AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Insights into the enhancement of food flavor perception: strategies, mechanism and emulsion applications

Luyao Huanga,bYujie DaiaFan ZhangaLongtao Zhanga,bBaodong Zhenga,bYi Zhanga,b( )
Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

The core drivers of the modern food industry are meeting consumer demand for tasty and healthy foods. The application of food flavor perception enhancement can help to achieve the goals of salt- and sugar-reduction, without compromising the sensory quality of the original food, and this has attracted increasing research attention. The analysis of bibliometric results from 2002 to 2022 reveals that present flavor perception enhancement strategies (changing ingredient formulations, adding salt/sugar substitutes, emulsion delivery systems) are mainly carry out based on sweetness, saltiness and umami. Emulsion systems is becoming a novel research foci and development trends of international food flavor perception-enhancement research. The structured design of food emulsions, by using interface engineering technology, can effectively control, or enhance the release of flavor substances. Thus, this review systematically summarizes strategies, the application of emulsion systems and the mechanisms of action of food flavor perception-enhancement technologies, based on odor-taste cross-modal interaction (OTCMI), to provide insights into the further structural design and application of emulsion systems in this field.

References

[1]

R. Fondberg, J.N. Lundstrom, M. Blochl, et al., Multisensory flavor perception: the relationship between congruency, pleasantness, and odor referral to the mouth, Appetite. 125 (2018) 244-252. https://doi.org/10.1016/j.appet.2018.02.012.

[2]

D. Hildebrand, D. Rubin, R. Hadi, et al., Flavor fatigue: cognitive depletion influences consumer enjoyment of complex flavors, J. Consum. Psychol. 31 (2021) 103-111. https://doi.org/10.1002/jcpy.1167.

[3]

C.T. Vi, A. Marzo, G. Memoli, et al., LeviSense: a platform for the multisensory integration in levitating food and insights into its effect on flavour perception, Int. J. Hum.-Comput. Stud. 139 (2020) 102428. https://doi.org/10.1016/j.ijhcs.2020.102428.

[4]

D.J. McClements, Y. Li, Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components, Adv. Colloid Interface Sci. 159 (2010) 213-228. https://doi.org/10.1016/j.cis.2010.06.010.

[5]

Y.Y. Mao, M. Dubot, H. Xiao, et al., Interfacial engineering using mixed protein systems: emulsion-based delivery systems for encapsulation and stabilization of beta-carotene, J. Agric. Food Chem. 61 (2013) 5163-5169. https://doi.org/10.1021/jf401350t.

[6]

D.W. Jones, D. Clark, T.O. Morgan, et al., Potassium-enriched salt substitution as a population strategy to prevent cardiovascular disease, Hypertension 79 (2022) 2199-2201. https://doi.org/10.1161/HYPERTENSIONAHA.122.19248.

[7]

M. Laville, J.A. Nazare, Diabetes, insulin resistance and sugars, Obesity Rev. 10 (2009) 24-33. https://doi.org/10.1111/j.1467-789X.2008.00562.x.

[8]

A.S. Allu, V. Tiriveedhi, Cancer salt nostalgia, Cells 10 (2021) 1285. https://doi.org/10.3390/cells10061285.

[9]

E. Sugimori, Y. Kawasaki, Cross-modal correspondence between visual information and taste perception of bitter foods and drinks, Food. Qual. Prefer. 98 (2022) 104539. https://doi.org/10.1016/j.foodqual.2022.104539.

[10]

M.T. Wallace, Multisensory perception: the building of flavor representations, Curr. Biol. 25 (2015) R986-R988. https://doi.org/10.1016/j.cub.2015.09.009.

[11]

J. Niimi, M.Y. Liu, S.E.P. Bastian, Flavour-tactile cross-modal sensory interactions: the case for astringency, Food. Qual. Prefer. 62 (2017) 106-110. https://doi.org/10.1016/j.foodqual.2017.07.002.

[12]

L.K. Mao, Y.H. Roos, C.G. Biliaderis, et al., Food emulsions as delivery systems for flavor compounds: a review, Crit. Rev. Food Sci. Nutr. 57 (2017) 3173-3187. https://doi.org/10.1080/10408398.2015.1098586.

[13]

I.D. Fisk, R.S.T. Linforth, A.J. Taylor, et al., Aroma encapsulation and aroma delivery by oil body suspensions derived from sunflower seeds (Helianthus annus), Eur. Food Res. Technol. 232 (2011) 905-910. https://doi.org/10.1007/s00217-011-1459-z.

[14]

C.C. Berton-Carabin, L. Sagis, K. Schroen, Formation, structure, and functionality of interfacial layers in food emulsions, Ann. Rev. Food Sci. Technol. 9 (2018) 551-587. https://doi.org/10.1146/annurev-food-030117-012405.

[15]

M. Dermiki, N. Phanphensophon, D.S. Mottram, et al., Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat, Food Chem. 141 (2013) 77-83. https://doi.org/10.1016/j.foodchem.2013.03.018.

[16]

F. Alcaire, L. Antunez, L. Vidal, et al., Aroma-related cross-modal interactions for sugar reduction in milk desserts: influence on consumer perception, Food Res. Int. 97 (2017) 45-50. https://doi.org/10.1016/j.foodres.2017.02.019.

[17]

X. Ding, Z. Yang, Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace, Electron. Commer. Res. 22 (2022) 787-809. https://doi.org/10.1007/s10660-020-09410-7.

[18]

C. Chen, M. Song, Visualizing a field of research: a methodology of systematic scientometric reviews, PLoS One 14 (2019) e0223994. https://doi.org/10.1371/journal.pone.0223994.

[19]

M. Yu, P. Yang, H. Song, et al., Research progress in comprehensive two-dimensional gas chromatography-mass spectrometry and its combination with olfactometry systems in the flavor analysis field, J. Food Compost. Anal. 114 (2022) 104790. https://doi.org/10.1016/j.jfca.2022.104790.

[20]

D. Pu, Y. Shan, J. Wang, et al., Recent trends in aroma release and perception during food oral processing: a review, Crit. Rev. Food Sci. Nutr. (2022) 1-17. https://doi.org/10.1080/10408398.2022.2132209.

[21]
M. Ramesh, A. Muthuraman, Chapter 1 - Flavoring and coloring agents: health risks and potential problems, in: A.M. Grumezescu, A.M. Holban (Eds.), Natural and Artificial Flavoring Agents and Food Dyes, Academic Press 2018: pp. 1-28. https://doi.org/10.1016/B978-0-12-811518-3.00001-6.
[22]

C. Spence. Behavioural nudges, physico-chemical solutions, and sensory strategies to reduce people’s salt consumption, Foods 11 (2022) 3092. https://doi.org/10.3390/foods11193092.

[23]

E. McKenzie, S.Y. Lee, Sugar reduction methods and their application in confections: a review, Food Sci. Biotechnol. 31 (2022) 387-398. https://doi.org/10.1007/s10068-022-01046-7.

[24]

J.C. Peters, R. Marker, Z. Pan, et al., The influence of adding spices to reduced sugar foods on overall liking, J. Food Sci. 83 (2018) 814-821. https://doi.org/10.1111/1750-3841.14069.

[25]

C. Sinding, H. Thibault, T. Hummel, et al., Odor-induced saltiness enhancement: insights into the brain chronometry of flavor perception, Neuroscience 452 (2021) 126-137. https://doi.org/10.1016/j.neuroscience.2020.10.029.

[26]

L.N. Chen, W. Wu, N. Zhang, et al., Sugar reduction in beverages: current trends and new perspectives from sensory and health viewpoints, Food Res. Int. 162 (2022) 112076. https://doi.org/10.1016/j.foodres.2022.112076.

[27]

H.N. Schifferstein, P.W. Verlegh, The role of congruency and pleasantness in odor-induced taste enhancement, Acta Psychologica. 94 (1996) 87-105. https://doi.org/10.1016/0001-6918(95)00040-2.

[28]

J. Liu, P. Wan, C. Xie, et al., Key aroma-active compounds in brown sugar and their influence on sweetness, Food Chem. 345 (2021) 128826. https://doi.org/10.1016/j.foodchem.2020.128826.

[29]

C. Barba, N. Beno, E. Guichard, et al., Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT), Food Chem. 257 (2018) 172-181. https://doi.org/10.1016/j.foodchem.2018.02.152.

[30]

Z. Xiao, S. Zhang, J. Zhu, et al., Identification of key aromas of grapefruit juice and study of their contributions to the enhancement of sweetness perception, Eur. Food Res. Technol. 249 (2023) 537-551. https://doi.org/10.1007/s00217-022-04151-3.

[31]

Z. Xiao, H. Chen, Y. Niu, et al., Characterization of the aroma-active compounds in banana (Musa AAA Red green) and their contributions to the enhancement of sweetness perception, J. Agric. Food Chem. 69 (2021) 15301-15313. https://doi.org/10.1021/acs.jafc.1c06434.

[32]

J.E. Knoop, G. Sala, G. Smit, et al., Combinatory effects of texture and aroma modification on taste perception of model gels, Chemosens. Percept. 6 (2013) 60-69. https://doi.org/10.1007/s12078-013-9141-9144.

[33]

A.S. Bertelsen, Y. Zeng, L.A. Mielby, et al., Cross-modal effect of vanilla aroma on sweetness of different sweeteners among Chinese and Danish consumers, Food. Qual. Prefer. 87 (2021) 104036. https://doi.org/10.1016/j.foodqual.2020.104036.

[34]

A.A.A. Oliveira, A.C. Andrade, S.C. Bastos, et al., Use of strawberry and vanilla natural flavors for sugar reduction: a dynamic sensory study with yogurt, Food Res. Int. 139 (2021) 109972. https://doi.org/10.1016/j.foodres.2020.109972.

[35]

D. Labbe, L. Damevin, C. Vaccher, et al., Modulation of perceived taste by olfaction in familiar and unfamiliar beverages, Food. Qual. Prefer. 17 (2006) 582-589. https://doi.org/10.1016/j.foodqual.2006.04.006.

[36]

A.S. Bertelsen, L.A. Mielby, N. Alexi, et al., Sweetness enhancement by aromas: measured by descriptive sensory analysis and relative to reference scaling, Chem. Senses 45 (2020) 293-301. https://doi.org/10.1093/chemse/bjaa012.

[37]

B.M. King, P. Arents, N. Bouter, et al., Sweetener/sweetness-induced changes in flavor perception and flavor release of fruity and green character in beverages, J. Agric. Food Chem. 54 (2006) 2671-2677. https://doi.org/10.1021/jf060195f.

[38]

G. Wang, A.J. Bakke, J.E. Hayes, et al., Demonstrating cross-modal enhancement in a real food with a modified ABX test, Food. Qual. Prefer. 77 (2019) 206-213. https://doi.org/10.1016/j.foodqual.2019.05.007.

[39]

D.C. Muller, H. Nguyen, Q. Li, et al., Enzymatic and microbial conversions to achieve sugar reduction in bread, Food Res. Int. 143 (2021) 110296. https://doi.org/10.1016/j.foodres.2021.110296.

[40]

E. Timmermans, A. Bautil, K. Brijs, et al., Sugar levels determine fermentation dynamics during yeast pastry making and its impact on dough and product characteristics, Foods 11 (2022) 1388. https://doi.org/10.3390/foods11101388.

[41]

S. Erickson, J. Carr, The technological challenges of reducing the sugar content of foods, Nutr. Bulletin. 45 (2020) 309-314. https://doi.org/10.1111/nbu.12454.

[42]

S.R. Thout, J.A. Santos, B. McKenzie, et al., The science of salt: updating the evidence on global estimates of salt intake, J. Clin. Hypertens. 21 (2019) 710-721. https://doi.org/10.1111/jch.13546.

[43]

X.J. Wang, N. Ullah, Y. Shen, et al., Emulsion delivery of sodium chloride: a promising approach for modulating saltiness perception and sodium reduction, Trends Food Sci. Technol. 110 (2021) 525-538. https://doi.org/10.1016/j.tifs.2021.02.020.

[44]

F. Sinesio, A. Raffo, M. Peparaio, et al., Impact of sodium reduction strategies on volatile compounds, sensory properties and consumer perception in commercial wheat bread, Food Chem. 301 (2019) 125252. https://doi.org/10.1016/j.foodchem.2019.125252.

[45]

A. Spina, S. Brighina, S. Muccilli, et al., Partial replacement of NaCl in bread from Durum wheat (Triticum turgidum L. subsp durum Desf.) with KCl yeast extract: evaluation of quality parameters during long storage, Food Bioproc. Technol. 8 (2015) 1089-1101. https://doi.org/10.1007/s11947-015-1476-1.

[46]

T. Nakagawa, J. Kohori, S. Koike, et al., Sodium aspartate as a specific enhancer of salty taste perception-sodium aspartate is a possible candidate to decrease excessive intake of dietary salt, Chem. Senses 39 (2014) 781-786. https://doi.org/10.1093/chemse/bju051.

[47]

M. Batenburg, R. van der Velden, Saltiness enhancement by savory aroma compounds, J. Food Sci. 76 (2011) S280-S288. https://doi.org/10.1111/j.1750-3841.2011.02198.x.

[48]

N. Nasri, C. Septier, N. Beno, et al., Enhancing salty taste through odour-taste-taste interactions: influence of odour intensity and salty tastants’ nature, Food. Qual. Prefer. 28 (2013) 134-140. https://doi.org/10.1016/j.foodqual.2012.07.004.

[49]

A. Rosa, I. Pinna, A. Piras, et al., Flavoring of sea salt with Mediterranean aromatic plants affects salty taste perception, J. Sci. Food Agric. 102 (2022) 6005-6013. https://doi.org/10.1002/jsfa.11953.

[50]

N. Nasri, N. Beno, C. Septier, et al., Cross-modal interactions between taste and smell: odour-induced saltiness enhancement depends on salt level, Food. Qual. Prefer. 22 (2011) 678-682. https://doi.org/10.1016/j.foodqual.2011.05.001.

[51]

H.S. Seo, E. Iannilli, C. Hummel, et al., A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study, Human Brain Mapping. 34 (2013) 62-76. https://doi.org/10.1002/hbm.21414.

[52]

X.J. Wang, X.W. Wang, T.T. Feng, et al., Saltiness perception enhancement of fish meat treated by microwave: the significance of conformational characteristics, water and sodium mobility, Food Chem. 347 (2021) 129033. https://doi.org/10.1016/j.foodchem.2021.129033.

[53]

X. Sun, K. Zhong, D. Zhang, et al., The enhancement of the perception of saltiness by umami sensation elicited by flavor enhancers in salt solutions, Food Res. Int. 157 (2022) 111287. https://doi.org/10.1016/j.foodres.2022.111287.

[54]

Y.M. Shan, D.D. Pu, J.C. Zhang, et al., Decoding of the saltiness enhancement taste peptides from the yeast extract and molecular docking to the taste receptor T1R1/ T1R3, J. Agric. Food Chem. 70 (2022) 14898-14906. https://doi.org/10.1021/acs.jafc.2c06237.

[55]

D.D. Pu, Y.M. Shan, K.A. Qiao, et al., Development of an effective protocol for evaluating the saltiness intensity enhancement of umami compounds, J. Agric. Food Chem. 71 (2023) 700-709. https://doi.org/10.1021/acs.jafc.2c06293.

[56]

T. Zhou, Y. Feng, T. Thomas-Danguin, et al., Enhancement of saltiness perception by odorants selected from Chinese soy sauce: a gas chromatography/olfactometry-associated taste study, Food Chem. 335 (2021) 127664. https://doi.org/10.1016/j.foodchem.2020.127664.

[57]

J. Lopez, T. Kerley, L. Jenkinson, et al., Odorants from the thermal treatment of hydrolyzed mushroom protein and cysteine enhance saltiness perception, J. Agric. Food Chem. 67 (2019) 11444-11453. https://doi.org/10.1021/acs.jafc.9b04153.

[58]

T.D. Linscott, J. Lim, Retronasal odor enhancement by salty and umami tastes, Food. Qual. Prefer. 48 (2016) 1-10. https://doi.org/10.1016/j.foodqual.2015.08.004.

[59]

M. Pashaei, L. Zare, E.K. Sadrabad, et al., The impacts of salt reduction strategies on technological characteristics of wheat bread: a review, J. Food Sci. Technol.-Mys. 59 (2022) 4141-4151. https://doi.org/10.1007/s13197-021-05263-6.

[60]

K. Konitzer, T. Pflaum, P. Oliveira, et al., Kinetics of sodium release from wheat bread crumb as affected by sodium distribution, J. Agric. Food Chem. 61 (2013) 10659-10669. https://doi.org/10.1021/jf404458v.

[61]

M. Stieger, Texture-taste interactions: enhancement of taste intensity by structural modifications of the food matrix, Procedia Food Sci. 1 (2011) 521-527. https://doi.org/10.1016/j.profoo.2011.09.079.

[62]

J. Niimi, A.I. Eddy, A.R. Overington, et al., Aroma-taste interactions between a model cheese aroma and five basic tastes in solution, Food. Qual. Prefer. 31 (2014) 1-9. https://doi.org/10.1016/j.foodqual.2013.05.017.

[63]

J. Niimi, A.R. Overington, P. Silcock, et al., Cross-modal taste and aroma interactions: cheese flavour perception and changes in flavour character in multicomponent mixtures, Food. Qual. Prefer. 48 (2016) 70-80. https://doi.org/10.1016/j.foodqual.2015.08.011.

[64]

R.Q. He, P. Wan, J. Liu, et al., Characterisation of aroma-active compounds in Guilin Huaqiao white sufu and their influence on umami aftertaste and palatability of umami solution, Food Chem. 321 (2020) 126739. https://doi.org/10.1016/j.foodchem.2020.126739.

[65]

M.B. Frost, A. Hartmann, M.A. Petersen, et al., Odour-induced umami-olfactory contribution to umami taste in seaweed extracts (dashi) by sensory interactions, Intern. J. Gastron. Food Sci. 25 (2021) 100363. https://doi.org/10.1016/j.ijgfs.2021.100363.

[66]

M. Charles, I. Endrizzi, E. Aprea, et al., Dynamic and static sensory methods to study the role of aroma on taste and texture: a multisensory approach to apple perception, Food. Qual. Prefer. 62 (2017) 17-30. https://doi.org/10.1016/j.foodqual.2017.06.014.

[67]

M.G. Veldhuizen, A. Siddique, S. Rosenthal, et al., Interactions of lemon, sucrose and citric acid in enhancing citrus, sweet and sour flavors, Chemical Senses 43 (2018) 17-26. https://doi.org/10.1093/chemse/bjx063.

[68]

O. Oladokun, A. Tarrega, S. James, et al., Modification of perceived beer bitterness intensity, character and temporal profile by hop aroma extract, Food Res. Int. 86 (2016) 104-111. https://doi.org/10.1016/j.foodres.2016.05.018.

[69]

M. Zhao, T. Li, F. Yang, et al., Characterization of key aroma-active compounds in Hanyuan Zanthoxylum bungeanum by GC-O-MS and switchable GC×GC-O-MS, Food Chem. 385 (2022) 132659. https://doi.org/10.1016/j.foodchem.2022.132659.

[70]

A.D. Hewitt, Comparison of sample preparation methods for the analysis of volatile organic compounds in soil samples: solvent extraction vs vapor partitioning, Environ. Sci. Technol. 32 (1998) 143-149. https://doi.org/10.1021/es970431q.

[71]

Z.Y. Yang, S. Baldermann, N. Watanabe, Recent studies of the volatile compounds in tea, Food Res. Int. 53 (2013) 585-599. https://doi.org/10.1016/j.foodres.2013.02.011.

[72]

J.C. Barros-Castillo, M. Calderón-Santoyo, M.d.L. García-Magaña, et al., Volatile compounds released by acid hydrolysis in jackfruit (Artocarpus heterophyllus Lam.). a comparative study by using SDE and HS-SPME techniques, J. Food Compost. Anal. 113 (2022) 104701. https://doi.org/10.1016/j.jfca.2022.104701.

[73]

H.H. Jeleń, M.N. Wieczorek, Commentary: “Quantitative” vs quantitative headspace solid-phase microextraction (HS-SPME) in food volatile and flavor compounds analysis, J. Food Compos. Anal. 115 (2023) 104955. https://doi.org/10.1016/j.jfca.2022.104955.

[74]

N. Thavanapong, P. Wetwitayaklung, J. Charoenteeraboon, comparison of essential oils compositions of Citrus maxima Merr. peel obtained by cold press and vacuum stream distillation methods and of its peel and flower extract obtained by supercritical carbon dioxide extraction method and their antimicrobial activity, J. Essent. Oil Res. 22 (2010) 71-77. https://doi.org/10.1080/10412905.2010.9700268.

[75]

M. Yu, T. Li, H. Song, Characterization of key aroma-active compounds in four commercial oyster sauce by SGC/GC×GC-O-MS, AEDA, and OAV, J. Food Compos. Anal. 107 (2022) 104368. https://doi.org/10.1016/j.jfca.2021.104368.

[76]

C. Marques, E. Correia, L.T. Dinis, et al., An overview of sensory characterization techniques: from classical descriptive analysis to the emergence of novel profiling methods, Foods 11 (2022) 255. https://doi.org/10.3390/foods11030255.

[77]

J.C. Barbe, J. Garbay, S. Tempère, The sensory space of wines: from concept to evaluation and description. a review, Foods 10 (2021) 1424. https://doi.org/10.3390/foods10061424.

[78]

A.H. Holway, L.M. Hurvich, Differential gustatory sensitivity to salt, Am. J. Psychol. 49 (1937) 37-48. https://doi.org/10.2307/1416050.

[79]

C.M. Deck, M. Behrens, M. Wendelin, et al., Impact of lactisole on the time-intensity profile of selected sweeteners in dependence of the binding site, Food Chem. X. 15 (2022) 100446. https://doi.org/10.1016/j.fochx.2022.100446.

[80]

L. Lorido, M. Estévez, S. Ventanas, Fast and dynamic descriptive techniques (Flash Profile, Time-intensity and Temporal Dominance of Sensations) for sensory characterization of dry-cured loins, Meat Sci. 145 (2018) 154-162. https://doi.org/10.1016/j.meatsci.2018.06.028.

[81]

N. Gotow, W. Skrandies, T. Kobayashi, et al., Traditional Japanese confection overseas: cultural difference and retronasal aroma affect flavor preference and umami perception, Food. Qual. Prefer. 92 (2021) 104204. https://doi.org/10.1016/j.foodqual.2021.104204.

[82]

F. Canon, F. Neiers, E. Guichard, Saliva and flavor perception: perspectives, J. Agric. Food Chem. 66 (2018) 7873-7879. https://doi.org/10.1021/acs.jafc.8b01998.

[83]

R. Pal, Rheology of simple and multiple emulsions, Curr. Opin. Colloid Interface Sci. 16 (2011) 41-60. https://doi.org/10.1016/j.cocis.2010.10.001.

[84]

S. Ghosh, D.G. Peterson, J.N. Coupland, Effects of droplet crystallization and melting on the aroma release properties of a model oil-in-water emulsion, J. Agric. Food Chem. 54 (2006) 1829-1837. https://doi.org/10.1021/jf052262w.

[85]

A.V. Sadovoy, M.V. Lomova, M.N. Antipina, et al., Layer-by-layer assembled multilayer shells for encapsulation and release of fragrance, ACS Appl. Mater. Interfaces 5 (2013) 8948-8954. https://doi.org/10.1021/am401871u.

[86]

A.M. Lett, M.R. Yeomans, I.T. Norton, et al., Enhancing expected food intake behaviour, hedonics and sensory characteristics of oil-in-water emulsion systems through microstructural properties, oil droplet size and flavour, Food. Qual. Prefer. 47 (2016) 148-155. https://doi.org/10.1016/j.foodqual.2015.03.011.

[87]

C. Arancibia, L. Jublot, E. Costell, et al., Flavor release and sensory characteristics of O/W emulsions. Influence of composition, microstructure and rheological behavior, Food Res. Int. 44 (2011) 1632-1641. https://doi.org/10.1016/j.foodres.2011.04.049.

[88]

T. Hollowood, S. Bayarri, L. Marciani, et al., Modelling sweetness and texture perception in model emulsion systems, Eur. Food Res. Technol. 227 (2008) 537-545. https://doi.org/10.1007/s00217-007-0752-3.

[89]

Y. Li, Z. Gao, J. Guo, et al., Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid, Food Chem. 388 (2022) 132970. https://doi.org/10.1016/j.foodchem.2022.132970.

[90]

M.E. Guerzoni, L. Vannini, C. Chaves Lopez, et al., Effect of high pressure homogenization on microbial and chemico-physical characteristics of goat cheeses, J. Dairy Sci. 82 (1999) 851-862. https://doi.org/10.3168/jds.S0022-0302(99)75303-8.

[91]

E. Kostyra, N. Barylko-Pikielna, The effect of fat levels and guar gum addition in mayonnaise-type emulsions on the sensory perception of smoke-curing flavour and salty taste, Food. Qual. Prefer. 18 (2007) 872-879. https://doi.org/10.1016/j.foodqual.2007.02.002.

[92]

D. Kavitake, K.K. Kalahasti, P.B. Devi, et al., Galactan exopolysaccharide based flavour emulsions and their application in improving the texture and sensorial properties of muffin, Bioact. Carbohydr. Diet. Fibre 24 (2020) 100248. https://doi.org/10.1016/j.bcdf.2020.100248.

[93]

J. Zhang, L. Bing, G.A. Reineccius, Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions, Food Chem. 192 (2016) 53-59. https://doi.org/10.1016/j.foodchem.2015.06.078.

[94]

M. Charles, S. Lambert, P. Brondeur, et al., Influence of formulation and structure of an oil-in-water emulsion on flavor release, ACS 763 (2000) 342-354. https://doi.org/10.1021/bk-2000-0763.ch028.

[95]

A. Genovese, N. Caporaso, L. de Luca, et al., Influence of olive oil phenolic compounds on headspace aroma release by interaction with whey proteins, J. Agric. Food Chem. 63 (2015) 3838-3850. https://doi.org/10.1021/acs.jafc.5b00148.

[96]

A. Genovese, N. Caporaso, V. di Bari, et al., Effect of olive oil phenolic compounds on the aroma release and persistence from O/W emulsion analysed in vivo by APCI-MS, Food Res. Int. 126 (2019) 108686. https://doi.org/10.1016/j.foodres.2019.108686.

[97]

X. Wu, X. Liu, J. Qin, et al., Controlled flavor release from high internal phase emulsions as fat mimetics based on glycyrrhizic acid and phytosterol, Food Res. Int. 161 (2022) 111810. https://doi.org/10.1016/j.foodres.2022.111810.

[98]

X.W. Chen, J. Guo, J.M. Wang, et al., Controlled volatile release of structured emulsions based on phytosterols crystallization, Food Hydrocoll. 56 (2016) 170-179. https://doi.org/10.1016/j.foodhyd.2015.11.035.

[99]

X.W. Chen, Y.J. Chen, J.M. Wang, et al., Tunable volatile release from organogel-emulsions based on the self-assembly of beta-sitosterol and gamma-oryzanol, Food Chem. 221 (2017) 1491-1498. https://doi.org/10.1016/j.foodchem.2016.11.001.

[100]

A. Lima, M. Dufauret, B. le Reverend, et al., Deconstructing how the various components of emulsion creamers impact salt perception, Food Hydrocoll. 79 (2018) 310-318. https://doi.org/10.1016/j.foodhyd.2018.01.005.

[101]

C. Dadali, Y. Elmaci, Influence of fat and emulsifier content on volatile release of butter aroma used in water phase and physical attributes of model margarines, Eur. J. Lipid Sci. Technol. 122 (2020) 2000036. https://doi.org/10.1002/ejlt.202000036.

[102]

M.M. Ekin, N. Kutlu, R. Meral, et al., A novel nanotechnological strategy for obtaining fat-reduced cookies in bakery industry: revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions, Food Biosci. 42 (2021) 101184. https://doi.org/10.1016/j.fbio.2021.101184.

[103]

S. Feyzi, M. Varidi, M.R. Housaindokht, et al., A study on aroma release and perception of saffron ice cream using in-vitro and in-vivo approaches, Innov. Food Sci. Emerg. Technol. 65 (2020) 102455. https://doi.org/10.1016/j.ifset.2020.102455.

[104]

E. Dickinson, Double emulsions stabilized by food biopolymers, Food Biophysics 6 (2011) 1-11. https://doi.org/10.1007/s11483-010-9188-6.

[105]

G. Muschiolik, E. Dickinson, Double emulsions relevant to food systems: preparation, stability, and applications, Compr. Rev. Food Sci. Food Saf. 16 (2017) 532-555. https://doi.org/10.1111/1541-4337.12261.

[106]

X.W. Chen, X.Y. Ning, X.Q. Yang, Fabrication of novel hierarchical multicompartment highly stable triple emulsions for the segregation and protection of multiple cargos by spatial co-encapsulation, J. Agric. Food Chem. 67 (2019) 10904-10912. https://doi.org/10.1021/acs.jafc.9b03509.

[107]

N. Chiu, L. Hewson, I. Fisk, et al., Programmed emulsions for sodium reduction in emulsion based foods, Food Funct. 6 (2015) 1428-1434. https://doi.org/10.1039/c5fo00079c.

[108]

R. Al Nuumani, G.T. Vladisavljevic, M. Kasprzak, et al., In-vitro oral digestion of microfluidically produced monodispersed W/O/W food emulsions loaded with concentrated sucrose solution designed to enhance sweetness perception, J. Food Eng. 267 (2020) 109701. https://doi.org/10.1016/j.jfoodeng.2019.109701.

[109]

A.A. Simiqueli, E.B. de Oliveira, L.A. Minim, et al., W/O/W emulsions applied for conveying FeSO4: physical characteristics and intensity of metallic taste perception, LWT-Food Sci. Technol. 100 (2019) 278-286. https://doi.org/10.1016/j.lwt.2018.10.063.

[110]

W. Seifriz, Studies in emulsions. Ⅲ-Ⅴ, J. Phys. Chem. 29 (1925) 738-749. https://doi.org/10.1021/j150252a009.

[111]

O. Benjamin, P. Silcock, M. Leus, et al., Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers, Food Hydrocoll. 27 (2012) 109-118. https://doi.org/10.1016/j.foodhyd.2011.08.008.

[112]

P. Liang, J.Y. Jiang, Q. Liu, et al., Mechanism of cross-modal information influencing taste, Curr. Med. Sci. 40 (2020) 474-479. https://doi.org/10.1007/s11596-020-2206-0.

[113]

M. Chylinski, G. Northey, L.V. Ngo, Cross-modal interactions between color and texture of food, Psychol. Mark. 32 (2015) 950-966. https://doi.org/10.1002/mar.20829.

[114]

R.J. Stevenson, A. Rich, A. Russell, The nature and origin of cross-modal associations to odours, Perception 41 (2012) 606-619. https://doi.org/10.1068/p7223.

[115]

H. Lapid, S. Shushan, A. Plotkin, et al., Neural activity at the human olfactory epithelium reflects olfactory perception, Nat. Neurosci. 14 (2011) 1455-1461. https://doi.org/10.1038/nn.2926.

[116]

C.L. Samuelsen, A. Fontanini, Processing of intraoral olfactory and gustatory signals in the gustatory cortex of awake rats, J. Neurosci. 37 (2017) 244-257. https://doi.org/10.1523/JNEUROSCI.1926-16.2017.

[117]

U. Stockhorst, R. Pietrowsky, Olfactory perception, communication, and the nose-to-brain pathway, Physiol. Behav. 83 (2004) 3-11. https://doi.org/10.1016/j.physbeh.2004.07.018.

[118]

G.T. Wong, K.S. Gannon, R.F. Margolskee, Transduction of bitter and sweet taste by gustducin, Nature 381 (1996) 796-800. https://doi.org/10.1038/381796a0.

[119]

N. Chaudhari, A.M. Landin, S.D. Roper, A metabotropic glutamate receptor variant functions as a taste receptor, Nat. Neurosci. 3 (2000) 113-119. https://doi.org/10.1038/72053.

[120]

W. Xu, L. Wu, S. Liu, et al., Structural basis for strychnine activation of human bitter taste receptor TAS2R46, Science 377 (2022) 1298-1304. https://doi.org/10.1126/science.abo1633.

[121]

J. Chandrashekar, C. Kuhn, Y. Oka, et al., The cells and peripheral representation of sodium taste in mice, Nature 464 (2010) 297-301. https://doi.org/10.1038/nature08783.

[122]

Y.H. Tu, A.J. Cooper, B.C. Teng, et al., An evolutionarily conserved gene family encodes proton-selective ion channels, Science 359 (2018) 1047-1050. https://doi.org/10.1126/science.aao3264.

[123]

A. Taruno, V. Vingtdeux, M. Ohmoto, et al., CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes, Nature 495 (2013) 223-226. https://doi.org/10.1038/nature11906.

[124]

M. Hodgson, R.S.T. Linforth, A.J. Taylor, Simultaneous real-time measurements of mastication, swallowing, nasal airflow, and aroma release, J. Agric. Food Chem. 51 (2003) 5052-5057. https://doi.org/10.1021/jf030118+.

[125]

C.J. Koeppel, P. Ruser, H. Kitzler, et al., Interoceptive accuracy and its impact on neuronal responses to olfactory stimulation in the insular cortex, Hum. Brain Mapp. 41 (2020) 2898-2908. https://doi.org/10.1002/hbm.24985.

[126]

T. Yamamoto, R. Matsuo, Y. Kawamura, Localization of cortical gustatory area in rats and its role in taste discrimination, J. Neurophysiol. 44 (1980) 440-455. https://doi.org/10.1097/00005072-198011000-00010.

[127]

X.K. Chen, M. Gabitto, Y.Q. Peng, et al., A gustotopic map of taste qualities in the mammalian brain, Science 333 (2011) 1262-1266. https://doi.org/10.1126/science.1204076.

[128]

J.A. Gottfried, K.N. Wu, Perceptual and neural pliability of odor objects, Ann. N. Y. Acad. Sci. 1170 (2009) 324-332. https://doi.org/10.1111/j.1749-6632.2009.03917.x.

[129]

Y. Li, Z. Tan, J. Wang, et al., Responses of chemosensory perception to stimulation of the human brain, Ann. Neurol. 93 (2023) 175-183. https://doi.org/10.1002/ana.26532.

[130]

I.E.T. de Araujo, E.T. Rolls, M.L. Kringelbach, et al., Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain, Eur. J. Neurosci. 18 (2003) 2059-2068. https://doi.org/10.1046/j.1460-9568.2003.02915.x.

[131]

C. McCabe, E.T. Rolls, Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain, Eur. J. Neurosci. 25 (2007) 1855-1864. https://doi.org/10.1111/j.1460-9568.2007.05445.x.

[132]

I.E. de Araujo, S.A. Simon, The gustatory cortex and multisensory integration, Int. J. Obes. 33 (2009) S34-S43. https://doi.org/10.1038/ijo.2009.70.

[133]

N. Mizoguchi, M. Kobayashi, K. Muramoto, Integration of olfactory and gustatory chemosignals in the insular cortex, J. Oral Biosci. 58 (2016) 81-84. https://doi.org/10.1016/j.job.2016.03.002.

[134]

M.G. Veldhuizen, D. Nachtigal, L. Teulings, et al., The insular taste cortex contributes to odor quality coding, Front. Hum. Neurosci. 4 (2010) 58. https://doi.org/10.3389/fnhum.2010.00058.

[135]

N. Mizoguchi, K. Muramoto, M. Kobayashi, Olfactory signals from the main olfactory bulb converge with taste information from the chorda tympani nerve in the agranular insular cortex of rats, Pflugers Arch. 472 (2020) 721-732. https://doi.org/10.1007/s00424-020-02399-w.

[136]

D.D. Pu, Y.Y. Zhang, B.G. Sun, et al., Characterization of the key taste compounds during bread oral processing by instrumental analysis and dynamic sensory evaluation, LWT-Food Sci. Technol. 138 (2021) 110641. https://doi.org/10.1016/j.lwt.2020.110641.

Food Science and Human Wellness
Pages 2410-2424
Cite this article:
Huang L, Dai Y, Zhang F, et al. Insights into the enhancement of food flavor perception: strategies, mechanism and emulsion applications. Food Science and Human Wellness, 2024, 13(5): 2410-2424. https://doi.org/10.26599/FSHW.2022.9250199

1531

Views

266

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 01 December 2022
Revised: 10 January 2023
Accepted: 21 March 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return