. Linhardt, Interactions between nattokinase and heparin/GAGs, Glycoconj. J. 32 (2015) 695-702. https://doi.org/10.1007/s10719-015-9620-8
Y.Y. Chang, J.S. Liu, S.L. Lai, et al., Cerebellar hemorrhage provoked by combined use of nattokinase and aspirin in a patient with cerebral microbleeds, Intern. Med. 47 (2008) 467-469. https://doi.org/10.2169/internalmedicine.47.0620.
S. Takagaki, M. Suzuki, E. Suzuki, et al., Unsaturated fatty acids enhance the fibrinolytic activity of subtilisin NAT (nattokinase), J. Food Biochem. 44 (2020) e13326. https://doi.org/10.1111/jfbc.13326.
M. Ero, C. Ng, T. Mihailovski, et al., A pilot study on the serum pharmacokinetics of Nattokinase in humans following a single, oral, daily dose, Altern. Ther. Health Med. 19 (2013) 16-19.
M. Fujita, K. Hong, Y. Ito, et al., Transport of nattokinase across the rat intestinal tract, Biol. Pharm. Bull. 18 (1995) 1194-1196. https://doi.org/10.1248/bpb.18.1194.
C. Guan, W. Cui, J. Cheng, et al., Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis, Microb. Cell Fact. 15 (2016) 66. https://doi.org/10.1186/s12934-016-0464-0.
Z. Liu, W. Zheng, C. Ge, et al., High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters, BMC Microbiol. 19 (2019) 89. https://doi.org/10.1186/s12866-019-1461-3.
J. Cheng, C. Guan, W. Cui, et al., Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering, Protein Expr. Purif. 127 (2016) 81-87. https://doi.org/10.1016/j.pep.2016.07.008.
J. Xiao, B. Peng, Z. Su, et al., Facilitating protein expression with portable 5’-UTR secondary structures in Bacillus licheniformis, ACS Synth. Biol. 9 (2020) 1051-1058. https://doi.org/10.1021/acssynbio.9b00355.
M. Weng, X. Deng, W. Bao, et al., Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation, Biochem. Biophys. Res. Commun. 465 (2015) 580-586. https://doi.org/10.1016/j.bbrc.2015.08.063.
Z. Liu, H. Zhao, L. Han, et al., Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis, Biotechnol. Bioeng. 116 (2019) 1833-1843. https://doi.org/10.1002/bit.26983.
Y.M. Vianney, S.E.E. Tjoa, R. Aditama, et al., Designing a less immunogenic nattokinase from Bacillus subtilis subsp. natto: a computational mutagenesis, J. Mol. Model. 25 (2019) 1-12. https://doi.org/10.1007/s00894-019-4225-y.
1618
Views
240
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).