Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a traditional Chinese herbal medicine, Schisandrae Chinensis Fructus (SC) has been used in medicine and food industry due to its health care and therapeutic effects. Over the past 20 years, the use of SC and its active ingredient lignans in the prevention and treatment of liver diseases has been increasing, and their hepatoprotective effects has increased the interest of the public and academia. Therefore, in the present work, we first determined the effectiveness of SC in the treatment of liver diseases such as metabolic associated fatty liver disease, alcoholic liver disease, cholestatic liver disease and acute liver injury. Subsequently, the pharmacological effects and molecular mechanisms of lignans, the active components of SC, for liver disease treatment were comprehensively summarized for the first time. The results showed that the lignans in SC could achieve hepatoprotective effects by regulating lipid metabolism, anti-fibrosis, anti-inflammation, anti-oxidation, anti-tumor and regulating bile acid metabolism. The mechanism mainly involved adenosine 5’-monophosphate-activated protein kinase, endoplasmic reticulum stress, sterol regulatory element binding protein 1c, autophagy, transforming growth factor-β, mitogen-activated protein kinase, microRNA, nuclear factor kappa-B, nuclear factor erythroid-2-related factor 2, heat shock proteins and pregnane X receptor signaling pathways. These results can lay a scientific foundation for the development of hepatoprotective drugs or functional foods from SC/lignans.
Q. Li, H.J. Li, T. Xu, et al., Natural medicines used in the traditional Tibetan medical system for the treatment of liver diseases, Front. Pharmacol. 9 (2018) 29. https://doi.org/10.3389/fphar.2018.00029.
R. Wang, R. Tang, B. Li, et al., Gut microbiome, liver immunology, and liver diseases, Cell Mol. Immunol. 18 (2021) 4-17. https://doi.org/10.1038/s41423-020-00592-6.
F.S. Wang, J.G. Fan, Z. Zhang, et al., The global burden of liver disease: the major impact of China, Hepatology 60 (2014) 2099-2108. https://doi.org/10.1002/hep.27406.
A. Forner, J.M. Llovet, J. Bruix, Hepatocellular carcinoma, Lancet 379 (2012) 1245-1255. https://doi.org/10.1016/S0140-6736(18)30010-2.
K. Jiang, Q.Y. Song, S.J. Peng, et al., New lignans from the roots of Schisandra sphenanthera, Fitoterapia 103 (2015) 63-70. https://doi.org/10.1016/j.fitote.2015.03.015.
H.W. Xin, X.C. Wu, Q. Li, et al., Effects of Schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers, Br. J. Clin. Pharmacol. 64 (2007) 469-475. https://doi.org/10.1111/j.1365-2125.2007.02922.x.
D.M. Kopustinskiene, J. Bernatoniene, Antioxidant effects of Schisandra chinensis fruits and their active constituents, Antioxidants (Basel) 10 (2021).https://doi.org/10.3390/antiox10040620.
X. Li, H. Yang, J. Xiao, et al., Network pharmacology based investigation into the bioactive compounds and molecular mechanisms of Schisandrae Chinensis Fructus against drug-induced liver injury, Bioorg. Chem. 96 (2020)103553. https://doi.org/10.1016/j.bioorg.2019.103553.
X. Li, J. Ge, M. Li, et al., Network pharmacology, molecular docking technology integrated with pharmacodynamic study to reveal the potential targets of Schisandrol A in drug-induced liver injury by acetaminophen, Bioorg. Chem. 118 (2022) 105476. https://doi.org/10.1016/j.bioorg.2021.105476.
M. Zhang, L. Xu, H. Yang, Schisandra chinensis Fructus and its active ingredients as promising resources for the treatment of neurological diseases, Int. J. Mol. Sci. 19 (2018) 1970. https://doi.org/10.3390/ijms19071970.
H.S. Kim, J.H. Lee, H.S. Park, et al., Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway, Pharm. Biol. 53 (2015) 212-219. https://doi.org/10.3109/13880209.2014.913297.
W. Zhang, Y. Zhu, Q. Zhang, et al., Research progress on the application and mechanism of Schisandra chinensis in the prevention and treatment of liver diseases, China J. Chin. Mater. Med. 45 (2020) 3759-3769. https://doi.org/10.19540/j.cnki.cjcmm.20200513.601.
A.S.L. Chan, E.C.H. Yip, L.Y. Yung, et al., CKBM stimulates MAPKs but inhibits LPS-induced IFN-gamma in lymphocytes, Phytother. Res. 20 (2006) 725-731. https://doi.org/10.1002/ptr.1943.
M.Y. Jeong, D.H. Park, M.C. Kim, et al., Saengmaeksan inhibits inflammatory mediators by suppressing RIP-2/caspase-1 activation, Immunopharmacol. Immunotoxicol. 35 (2013) 241-250. https://doi.org/10.3109/08923973.2012.757617.
N.S. Plaha, S. Awasthi, A. Sharma, et al., biosynthesis and therapeutic potential of lignans, 3 Biotech. 12 (2022) 255. https://doi.org/10.1007/s13205-022-03318-9.
M. Andargie, M. Vinas, A. Rathgeb, et al., Lignans of sesame (Sesamum indicum L.): a comprehensive review, Molecules 26 (2021) 883. https://doi.org/10.3390/molecules26040883.
H. Chhillar, P. Chopra, M.A. Ashfaq, Lignans from linseed (Sesamum indicum L.) and its allied species: retrospect, introspect and prospect, Crit. Rev. Food Sci. Nutr. 61 (2021) 2719-2741. https://doi.org/10.1080/10408398.2020.1784840.
P. Basu, C. Maier, Phytoestrogens and breast cancer: in vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives, Biomed. Pharmacother. 107 (2018) 1648-1666. https://doi.org/10.1016/j.biopha.2018.08.100.
R.A. Dixon, Phytoestrogens, Annu. Rev. Plant Biol. 55 (2004) 225-261. https://doi.org/10.1146/annurev.arplant.55.031903.141729.
H. Liu, H. Lai, X. Jia, et al., Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics, Phytomedicine20 (2013) 1135-1143. https://doi.org/10.1016/j.phymed.2013.05.001.
Z. Cheng, Y. Yang, Y. Liu, et al., Two-steps extraction of essential oil, polysaccharides and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits, J. Pharm. Biomed Anal. 96 (2014) 162-169.
Y. Zhou, L. Men, Y. Sun, et al., Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review, Eur. J. Pharmacol. 892 (2021) 173796. https://doi.org/10.1016/j.jpba.2014.03.036.
W.S. Park, K.A. Koo, J.Y. Bae, et al., Dibenzocyclooctadiene lignans in plant parts and fermented beverages of Schisandra chinensis, Plants (Basel) 10 (2021) 361. https://doi.org/10.3390/plants10020361.
M. Rybnikář, K. Šmejkal, M. Žemlička, Schisandra chinensis and its phytotherapeutical applications, Ceska. Slov. Farm. 68 (2019).
J. Chang, J. Reiner, J. Xie, Progress on the chemistry of dibenzocyclooctadiene lignans, Chem. Rev. 105 (2005) 4581-4609. https://doi.org/10.1021/cr050531b.
N.K. Kochetkov, A. Khorlin, O.S. Chizhov, et al., Schizandrin-lignan of unusual structure, Tetrahedron Lett. 31 (1961) 730. https://doi.org/10.1016/S0040-4039(01)91684-3.
W.D. Zhang, Q. Wang, Y. Wang, et al., Application of ultrahigh-performance liquid chromatography coupled with mass spectrometry for analysis of lignans and quality control of Fructus Schisandrae Chinensis, J. Sep. Sci. 35 (2012) 2203-2209. https://doi.org/10.1002/jssc.201200393.
C.S. Liu, S.D. Fang, M.F. Huang, et al., Studies on the active principles of Schisandra sphenanthera Rehd. et Wils. the structures of schisantherin A, B, C, D, E, and the related compounds, Sci. Sin. 21 (1978) 483-502.
T.L. Huang, J.C.T. Lin, C.C. Chyau, et al., Purification of lignans from Schisandra chinensis fruit by using column fractionation and supercritical antisolvent precipitation, J. Chromatogr. A 1282 (2013) 27-37. https://doi.org/10.1016/j.chroma.2013.01.091.
Z. Cheng, H. Song, Y. Yang, et al., Smashing tissue extraction of five lignans from the fruit of Schisandra chinensis, J. Chromatogr. Sci. 54 (2016) 246-256. https://doi.org/10.1093/chromsci/bmv116.
K. Yang, J. Qiu, Z. Huang, et al., A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils, J. Ethnopharmacol. 284 (2022) 114759. https://doi.org/10.1016/j.jep.2021.114759.
P. Zhu, J. Li, X. Fu, et al., Schisandra fruits for the management of drug-induced liver injury in China: a review, Phytomedicine 59 (2019) 152760. https://doi.org/10.1016/j.phymed.2018.11.020.
J.B. Xu, G.C. Gao, M.J. Yuan, et al., Lignans from Schisandra chinensis ameliorate alcohol and CCl4-induced long-term liver injury and reduce hepatocellular degeneration via blocking ETBR, J. Ethnopharmacol. 258 (2020) 112813. https://doi.org/10.1016/j.jep.2020.112813.
P. Chen, S. Pang, N. Yang, et al., Beneficial effects of schisandrin B on the cardiac function in mice model of myocardial infarction, PLoS One 8 (2013) e79418. https://doi.org/10.1371/journal.pone.0079418.
D. Hu, Y. Cao, R. He, et al., Schizandrin, an antioxidant lignan from Schisandra chinensis, ameliorates Aβ1-42-induced memory impairmentin mice, Oxid. Med. Cell Longev. 2012 (2012) 721721. https://doi.org/10.1155/2012/721721.
J. Fu, H. Zhang, S. Liu, et al., An integrated strategy using LC-MS/MS combined with in vivo microdialysis for the simultaneous determination of lignans of Schisandra chinensis (Turcz.) Baill. fructus and endogenous neurotransmitters: application in pharmacokinetic and pharmacodynamic studies, Food Funct. 12 (2021) 8932-8945. https://doi.org/10.1039/d1fo01682b.
H. Hikino, Y. Kiso, H. Taguchi, et al., Antihepatotoxic actions of lignoids from Schizandra chinensis fruits, Planta Med. 50 (1984) 213-218. https://doi.org/10.1055/s-2007-969681.
S.L. Friedman, B.A. Neuschwander, M. Rinella, et al., Mechanisms of NAFLD development and therapeutic strategies, Nat. Med. 24 (2018) 908-922. https://doi.org/10.1038/s41591-018-0104-9.
R. Loomba, S.L. Friedman, G.I. Shulman, Mechanisms and disease consequences of nonalcoholic fatty liver disease, Cell 184 (2021) 2537-2564. https://doi.org/10.1016/j.cell.2021.04.015.
X.J. Wang, H. Malhi, Nonalcoholic fatty liver disease, Ann. Intern. Med. 169 (2018) ITC65-ITC80. https://doi.org/10.7326/AITC201811060.
E. Buzzetti, M. Pinzani, E.A. Tsochatzis, The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD), Metabolism 65 (2016) 1038-1048. https://doi.org/10.1016/j.metabol.2015.12.012.
C.A. Onyekwere, A.O. Ogbera, A.A. Samaila, et al., Nonalcoholic fatty liver disease: synopsis of current developments, Niger. J. Clin. Pract. 18 (2015) 703-712. https://doi.org/10.4103/1119-3077.163288.
E.M. Brunt, V.W.S. Wong, V. Nobili, et al., Nonalcoholic fatty liver disease, Nat. Rev. Dis. Primers. 1 (2015) 15080. https://doi.org/10.1038/nrdp.2015.80.
P. Arulselvan, M.T. Fard, W.S. Tan, et al., Role of antioxidants and natural products in inflammation, Oxid. Med. Cell Longev. 2016 (2016) 5276130. https://doi.org/10.1155/2016/5276130.
Y. Xiao, M. Kim, M.A. Lazar, Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease, Mol. Metab. 50 (2020) 101119. https://doi.org/10.1016/j.molmet.2020.101119.
E. Vilar-Gomez, Y. Martinez-Perez, L. Calzadilla-Bertot, et al., Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis, Gastroenterology 149 (2015) 367-378. https://doi.org/10.1053/j.gastro.2015.04.005.
S. Zelber-Sagi, J. Godos, F. Salomone, Lifestyle changes for the treatment of nonalcoholic fatty liver disease: a review of observational studies and intervention trials, Therap. Adv. Gastroenterol. 9 (2016) 392-407. https://doi.org/10.1177/1756283X16638830.
L.A. Orci, K. Gariani, G. Oldani, et al., Exercise-based interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression, Clin. Gastroenterol. Hepatol. 14 (2016) 1398-1411. https://doi.org/10.1016/j.cgh.2016.04.036.
M.K. Jang, J.S. Nam, J.H. Kim, et al., Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress, J. Ethnopharmacol. 185 (2016) 96-104. https://doi.org/10.1016/j.jep.2016.03.021.
M. Gu, H. Song, Y. Li, et al., Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation, Phytother. Res. 34 (2020) 3063-3077. https://doi.org/10.1002/ptr.6743.
N. Cheng, S. Chen, X. Liu, et al., Impact of Schisandra chinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in high fat diet induced obese mice, Nutrients 11 (2019) 346. https://doi.org/10.3390/nu11020346.
R. Yuan, G. Sun, J. Gao, et al., Schisandra fruit vinegar lowers lipid profile in high-fat diet rats, Evid. Based Complement Alternat. Med. 2020 (2020) 7083415. https://doi.org/10.1155/2020/7083415.
Z. Yao, X.C. Liu, Y.E. Gu, Schisandra chinensis Baill, a Chinese medicinal herb, alleviates high-fat-diet-inducing non-alcoholic steatohepatitis in rats, Afr. J. Tradit. Complement Altern. Med. 11 (2014) 222-227. https://doi.org/10.4314/ajtcam.v11i1.35.
Z. Chen, F. Liu, N. Zheng, et al., Wuzhi capsule (Schisandra sphenanthera extract) attenuates liver steatosis and inflammation during non-alcoholic fatty liver disease development, Biomed. Pharmacother. 110 (2019) 285-293. https://doi.org/10.1016/j.biopha.2018.11.069.
S.M. Cohen, Alcoholic liver disease, Clin. Liver Dis. 20 (2016) 16. https://doi.org/10.1016/j.cld.2016.05.001.
W. Dunn, V.H. Shah, Pathogenesis of alcoholic liver disease, Clin. Liver Dis. 20 (2016) 445-456. https://doi.org/10.1016/j.cld.2016.02.004.
A.K. Singal, R. Bataller, J. Ahn, et al., ACG clinical guideline: alcoholic liver disease, Am. J. Gastroenterol. 113 (2018) 175-194. https://doi.org/10.1038/ajg.2017.469.
H.K. Seitz, R. Bataller, H. Cortez-Pinto, et al., Alcoholic liver disease, Nat. Rev. Dis. Primers. 4 (2018) 16. https://doi.org/10.1038/s41572-018-0014-7.
S. Li, H.Y. Tan, N. Wang, et al., The role of oxidative stress and antioxidants in liver diseases, Int. J. Mol. Sci. 16 (2015) 26087-26124. https://doi.org/10.3390/ijms161125942.
H.J. Park, S.J. Lee, Y. Song, et al.. Schisandra chinensis prevents alcohol-induced fatty liver disease in rats, J. Med. Food 17 (2014) 103-110. https://doi.org/10.1089/jmf.2013.2849.
X. Zeng, X. Li, C. Xu, et al., extract (Wuzhi Tablet) protects against chronic-binge and acute alcohol-induced liver injury by regulating the NRF2-ARE pathway in mice, Acta Pharm. Sin. B 7 (2017) 583-592. https://doi.org/10.1016/j.apsb.2017.04.002.
L. Su, J. Mao, M. Hao, et al., Integrated plasma and bile metabolomics based on an UHPLC-Q/TOF-MS and network pharmacology approach to explore the potential mechanism of Schisandra chinensis-protection from acute alcoholic liver injury, Front. Pharmacol. 10 (2019) 1543. https://doi.org/10.3389/fphar.2019.01543.
J.Y. Xiang, Y.Y. Chi, J.X. Han, et al., Intestinal microbiota contributes to the improvement of alcoholic hepatitis in mice treated with extract, Front. Nutr. 9 (2022) 822429. https://doi.org/10.3389/fnut.2022.822429.
G.M. Hirschfield, E.J. Heathcote, M.E. Gershwin, Pathogenesis of cholestatic liver disease and therapeutic approaches, Gastroenterology 139 (2010) 1481-1496. https://doi.org/10.1053/j.gastro.2010.09.004.
S. Hasegawa, M. Yoneda, Y. Kurita, et al., Cholestatic liver disease: current treatment strategies and new therapeutic agents, Drugs 81 (2021) 1181-1192. https://doi.org/10.1007/s40265-021-01545-7.
D.W. Russell, The enzymes, regulation, and genetics of bile acid synthesis, Annu. Rev. Biochem. 72 (2003) 137-174. https://doi.org/10.1146/annurev.biochem.72.121801.161712.
T. Li, J.Y.L. Chiang, Bile acid signaling in metabolic disease and drug therapy, Pharmacol. Rev. 66 (2014) 948-983. https://doi.org/10.1124/pr.113.008201.
N.S. Ghonem, D.N. Assis, J.L. Boyer, Fibrates and cholestasis, Hepatology 62 (2015) 635-643. https://doi.org/10.1002/hep.27744.
H. Zeng, D. Li, X. Qin, et al., Hepatoprotective effects of Schisandra sphenanthera extract against lithocholic acid-induced cholestasis in malemice are associated with activation of the pregnane X receptor pathway and promotion of liver regeneration, Drug Metab. Dispos. 44 (2016) 337-342. https://doi.org/10.1124/dmd.115.066969.
S. Saha, B. Buttari, E. Panieri, et al., An overview of Nrf2 signaling pathway and its role in inflammation, Molecules 25 (2020) 5474. https://doi.org/10.3390/molecules25225474.
S. Duarte, J. Baber, T. Fujii, et al., Matrix metalloproteinases in liver injury, repair and fibrosis, Matrix. Biol. 44/45/46 (2015) 147-156. https://doi.org/10.1016/j.matbio.2015.01.004.
S. Roohani, F. Tacke, Liver injury and the macrophage issue: molecular and mechanistic facts and their clinical relevance, Int. J. Mol. Sci. 22 (2021) 7249. https://doi.org/10.3390/ijms22147249.
X. Fan, P. Chen, Y. Jiang, et al., Therapeutic efficacy of Wuzhi tablet (Schisandra sphenanthera extract) on acetaminophen-induced hepatotoxicity through a mechanism distinct from N-acetylcysteine, Drug Metab. Dispos. 43 (2015) 317-324. https://doi.org/10.1124/dmd.114.062067.
Y.Z. Li, Z.N. Ma, Y.S. Sun, et al., Protective effects of extracts of Schisandra chinensis stems against acetaminophen-induced hepatotoxicity via regulation of MAPK and caspase-3 signaling pathways, Chin. J. Nat. Med. 16 (2018) 700-713. https://doi.org/10.1016/S1875-5364(18)30110-9.
Y. Wei, Z. Luo, K. Zhou, et al., Schisandrae Chinensis fructus extract protects against hepatorenal toxicity and changes metabolic ions in cyclosporine A rats, Nat. Prod. Res. 35 (2021) 2915-2920. https://doi.org/10.1080/14786419.2019.1672688.
J. Zhai, F. Zhang, S. Gao, et al., Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain, J. Ethnopharmacol. 210 (2018) 223-231. https://doi.org/10.1016/j.jep.2017.08.020.
N. Cheng, N. Ren, H. Gao, et al., Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice, Food Chem. Toxicol. 55 (2013) 234-240. https://doi.org/10.1016/j.fct.2012.11.022.
H. Huang, Z. Shen, Q. Geng, et al., Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats, Biomed. Pharmacother. 95 (2017) 1765-1776. https://doi.org/10.1016/j.biopha.2017.09.083.
P. Ramachandran, J.P. Iredale, Liver fibrosis: a bidirectional model of fibrogenesis and resolution, QJM-Int. J. Med. 105 (2012) 813-817. https://doi.org/10.1093/qjmed/hcs069.
E. Roeb, Matrix metalloproteinases and liver fibrosis (translational aspects), Matrix. Biol. 68/69 (2018) 463-473. https://doi.org/10.1016/j.matbio.2017.12.012.
T. Higashi, S.L. Friedman, Y. Hoshida, Hepatic stellate cells as key target in liver fibrosis, Adv. Drug Deliv. Rev. 121 (2017) 27-42. https://doi.org/10.1016/j.addr.2017.05.007.
T. Tsuchida, S.L. Friedman, Mechanisms of hepatic stellate cell activation, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 397-411. https://doi.org/10.1038/nrgastro.2017.38.
J. Chen, Y. Hu, L. Chen, et al., The effect and mechanisms of Fuzheng Huayu formula against chronic liver diseases, Biomed. Pharmacother. 114 (2019) 108846. https://doi.org/10.1016/j.biopha.2019.108846.
X. Li, Y. Liu, W. Yue, et al., A compound of Chinese herbs protects against alcoholic liver fibrosis in rats via the TGF-1/Smad signaling pathway, Evid. Based Complement Alternat. Med. 2019 (2019) 9121347. https://doi.org/10.1155/2019/9121347.
X. Li, X. Fan, D. Li, et al., Schisandra sphenanthera extract facilitates liver regeneration after partial hepatectomy in mice, Drug Metab. Dispos. 44 (2016) 647-652. https://doi.org/10.1124/dmd.115.068288.
M. Huang, J. Jin, H. Sun, et al., Reversal of P-glycoprotein-mediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae, Cancer Chemother. Pharmacol. 62 (2008) 1015-1026. https://doi.org/10.1007/s00280-008-0691-0.
H.F. Chiu, T.Y. Chen, Y.T. Tzeng, et al., Improvement of liver function in humans using a mixture of schisandra fruit extract and sesamin, Phytother. Res. 27 (2013) 368-373. https://doi.org/10.1002/ptr.4702.
Y. Guo, Q. Zhao, L. Cao, et al., Hepatoprotective effect of Gan Kang Yuan against chronic liver injury induced by alcohol, J. Ethnopharmacol. 208 (2017) 1-7. https://doi.org/10.1016/j.jep.2017.06.033.
H.R. Kim, S. Kim, S.Y. Kim, Effects of roasted Schisandra chinensis (Turcz.) Baill and Lycium Chinense Mill. and their combinational extracts on antioxidant and anti-inflammatory activities in RAW 264.7 cells and in alcohol-induced liver damage mice model, Evid. Based Complement Alternat. Med. 2021 (2021) 6633886. https://doi.org/10.1155/2021/6633886.
X.B. Zuo, X.M. Sun, C.Y. Wang, et al., Investigation on protective effect and efficacy difference of extract of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus against acetaminophen-induced liver injury, Zhongguo Zhong Yao Za Zhi 44 (2019) 1238-1245. https://doi.org/10.19540/j.cnki.cjcmm.20181210.001.
X. Fan, Y. Jiang, Y. Wang, et al., Wuzhi tablet (Schisandra sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways, Drug Metab. Dispos. 42 (2014) 1982-1990. https://doi.org/10.1124/dmd.114.059535.
D.S. Li, Q.F. Huang, L.H. Guan, et al., Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis, Chin. J. Nat. Med. 18 (2020) 211-218. https://doi.org/10.1016/S1875-5364(20)30023-6.
J.L. He, Z.W. Zhou, J.J. Yin, et al., Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway, Drug Des. Devel. Ther. 9 (2015) 127-146. https://doi.org/10.2147/DDDT.S68501.
D. Garcia, R.J. Shaw, AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance, Mol. Cell 66 (2017) 789-800. https://doi.org/10.1016/j.molcel.2017.05.032.
S.A. Hawley, M. Davison, A. Woods, et al., Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase, J. Biol. Chem. 271 (1996) 27879-27887. https://doi.org/10.1074/jbc.271.44.27879.
D. Carling, AMPK signalling in health and disease, Curr. Opin. Cell Biol. 45 (2017) 31-37. https://doi.org/10.1016/j.ceb.2017.01.005.
S. Herzig, R.J. Shaw, AMPK: guardian of metabolism and mitochondrial homeostasis, Nat. Rev. Mol. Cell Biol. 19 (2018) 121-135. https://doi.org/10.1038/nrm.2017.95.
M. Kim, S.J. Lim, H.J. Lee, et al., Gomisin J inhibits oleic acid-induced hepatic lipogenesis by activation of the ampk-dependent pathway and inhibition of the hepatokine fetuin-A in HepG2 cells, J. Agric. Food Chem. 63 (2015) 9729-9739. https://doi.org/10.1021/acs.jafc.5b04089.
Y.H. Han, J.Y. Kee, S.H. Hong, Gomisin A alleviates obesity by regulating the phenotypic switch between white and brown adipocytes, Am. J. Chin. Med. 49 (2021) 1929-1948. https://doi.org/10.1142/S0192415X21500919.
M.K. Jang, Y.R. Yun, J.H. Kim, et al., Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity, Sci. Rep. 7 (2017) 40345. https://doi.org/10.1038/srep40345.
Y.R. Yun, J.H. Kim, J.H. Kim, et al., Protective effects of gomisin N against hepatic steatosis through AMPK activation, Biochem. Biophys. Res. Commun. 482 (2017) 1095-1101. https://doi.org/10.1016/j.bbrc.2016.11.164.
A. Nagappan, D.Y. Jung, J.H. Kim, et al., Gomisin N alleviates ethanol-induced liver injury through ameliorating lipid metabolism and oxidative stress, Int. J. Mol. Sci. 19 (2018) 2601. https://doi.org/10.3390/ijms19092601.
D.S. Schwarz, M.D. Blower, The endoplasmic reticulum: structure, function and response to cellular signaling, Cell Mol. Life Sci. 73 (2016) 79-94. https://doi.org/10.1007/s00018-015-2052-6.
C. Hetz, K. Zhang, R.J. Kaufman, Mechanisms, regulation and functions of the unfolded protein response, Nat. Rev. Mol. Cell Biol. 21 (2020) 421-438. https://doi.org/10.1038/s41580-020-0250-z.
M. Wang, R.J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease, Nature 529 (2016) 326-335. https://doi.org/10.1038/nature17041.
C. Lebeaupin, D. Vallée, Y. Hazari, et al., Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease, J. Hepatol. 69 (2018) 927-947. https://doi.org/10.1016/j.jhep.2018.06.008.
M.K. Jang, Y.R. Yun, S.H. Kim, et al., Protective effect of gomisin N against endoplasmic reticulum stress-induced hepatic steatosis, Biol. Pharm. Bull. 39 (2016) 832-838. https://doi.org/10.1248/bpb.b15-01020.
J.Y. Lee, J.H. Lee, C.K. Cheon, Functional characterization of gomisin N in high-fat-induced obesity models, Int. J. Mol. Sci. 21 (2020) 7209. https://doi.org/10.3390/ijms21197209.
Y. Wang, J. Viscarra, S.J. Kim, et al., Transcriptional regulation of hepatic lipogenesis, Nat. Rev. Mol. Cell Biol. 16 (2015) 678-689. https://doi.org/10.1038/nrm4074.
R. Raghow, C. Yellaturu, X. Deng, et al., SREBPs: the crossroads of physiological and pathological lipid homeostasis, Trends Endocrinol. Metab. 19 (2008) 65-73. https://doi.org/10.1016/j.tem.2007.10.009.
H. Shimano, J.D. Horton, I. Shimomura, et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells, J. Clin. Invest. 99 (1997) 846-854. https://doi.org/10.1172/JCI119248.
R. Ma, Y. Zhan, Y. Zhang, et al., Schisandrin B ameliorates non-alcoholic liver disease through anti-inflammation activation in diabetic mice, Drug Dev. Res. 83 (2022) 735-744. https://doi.org/10.1002/ddr.21905.
K.R. Parzych, D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation, Antioxid. Redox Signal 20 (2014) 460-473. https://doi.org/10.1089/ars.2013.5371.
X. Wu, K.L. Poulsen, C. Sanz-Garcia, et al., MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis, J. Hepatol. 73 (2020) 616-627. https://doi.org/10.1016/j.jhep.2020.03.023.
A. González-Rodríguez, R. Mayoral, N. Agra, et al., Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD, Cell Death Dis. 5 (2014) e1179. https://doi.org/10.1038/cddis.2014.162.
L.S. Yan, S.F. Zhang, G. Luo, et al., Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway, Metabolism 131 (2022) 155200. https://doi.org/10.1016/j.metabol.2022.155200.
Y. Inagaki, I. Okazaki, Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis, Gut 56 (2007) 284-292. https://doi.org/10.1136/gut.2005.088690.
X.M. Meng, D.J. Nikolic-Paterson, H.Y. Lan, TGF-β: the master regulator of fibrosis, Nat. Rev. Nephrol. 12 (2016) 325-338. https://doi.org/10.1038/nrneph.2016.48.
N. Frangogiannis, Transforming growth factor-β in tissue fibrosis, J. Exp. Med. 217 (2020) e20190103. https://doi.org/10.1084/jem.20190103.
H. Kurosaka, D. Kurosaka, K. Kato, et al., Transforming growth factor-beta 1 promotes contraction of collagen gel by bovine corneal fibroblasts through differentiation of myofibroblasts, Invest. Ophthalmol. Vis. Sci. 39 (1998) 699-704.
D. Dolivo, P. Weathers, T. Dominko, Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics, Acta Pharm. Sin. B 11 (2021) 322-339. https://doi.org/10.1016/j.apsb.2020.09.001.
H.H. Hu, D.Q. Chen, Y.N. Wang, et al., New insights into TGF-β/Smad signaling in tissue fibrosis, Chem. Biol. Interact. 292 (2018) 76-83. https://doi.org/10.1016/j.cbi.2018.07.008.
A. Biernacka, M. Dobaczewski, N.G. Frangogiannis, TGF-β signaling in fibrosis, Growth Factors 29 (2011) 196-202. https://doi.org/10.3109/08977194.2011.595714.
F. Xu, C. Liu, D. Zhou, et al., TGF-β/SMAD pathway and its regulation in hepatic fibrosis, J. Histochem. Cytochem. 64 (2016) 157-167. https://doi.org/10.1369/0022155415627681.
Q. Chen, H. Zhang, Y. Cao, et al., Schisandrin B attenuates CCl4-induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways, Drug Des. Devel. Ther. 11 (2017) 2179-2191. https://doi.org/10.2147/DDDT.S137507.
W. Dai, Q. Qin, Z. Li, et al., Curdione and Schisandrin C synergistically reverse hepatic fibrosis via modulating the TGF-β pathway and inhibiting oxidative stress, Front. Cell Dev. Biol. 9 (2021) 763864. https://doi.org/10.3389/fcell.2021.763864.
M. Cargnello, P.P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev. 75 (2011) 50-83. https://doi.org/10.1128/MMBR.00031-10.
A.J. Muslin, MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets, Clin. Sci. (Lond.) 115 (2008) 203-218. https://doi.org/10.1042/CS20070430.
B. Foglia, S. Cannito, C. Bocca, et al., ERK pathway in activated, myofibroblast-like, hepatic stellate cells: a critical signaling crossroad sustaining liver fibrosis, Int. J. Mol. Sci. 20 (2019) 2700. https://doi.org/10.3390/ijms20112700.
Y.C. Hsieh, K.C. Lee, H.J. Lei, et al., (Pro)renin receptor knockdown attenuates liver fibrosis through inactivation of ERK/TGF-β1/SMAD3 pathway, Cell Mol. Gastroenterol. Hepatol. 12 (2021) 813-838. https://doi.org/10.1016/j.jcmgh.2021.05.017.
Y. Wang, J. Song, H. Bian, et al., Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells, Mol. Cell Biochem. 460 (2019) 205-215. https://doi.org/10.1007/s11010-019-03581-0.
Y. Zhao, X. Ma, J. Wang, et al., Curcumin protects against CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an ERK-dependent pathway, Molecules 19 (2014) 18767-18780. https://doi.org/10.3390/molecules191118767.
Y.X. Wang, Y. Du, X.F. Liu, et al., A hepatoprotection study of Radix Bupleuri on acetaminophen-induced liver injury based on CYP450 inhibition, Chin. J. Nat. Med. 17 (2019) 517-524. https://doi.org/10.1016/S1875-5364(19)30073-1.
S. Salloum, A.J. Jeyarajan, A.J. Kruger, et al., Fatty acids activate the transcriptional coactivator YAP1 to promote liver fibrosis via p38 mitogen-activated protein kinase, Cell Mol. Gastroenterol. Hepatol. 12 (2021) 1297-1310. https://doi.org/10.1016/j.jcmgh.2021.06.003.
J. Ji, Q. Yu, W. Dai, et al., Apigenin alleviates liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-1/Smad3 and p38/PPAR pathways, PPAR Res. 2021 (2021) 6651839. https://doi.org/10.1155/2021/6651839.
H. Wang, J. Che, K. Cui, et al., Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo, Phytomedicine 88 (2021) 153609. https://doi.org/10.1016/j.phymed.2021.153609.
X. He, J. Chen, Y. Mu, et al., The effects of inhibiting the activation of hepatic stellate cells by lignan components from the fruits of Schisandra chinensis and the mechanism of schisanhenol, J. Nat. Med. 74 (2020) 513-524. https://doi.org/10.1007/s11418-020-01394-w.
H.Q. Wang, Z. Wan, Q. Zhang, et al., Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway, Phytomedicine 98 (2022) 153960. https://doi.org/10.1016/j.phymed.2022.153960.
C. Wang, C. Ma, L. Gong, et al., Macrophage polarization and its role in liver disease, Front. Immunol. 12 (2021) 803037. https://doi.org/10.3389/fimmu.2021.803037.
F. Tacke, H.W. Zimmermann, Macrophage heterogeneity in liver injury and fibrosis, J. Hepatol. 60 (2014) 1090-1096. https://doi.org/10.1016/j.jhep.2013.12.025.
Y. Wen, J. Lambrecht, C. Ju, et al., Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities, Cell Mol. Immunol. 18 (2021) 45-56. https://doi.org/10.1038/s41423-020-00558-8.
F. Tacke, Targeting hepatic macrophages to treat liver diseases, J. Hepatol. 66 (2017) 1300-1312.
Q. Chen, L. Bao, L. Lv, et al., Schisandrin B regulates macrophage polarization and alleviates liver fibrosis via activation of PPARγ, Ann. Transl. Med. 9 (2021) 1500. https://doi.org/10.21037/atm-21-4602.
D.P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell 136 (2009) 215-233. https://doi.org/10.1016/j.cell.2009.01.002.
D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116 (2004) 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5.
T. Lan, C. Li, G. Yang, et al., Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2, Hepatology 68 (2018) 1070-1086. https://doi.org/10.1002/hep.29885.
Y. Qu, Q. Zhang, X. Cai, et al., Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation, J. Cell Mol. Med. 21 (2017) 2491-2502. https://doi.org/10.1111/jcmm.13170.
X. Hou, S. Yin, R. Ren, et al., Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis, Hepatology 74 (2021) 116-132. https://doi.org/10.1002/hep.31658.
S. Bala, T. Csak, B. Saha, et al., The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis, J. Hepatol. 64 (2016) 1378-1387. https://doi.org/10.1016/j.jhep.2016.01.035.
C. Wang, C. Xu, X. Fu, et al., Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway, Artif. Cells Nanomed Biotechnol. 48 (2020) 473-478. https://doi.org/10.1080/21691401.2020.1717507.
R. Medzhitov, Origin and physiological roles of inflammation, Nature 454 (2008) 428-435. https://doi.org/10.1038/nature07201.
Y.M. Yang, S.Y. Kim, E. Seki, Inflammation and liver cancer: molecular mechanisms and therapeutic targets, Semin. Liver Dis. 39 (2019) 26-42. https://doi.org/10.1055/s-0038-1676806.
Z. Wang, X. Zhang, L. Zhu, et al., Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice, Int. Immunopharmacol. 78 (2020) 106062. https://doi.org/10.1016/j.intimp.2019.106062.
M.J. Xu, Z. Zhou, R. Parker, et al., Targeting inflammation for the treatment of alcoholic liver disease, Pharmacol. Ther. 180 (2017) 77-89. https://doi.org/10.1016/j.pharmthera.2017.06.007.
E. Lontchi-Yimagou, E. Sobngwi, T.E. Matsha, et al., Diabetes mellitus and inflammation, Curr. Diab. Rep. 13 (2013) 435-444. https://doi.org/10.1007/s11892-013-0375-y.
A. Kimball, M. Schaller, A. Joshi, et al., Ly6C blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus, Arterioscler. Thromb. Vasc. Biol. 38 (2018) 1102-1114. https://doi.org/10.1161/ATVBAHA.118.310703.
N. García, C. Zazueta, L. Aguilera-Aguirre, Oxidative stress and inflammation in cardiovascular disease, Oxid. Med. Cell Longev. 2017 (2017) 5853238. https://doi.org/10.1155/2017/5853238.
F. Villarroya, R. Cereijo, A. Gavaldà-Navarro, et al., Inflammation of brown/beige adipose tissues in obesity and metabolic disease, J. Intern. Med. 284 (2018) 492-504. https://doi.org/10.1111/joim.12803.
E. Pras, R. Neumann, G. Zandman-Goddard, et al., Intraocular inflammation in autoimmune diseases, Semin. Arthritis. Rheum. 34 (2004) 602-609. https://doi.org/10.1016/j.semarthrit.2004.05.002.
B.E. Sands, Biomarkers of inflammation in inflammatory bowel disease, Gastroenterology 149 (2015) 1275-1285. https://doi.org/10.1053/j.gastro.2015.07.003.
B.Z. Shao, S.L. Wang, P. Pan, et al., Targeting NLRP3 inflammasome in inflammatory bowel disease: putting out the fire of inflammation, Inflammation 42 (2019) 1147-1159. https://doi.org/10.1007/s10753-019-01008-y.
J.A. DiDonato, F. Mercurio, M. Karin, NF-κB and the link between inflammation and cancer, Immunol. Rev. 246 (2012) 379-400. https://doi.org/10.1111/j.1600-065X.2012.01099.x.
S.C. Sun, The noncanonical NF-κB pathway, Immunol. Rev. 246 (2012) 125-140. https://doi.org/10.1111/j.1600-065X.2011.01088.x.
S.C. Sun, Non-canonical NF-κB signaling pathway, Cell Res. 21 (2011) 71-85. https://doi.org/10.1038/cr.2010.177.
T. Lawrence, The nuclear factor NF-κB pathway in inflammation, Cold Spring Harb Perspect Biol. 1 (2009) a001651. https://doi.org/10.1101/cshperspect.a001651.
K. Fu, H. Zhou, C. Wang, et al., A review: pharmacology and pharmacokinetics of Schisandrin A, Phytother. Res. 36 (2022) 2375-2393. https://doi.org/10.1002/ptr.7456.
Y. Takimoto, H.Y. Qian, E. Yoshigai, et al., Gomisin N in the herbal drug gomishi (Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/EBPβ and NF-κB in rat hepatocytes, Nitric. Oxide. 28 (2013) 47-56. https://doi.org/10.1016/j.niox.2012.10.003.
Q. Chen, Q. Zhan, Y. Li, et al., Lignan extract protects against carbon tetrachloride-induced liver injury in mice by inhibiting oxidative stress and regulating the NF-κB and JNK signaling pathways, Evid. Based Complement Alternat. Med. 2017 (2017) 5140297. https://doi.org/10.1155/2017/5140297.
B. Li, D. Li, Y. Wang, et al., Schisantherin A alleviated alcohol-induced liver injury by the regulation of alcohol metabolism and NF-κB pathway, Exp. Anim. 67 (2018) 451-461. https://doi.org/10.1538/expanim.18-0021.
C. Tonelli, I.I.C. Chio, D.A. Tuveson, Transcriptional regulation by Nrf2, Antioxid. Redox. Signal 29 (2018) 1727-1745. https://doi.org/10.1089/ars.2017.7342.
R.K. Thimmulappa, K.H. Mai, S. Srisuma, T.W. Kensler, et al., Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray, Cancer Res. 62 (2002) 5196-5203.
K. Itoh, N. Wakabayashi, Y. Katoh, et al., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev. 13 (1999) 76-86. https://doi.org/10.1101/gad.13.1.76.
L. Quinti, S. Dayalan Naidu, U. Träger, et al., KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) E4676-E4685. https://doi.org/10.1073/pnas.1614943114.
C. Yu, J.H. Xiao, The Keap1-Nrf2 system: a mediator between oxidative stress and aging, Oxid. Med. Cell Longev. 2021 (2021) 6635460. https://doi.org/10.1155/2021/6635460.
S.B. Lee, C.Y. Kim, H.J. Lee, et al., Induction of the phase Ⅱ detoxification enzyme NQO1 in hepatocarcinoma cells by lignans from the fruit of Schisandra chinensis through nuclear accumulation of Nrf2, Planta Med. 75(2009) 1314-1318. https://doi.org/10.1055/s-0029-1185685.
Y.M. Jiang, Y. Wang, H.S. Tan, et al., Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway, Acta Pharmacol. Sin. 37 (2016) 382-389. https://doi.org/10.1038/aps.2015.120.
C.Y. Chang, Y.L. Chen, S.C. Yang, et al., Effect of schisandrin B and sesamin mixture on CCl4-induced hepatic oxidative stress in rats, Phytother. Res. 23 (2009) 251-256. https://doi.org/10.1002/ptr.2602.
T. Zininga, L. Ramatsui, A. Shonhai, Heat shock proteins as immunomodulants, Molecules 23 (2018) 2846. https://doi.org/10.3390/molecules23112846.
F.R. Sharp, S.M. Massa, R.A. Swanson, Heat-shock protein protection, Trends Neurosci. 22 (1999) 97-99. https://doi.org/10.1016/s0166-2236(98)01392-7.
I.M. Madaeva, N.A. Kurashova, N.V. Semenova, et al., Heat shock protein HSP70 in oxidative stress in apnea patients, Bull. Exp. Biol. Med. 169 (2020) 695-697. https://doi.org/10.1007/s10517-020-04957-9.
W. Wu, L. Lai, M. Xie, et al., Insights of heat shock protein 22 in the cardiac protection against ischemic oxidative stress, Redox. Biol. 34 (2020) 101555. https://doi.org/10.1016/j.redox.2020.101555.
L.F. Terra, R.A.M. Wailemann, A.F. Dos Santos, et al., Heat shock protein B1 is a key mediator of prolactin-induced beta-cell cytoprotection against oxidative stress, Free Radic. Biol. Med. 134 (2019) 394-405. https://doi.org/10.1016/j.freeradbiomed.2019.01.023.
X. Liu, K. Liu, C. Li, et al., Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells, J. Cell Physiol. 234 (2019) 5117-5133. https://doi.org/10.1002/jcp.27322.
P.Y. Chiu, M.H. Tang, D.H.F. Mak, et al., Hepatoprotective mechanism of schisandrin B: role of mitochondrial glutathione antioxidant status and heat shock proteins, Free Radic. Biol. Med. 35 (2003) 368-380. https://doi.org/10.1016/s0891-5849(03)00274-0.
H.J. Pu, Y.F. Cao, R.R. He, et al., Correlation between antistress and hepatoprotective effects of schisandra lignans was related with its antioxidative actions in liver cells, Evid. Based Complement Alternat. Med. 2012 (2012) 161062. https://doi.org/10.1155/2012/161062.
Y. Deng, Z. Xu, B. Xu, et al., Antioxidative effects of schidandrin B and green tea polyphenols against mercuric chloride-induced hepatotoxicity in rats, J. Environ. Pathol. Toxicol. Oncol. 33 (2014) 349-361. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2014011859.
P.Y. Lam, P.Y. Chiu, H.Y. Leung, et al., Schisandrin B co-treatment ameliorates the impairment on mitochondrial antioxidant status in various tissues of long-term ethanol treated rats, Fitoterapia 81 (2010) 1239-1245. https://doi.org/10.1016/j.fitote.2010.08.010.
M. Wagner, G. Zollner, M. Trauner, New molecular insights into the mechanisms of cholestasis, J. Hepatol. 51 (2009) 565-580. https://doi.org/10.1016/j.jhep.2009.05.012.
J. Wu, L.E. Nagy, S. Liangpunsakul, et al., Non-coding RNA crosstalk with nuclear receptors in liver disease, Biochim. Biophys. Acta Mol. Basis Dis. 1867 (2021) 166083. https://doi.org/10.1016/j.bbadis.2021.166083.
G.A. Preidis, K.H. Kim, D.D. Moore, Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance, J. Clin. Invest. 127 (2017) 1193-1201. https://doi.org/10.1172/JCI88893.
T. Smutny, J. Dusek, L. Hyrsova, et al., The 3’-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids, Acta Pharm. Sin. B 10 (2020) 136-152. https://doi.org/10.1016/j.apsb.2019.09.010.
P.O. Oladimeji, T. Chen, PXR: more than just a master xenobiotic receptor, Mol. Pharmacol. 93 (2018) 119-127. https://doi.org/10.1124/mol.117.110155.
S. Fan, C. Liu, Y. Jiang, et al., Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice, J. Ethnopharmacol. 245 (2019) 112103. https://doi.org/10.1016/j.jep.2019.112103.
H. Zeng, Y. Jiang, P. Chen, et al., Schisandrol B protects against cholestatic liver injury through pregnane X receptors, Br. J. Pharmacol. 174 (2017) 672-688. https://doi.org/10.1111/bph.13729.
H. Liang, X. Yang, H. Li, et al., Schisandrol B protects against cholestatic liver injury by inhibiting pyroptosis through pregnane X receptor, Biochem. Pharmacol. 204 (2022) 115222. https://doi.org/10.1016/j.bcp.2022.115222.
A. Marengo, C. Rosso, E. Bugianesi, Liver cancer: connections with obesity, fatty liver, and cirrhosis, Annu. Rev. Med. 67 (2016) 103-117. https://doi.org/10.1146/annurev-med-090514-013832.
J.M. Llovet, R.K. Kelley, A. Villanueva, et al., Hepatocellular carcinoma, Nat. Rev. Dis. Primers. 7 (2021) 6. https://doi.org/10.1038/s41572-020-00240-3.
Y.F. Wu, M.F. Cao, Y.P. Gao, et al., Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells, World J. Gastroenterol. 10 (2004) 2944-2948. https://doi.org/10.3748/wjg.v10.i20.2944.
P.L. Zhu, D.F. Lam, J.K. Li, et al., Gomisin N exerts anti-liver cancer effects and regulates PI3K-Akt and mTOR-ULK1 pathways in vitro, Biol. Pharm. Bull. 43 (2020) 1267-1271. https://doi.org/10.1248/bpb.b20-00030.
Y. Lu, W.J. Wang, Y.Z. Song, et al., The protective mechanism of schisandrin A in D-galactosamine-induced acute liver injury through activation of autophagy, Pharm. Biol. 52 (2014) 1302-1307. https://doi.org/10.3109/13880209.2014.890232.
Y. Jiang, X. Fan, Y. Wang, et al., Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation, Chem. Biol. Interact. 231 (2015) 83-89. https://doi.org/10.1016/j.cbi.2015.02.022.
Y. Jiang, X. Fan, Y. Wang, et al., Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration, Toxicol. Sci. 143 (2015) 107-115. https://doi.org/10.1093/toxsci/kfu216.
H.Y. Kwan, X. Niu, W. Dai, et al., Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers, Sci. Rep. 5 (2015) 9114. https://doi.org/10.1038/srep09114.
J.H. Chu, H. Wang, Y. Ye, et al., Inhibitory effect of schisandrin B on free fatty acid-induced steatosis in L-02 cells, World J. Gastroenterol. 17 (2011) 2379-2388. https://doi.org/10.3748/wjg.v17.i19.2379.
Z. Li, L. Zhao, Y. Xia, et al., Schisandrin B attenuates hepatic stellate cell activation and promotes apoptosis to protect against liver fibrosis, Molecules 26 (2021) 6882. https://doi.org/10.3390/molecules26226882.
Y. Ai, W. Shi, X. Zuo, et al., The combination of Schisandrol B and wedelolactone synergistically reverses hepatic fibrosis via modulating multiple signaling pathways in mice, Front. Pharmacol. 12 (2021) 655531. https://doi.org/10.3389/fphar.2021.655531.
J.K. Muhlemann, B.D. Woodworth, J.A. Morgan, et al., The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers, New Phytol. 204 (2014) 661-670. https://doi.org/10.1111/nph.12913.
R. Vanholme, B. de Meester, J. Ralph, et al., Lignin biosynthesis and its integration into metabolism, Curr. Opin. Biotechnol. 56 (2019) 230-239. https://doi.org/10.1016/j.copbio.2019.02.018.
T.Y. Qiang, J.S. Liu, Y.Q. Dong, et al., Identification, molecular cloning, and functional characterization of a coniferyl alcohol acyltransferase involved in the biosynthesis of dibenzocyclooctadiene lignans in Schisandra chinensis, Front. Plant Sci. 13 (2022) 881342. https://doi.org/10.3389/fpls.2022.881342.
K.W. Kim, S.G.A. Moinuddin, K.M. Atwell, et al., Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species, J. Biol. Chem. 287 (2012) 33957-33972. https://doi.org/10.1074/jbc.M112.387423.
X. He, F. Luan, Y. Yang, et al., An insight into current researches on phytochemistry and pharmacology, Front. Pharmacol. 11 (2020) 617. https://doi.org/10.3389/fphar.2020.00617.
W. Lau, E.S. Sattely, Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone, Science 349 (2015) 1224-1228. https://doi.org/10.1126/science.aac7202.
N. Ikezawa, K. Iwasa, F. Sato, Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells, J. Biol. Chem. 283 (2008) 8810-8821. https://doi.org/10.1074/jbc.M705082200.
A. Gesell, M. Rolf, J. Ziegler, et al., CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy, J. Biol. Chem. 284 (2009) 24432-24442. https://doi.org/10.1074/jbc.M109.033373.
J.D. Phillipson, Phytochemistry and medicinal plants, Phytochemistry 56 (2001) 237-243. https://doi.org/10.1016/s0031-9422(00)00456-8.
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, et al., Natural products in drug discovery: advances and opportunities, Nat. Rev. Drug Discov. 20 (2021) 200-216. https://doi.org/10.1038/s41573-020-00114-z.
C.T. Che, H. Zhang, Plant natural products for human health, Int. J. Mol. Sci. 20 (2019) 830. https://doi.org/10.3390/ijms20040830.
Z. Li, X. He, F. Liu, et al., A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: properties, functions andapplications, Carbohydr. Polym. 184 (2018) 178-190. https://doi.org/10.1016/j.carbpol.2017.12.058.
1229
Views
120
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).