Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages (FJBs) consumption. In fact, the consumption of ultra-processed foods has been shown to pose health risks. In this study, we first integrated 4 systems used to classify the degree of food processing and then classified FJBs into three major categories, low (minimal), moderate and high. Second, we compared the differences in attitudes towards FJBs in dietary guidelines. Third, we integrated the results of existing epidemiological surveys, randomized controlled trials, and animal experiments to explore the health risks associated with consuming FJBs. Deepening the processing of FJBs has been found to lead to an increased risk of diseases. Dietary pattern, nutrients, addition agents and consumer preferences may be influential factors. Finally, we investigated whether there were any changes in the health benefits of 100% fruit juices produced by different processing methods. In conclusion, minimally/moderately processed 100% fruit juices provide more health benefits than highly processed fruit beverages. The results support the need to consider the extent of FJBs processing in future studies to adjust official nutritional recommendations for beverage consumption.
L.Q. Sun, X.P. Liang, Y.Y. Wang, et al., Fruit consumption and multiple health outcomes: an umbrella review, Trends Food Sci. Technol. 118 (2021) 505-518. https://doi.org/10.1016/j.tifs.2021.09.023.
R. Jayawardena, P. Sooriyaarachchi, The inside story of fruits; exploring the truth behind conventional theories, Diabetes Metab. Syndr. 15 (2021) 102085. https://doi.org/10.1016/j.dsx.2021.03.020.
C.R. Munsell, J.L. Harris, V. Sarda, et al., Parents’ beliefs about the healthfulness of sugary drink options: opportunities to address misperceptions, Public Health Nutr. 19 (2016) 46-54. https://doi.org/10.1017/s1368980015000397.
J. Frantsve-Hawley, J.D. Bader, J.A. Welsh, et al., A systematic review of the association between consumption of sugar-containing beverages and excess weight gain among children under age 12, J. Public Health Dent. 77 (2017) S43-S66. https://doi.org/10.1111/jphd.12222.
B.J. Auerbach, F.M. Wolf, A. Hikida, et al., Fruit juice and change in BMI: a meta-analysis, Pediatr. 139 (2017) 2454. https://doi.org/10.1542/peds.2016-2454.
F.R. Scheffers, J.M.A. Boer, Sugar intake and all-cause mortality-differences between sugar-sweetened beverages, artificially sweetened beverages, and pure fruit juices, BMC Med. 18 (2020) 1-2. https://doi.org/10.1186/s12916-020-01579-w.
L. D’Elia, M. Dinu, F. Sofi, et al., 100% Fruit juice intake and cardiovascular risk: a systematic review and meta-analysis of prospective and randomised controlled studies, Eur. J. Nutr. 60 (2021) 2449-2467. https://doi.org/10.1007/s00394-020-02426-7.
B. Xi, S. Li, Z. Liu, et al., Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis, PLoS One 9 (2014) e93471. https://doi.org/10.1371/journal.pone.0093471.
B. Wang, K. Liu, M. Mi, et al., Effect of fruit juice on glucose control and insulin sensitivity in adults: a meta-analysis of 12 randomized controlled trials, PLoS One 9 (2014) e95323. https://doi.org/10.1371/journal.pone.0095323.
A. Onat, H. Uyarel, G. Hergenc, et al., Serum uric acid is a determinant of metabolic syndrome in a population-based study, Am. J. Hypertens. 19 (2006) 1055-1062. https://doi.org/10.1016/j.amjhyper.2006.02.014.
J. Jamnik, S. Rehman, S.B. Mejia, et al., Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies, BMJ 6 (2016) e013191. https://doi.org/10.1136/bmjopen-2016-013191.
B. Pan, L. Ge, H. Lai, et al., Association of soft drink and 100% fruit juice consumption with all-cause mortality, cardiovascular diseases mortality, and cancer mortality: a systematic review and dose-response meta-analysis of prospective cohort studies, Crit. Rev. Food Sci. Nutr. 62 (2021) 1-12. https://doi.org/10.1080/10408398.2021.1937040.
Y. Li, L. Guo, K. He, et al., Consumption of sugar-sweetened beverages and fruit juice and human cancer: a systematic review and dose-response meta-analysis of observational studies, J. Cancer 12 (2021) 3077-3088. https://doi.org/10.7150/jca.51322.
M.M. Salas, G.G. Nascimento, F. Vargas-Ferreira, et al., Diet influenced tooth erosion prevalence in children and adolescents: results of a meta-analysis and meta-regression, J. Dent. 43 (2015) 865-875. https://doi.org/10.1016/j.jdent.2015.05.012.
Y. Matsuoka, X. Guo, Y. Park, et al., Sweetened beverages, coffee, and tea and depression risk among older us adults, PLoS One 9 (2014) e94715. https://doi.org/10.1371/journal.pone.0094715.
P.E. Merkel, E.K. Ditto, K. Robien, et al., Perspective: chaos in a bottle-a critical evaluation of beverage categorization in nutrition research, Adv. Nutr. 11 (2020) 1414-1428. https://doi.org/10.1093/advances/nmaa068.
A. Herforth, M. Arimond, C. Alvarez-Sanchez, et al., A global review of food-based dietary guidelines, Adv. Nutr. 10 (2019) 590-605. https://doi.org/10.1093/advances/nmy130.
A. Fardet, C. Richonnet, A. Mazur, Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: a systematic review of meta-analyses, Nutr. Rev. 77 (2019) 376-387. https://doi.org/10.1093/nutrit/nuz004.
M.J. Gibney, C.G. Forde, Nutrition research challenges for processed food and health, Nat. Food 3 (2022) 104-109. https://doi.org/10.1038/s43016-021-00457-9.
R.D. Murray, 100% fruit juice in child and adolescent dietary patterns, J. Am. Coll. Nutr. 39 (2020) 122-127. https://doi.org/10.1080/07315724.2019.1615013.
I.H. Ho, L. Matia-Merino, L.M. Huffman, Use of viscous fibres in beverages for appetite control: a review of studies, Int. J. Food Sci. Nutr. 66 (2015) 479-490. https://doi.org/10.3109/09637486.2015.1034252.
H. Debelo, M. Li, M.G. Ferruzzi, Processing influences on food polyphenol profiles and biological activity, Curr. Opin. Food Sci. 32 (2020) 90-102. https://doi.org/10.1016/j.cofs.2020.03.001.
M. Crino, T. Barakat, H. Trevena, Systematic review and comparison of classification frameworks describing the degree of food processing, Nutr. Food Technol. 3 (2017) 138. https://doi.org/10.16966/2470-6086.138.
N. Slimani, G. Deharveng, D.A. Southgate, et al., Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study, Eur. J. Clin. Nutr. 63(Suppl 4) (2009) S206-225. https://doi.org/10.1038/ejcn.2009.82.
V. Chajes, C. Biessy, G. Byrnes, et al., Ecological-level associations between highly processed food intakes and plasma phospholipid elaidic acid concentrations: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition (EPIC), Nutr. Cancer 63 (2011) 1235-1250. https://doi.org/10.1080/01635581.2011.617530.
H.A. Eicher-Miller, V.L. Fulgoni, D.R. Keast, Processed food contributions to energy and nutrient intake differ among us children by race/ethnicity, Nutrients 7 (2015) 10076-10088. https://doi.org/10.3390/nu7125503.
H.A. Eicher-Miller, V.L. Fulgoni 3rd, D.R. Keast, Contributions of processed foods to dietary intake in the US from 2003-2008: a report of the food and nutrition science solutions joint task force of the academy of nutrition and dietetics, american society for nutrition, institute of food technologists, and international food information council, J. Nutr. 142 (2012) 2065S-2072S. https://doi.org/10.3945/jn.112.164442.
J.M. Poti, M.A. Mendez, S.W. Ng, et al., Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 101 (2015) 1251-1262. https://doi.org/10.3945/ajcn.114.100925.
C.A. Monteiro, G. Cannon, R.B. Levy, et al., Ultra-processed foods: what they are and how to identify them, Public Health Nutr. 22 (2019) 936-941. https://doi.org/10.1017/S1368980018003762.
C.A. Monteiro, Nutrition and health. the issue is not food, nor nutrients, so much as processing, Public Health Nutr. 12 (2009) 729-731. https://doi.org/10.1017/S1368980009005291.
A. Fardet, E. Rock, Ultra-processed foods: a new holistic paradigm? Trends Food Sci. Technol. 93 (2019) 174-184. https://doi.org/10.1016/j.tifs.2019.09.016.
C.A. Monteiro, G. Cannon, J.C. Moubarac, et al., The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing, Public Health Nutr. 21 (2018) 5-17. https://doi.org/10.1017/S1368980017000234.
J.C. Moubarac, D.C. Parra, G. Cannon, et al., Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment, Curr. Obes. Rep. 3 (2014) 256-272. https://doi.org/10.1007/s13679-014-0092-0.
P. Putnik, Z. Kresoja, T. Bosiljkov, et al., Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: a review, Food Chem. 279 (2019) 150-161. https://doi.org/10.1016/j.foodchem.2018.11.131.
G. Pagliai, M. Dinu, M.P. Madarena, et al., Consumption of ultra-processed foods and health status: a systematic review and meta-analysis, Brit. J. Nutr. 125 (2021) 308-318. https://doi.org/10.1017/S0007114520002688.
R. Bleiweiss-Sande, K. Chui, E.W. Evans, et al., Robustness of food processing classification systems, Nutr. 11 (2019) 1344. https://doi.org/10.3390/nu11061344.
C. Martinez-Perez, R. San-Cristobal, P. Guallar-Castillon, et al., Use of different food classification systems to assess the association between ultra-processed food consumption and cardiometabolic health in an elderly population with metabolic syndrome (PREDIMED-Plus Cohort), Nutrients 13 (2021) 2471. https://doi.org/10.3390/nu13072471.
M.J. Gibney, Ultra-processed foods: definitions and policy issues, Curr. Dev. Nutr. 3 (2019) nzy077. https://doi.org/10.1093/cdn/nzy077.
A. Fardet, E. Rock, Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations, Adv. Nutr. 5 (2014) 430-446. https://doi.org/10.3945/an.114.006122.
D. Knorr, M.A. Augustin, Food processing needs, advantages and misconceptions, Trends Food Sci. Technol. 108 (2021) 103-110. https://doi.org/10.1016/j.tifs.2020.11.026.
D. Kromhout, C.J.K. Spaaij, J. de Goede, et al., The 2015 Dutch food-based dietary guidelines, Eur. J. Clin. Nutr. 70 (2016) 869-878. https://doi.org/10.1038/ejcn.2016.52.
H.H. Vorster, J.B. Badham, C.S. Venter, An introduction to the revised food-based dietary guidelines for South Africa, S. Afr. J. Clin. Nutr. 26 (2013) S5-S12.
C.H. Ruxton, E.J. Gardner, D. Walker, Can pure fruit and vegetable juices protect against cancer and cardiovascular disease too? a review of the evidence, Int. J. Food Sci. Nutr. 57 (2006) 249-272. https://doi.org/10.1080/09637480600858134.
M. Aragno, R. Mastrocola, Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease, Nutrients 9 (2017) 385. https://doi.org/10.3390/nu9040385.
E.P. Williams, M. Mesidor, K. Winters, et al., Overweight and obesity: prevalence, consequences, and causes of a growing public health problem, Curr. Obes. Rep. 4 (2015) 363-370. https://doi.org/10.1007/s13679-015-0169-4.
N.N. Wijayatunga, E.J. Dhurandhar, Normal weight obesity and unaddressed cardiometabolic health risk-a narrative review, Int. J. Obes. 45 (2021) 2141-2155. https://doi.org/10.1038/s41366-021-00858-7.
G. Seravalle, G. Grassi, Obesity and hypertension, Pharmacol. Res. 122 (2017) 1-7. https://doi.org/10.1016/j.phrs.2017.05.013.
H. Yaribeygi, M. Maleki, T. Sathyapalan, et al., Obesity and insulin resistance: a review of molecular interactions, Curr. Mol. Med. 21 (2021) 182-193. https://doi.org/10.2174/1566524020666200812221527.
S. Tonstad, J.P. Despres, Treatment of lipid disorders in obesity, Expert. Rev. Cardiovasc. Ther. 9 (2011) 1069-1080. https://doi.org/10.1586/erc.11.83.
M.J. Haley, C.B. Lawrence, Obesity and stroke: can we translate from rodents to patients? J. Cereb. Blood Flow Metab. 36 (2016) 2007-2021. https://doi.org/10.1177/0271678x16670411.
E. Silvestris, G. de Pergola, R. Rosania, et al., Obesity as disruptor of the female fertility, Reprod. Biol. Endocrinol. 16 (2018) 22. https://doi.org/10.1186/s12958-018-0336-z.
U. Peters, A.E. Dixon, E. Forno, Obesity and asthma, J. Allergy Clin. Immunol. 141 (2018) 1169-1179. https://doi.org/10.1016/j.jaci.2018.02.004.
J. Jin, H. Wu, Relation between obesity and oral health, Hua Xi Kou Qiang Yi Xue Za Zhi 33 (2015) 428-430.
G. Argyrakopoulou, M. Dalamaga, N. Spyrou, et al., Gender differences in obesity-related cancers, Curr. Obes. Rep. 10 (2021) 100-115. https://doi.org/10.1007/s13679-021-00426-0.
C.E. O’Neil, T.A. Nicklas, A review of the relationship between 100% fruit juice consumption and weight in children and adolescents, Am. J. Lifestyle Med. 2 (2008) 315-354. https://doi.org/10.1177/1559827608317277.
K. Crowe-White, C.E. O’Neil, J.S. Parrott, et al., Impact of 100% fruit juice consumption on diet and weight status of children: an evidence-based review, Crit. Rev. Food Sci. Nutr. 56 (2016) 871-884. https://doi.org/10.1080/10408398.2015.1061475.
A. Shefferly, R.J. Scharf, M.D. DeBoer, Longitudinal evaluation of 100% fruit juice consumption on BMI status in 2-5-year-old children, Pediatr. Obes. 11 (2016) 221-227. https://doi.org/10.1111/ijpo.12048.
P. Qin, Q. Li, Y. Zhao, et al., Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies, Eur. J. Epidemiol. 35 (2020) 655-671. https://doi.org/10.1007/s10654-020-00655-y.
L. Hebden, F. O’Leary, A. Rangan, et al., Fruit consumption and adiposity status in adults: a systematic review of current evidence, Crit. Rev. Food Sci. Nutr. 57 (2017) 2526-2540. https://doi.org/10.1080/10408398.2015.1012290.
B.J. Auerbach, A.J. Littman, J. Krieger, et al., Association of 100% fruit juice consumption and 3-year weight change among postmenopausal women in the in the women’s health initiative, Prev. Med. 109 (2018) 8-10. https://doi.org/10.1016/j.ypmed.2018.01.004.
D. Mozaffarian, T. Hao, E.B. Rimm, et al., Changes in diet and lifestyle and long-term weight gain in women and men, N. Engl. J. Med. 364 (2011) 2392-2404. https://doi.org/10.1056/NEJMoa1014296.
C. Ruxton, G. Horgan, J. de Rycker, Daily consumption of 100% orange juice does not increase body weight in adults: a meta-analysis of randomised controlled trials, Proc. Nutr. Soc. 79 (2020) 1755. https://doi.org/10.1017/s0029665120001755.
M.M. Murphy, L.M. Barraj, T.D. Brisbois, et al., Frequency of fruit juice consumption and association with nutrient intakes among Canadians, Nutr. Health 26 (2020) 277-283. https://doi.org/10.1177/0260106020944299.
A. Duque, M. Monteiro, M.A.T. Adorno, et al., An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model, Food Res. Int. 84 (2016) 160-169. https://doi.org/10.1016/j.foodres.2016.03.028.
M. Naghavi, H.D. Wang, R. Lozano, et al., Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet 385 (2015) 117-171. https://doi.org/10.1016/s0140-6736(14)61682-2.
P.K. Whelton, R.M. Carey, W.S. Aronow, et al., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines, Circulation 138 (2018) E484-E594. https://doi.org/10.1161/cir.0000000000000596.
Z. Yu, S.H. Ley, Q. Sun, et al., Cross-sectional association between sugar-sweetened beverage intake and cardiometabolic biomarkers in US women, Br. J. Nutr. 119 (2018) 570-580. https://doi.org/10.1017/S0007114517003841.
F.R. Scheffers, J.M. Boer, A.H. Wijga, et al., Substitution of pure fruit juice for fruit and sugar-sweetened beverages and cardiometabolic risk in European Prospective Investigation into Cancer and Nutrition (EPIC)-NL: a prospective cohort study, Public Health Nutr. 25 (2021) 1-11. https://doi.org/10.1017/S1368980021000914.
Q. Liu, S. Ayoub-Charette, T.A. Khan, et al., Important food sources of fructose-containing sugars and incident hypertension: a systematic review and dose-response meta-analysis of prospective cohort studies, J. Am. Heart Assoc. 8 (2019) e010977. https://doi.org/10.1161/JAHA.118.010977.
F. Imamura, L. O’Connor, Z. Ye, et al., Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction, BMJ 351 (2015) h3576. https://doi.org/10.1136/bmj.h3576.
M.M. Murphy, E.C. Barrett, K.A. Bresnahan, et al., 100% fruit juice and measures of glucose control and insulin sensitivity: a systematic review and meta-analysis of randomised controlled trials, J. Nutr. Sci. 6 (2017) e59. https://doi.org/10.1017/jns.2017.63.
R.J. Johnson, T. Nakagawa, L.G. Sanchez-Lozada, et al., Sugar, uric acid, and the etiology of diabetes and obesity, Diabetes 62 (2013) 3307-3315. https://doi.org/10.2337/db12-1814.
M. Kuwabara, K. Niwa, I. Hisatome, et al., Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases 5-year japanese cohort study, Hypertension 69 (2017) 1036. https://doi.org/10.1161/Hypertensionaha.116.08998.
J.W. Choi, E.S. Ford, X. Gao, et al., Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey, Arthritis Rheum. 59 (2008) 109-116. https://doi.org/10.1002/art.23245.
T. Nakagawa, M.A. Lanaspa, R.J. Johnson, The effects of fruit consumption in patients with hyperuricaemia or gout, Rheumatology 58 (2019) 1133-1141. https://doi.org/10.1093/rheumatology/kez128.
S. Ayoub-Charette, Q. Liu, T.A. Khan, et al., Important food sources of fructose-containing sugars and incident gout: a systematic review and meta-analysis of prospective cohort studies, BMJ 9 (2019) e024171. https://doi.org/10.1136/bmjopen-2018-024171.
H.K. Choi, W. Willett, G. Curhan, Fructose-rich beverages and risk of gout in women, JAMA 304 (2010) 2270-2278. https://doi.org/10.1001/jama.2010.1638.
S.L. Freije, C.C. Senter, A.D. Avery, et al., Association between consumption of sugar- sweetened beverages and 100% fruit juice with poor mental health among us adults in 11 US states and the district of columbia, Prev. Chronic. Dis. 18 (2021) 200574. https://doi.org/10.5888/pcd18.200574.
A. Lussi, M. Schaffner, Progression of and risk factors for dental erosion and wedge-shaped defects over a 6-year period, Caries Res. 34 (2000) 182-187. https://doi.org/10.1159/000016587.
F. Hajifattahi, S. Hosseini Jeddi, M. Khatibi, Comparison of the effect of pomegranate juice and orange juice on the level of pH of dental plaque, J. Res. Dent. Max. Sci. 1 (2016) 23-27. https://doi.org/10.18869/acadpub.jrdms.1.3.23.
A. Nazir, Evaluation of changes in salivary pH after the intake of fruits, fresh fruit juices and processed juices: a randomized control trial, Pure Appl. Biol. 9 (2020) 90210. https://doi.org/10.19045/bspab.2020.90210.
T.A. Marshall, A.M. Curtis, J.E. Cavanaugh, et al., Beverage intakes and toothbrushing during childhood are associated with caries at age 17 years, J. Acad. Nutr. Diet. 121 (2021) 253-260. https://doi.org/10.1016/j.jand.2020.08.087.
A. Sheiham, W.P. James, A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption, Public Health Nutr. 17 (2014) 2176-2184. https://doi.org/10.1017/S136898001400113X.
R.S. Soumya, K.B. Raj, A. Abraham, Passiflora edulis (var. Flavicarpa) juice supplementation mitigates isoproterenol-induced myocardial infarction in rats, Plant Foods Hum. Nutr. 76 (2021) 189-195. https://doi.org/10.1007/s11130-021-00891-x.
L. Testai, M. de Leo, L. Flori, et al., Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet, Phytother Res. 35 (2021) 4324-4333. https://doi.org/10.1002/ptr.7128.
J.M. Fallas-Ramirez, L. Hernandez, F. Vaillant, Untargeted metabolomic profiling of urine in Wistar rats reveals enhanced bioavailability of soy isoflavones post short-term consumption of noni (Morinda citrifolia) juice, J. Funct. Foods 40 (2018) 51-59. https://doi.org/10.1016/j.jff.2017.10.034.
P.N. Ani, P.C. Aginam, Effect of Citrus maxima juice on fasting blood glucose, lipid profile, liver enzyme and body weight, Nutr. Food Sci. 48 (2018) 755-763. https://doi.org/10.1108/nfs-01-2018-0002.
I.C.T. Proenca, L.K. Goncalves, F. Schmitz, et al., Purple grape juice consumption during the gestation reduces acetylcholinesterase activity and oxidative stress levels provoked by high-fat diet in hippocampus from adult female rats descendants, An. Acad. Bras. Cienc. 93 (2021) e20191002. https://doi.org/10.1590/0001-3765202120191002.
S. Ahmad, T. Mahmood, R. Kumar, et al., Comparative evaluation of cardioprotective activity of Gala and Fuji apple juice against isoprenaline-induced cardiotoxicity in rats, J. Complement Integr. Med. 19 (2021) 27-36. https://doi.org/10.1515/jcim-2020-0336.
R. Fernandez-Demeneghi, J.F. Rodriguez-Landa, R.I. Guzman-Geronimo, et al., Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats, Int. J. Food Sci. Nutr. 70 (2019) 856-867. https://doi.org/10.1080/09637486.2019.1580680.
P.L.M. Ruiz, B.A. Handan, C.F.G. de Moura, et al., Protective effect of grape or apple juices in bone tissue of rats exposed to cadmium: role of RUNX-2 and RANK/L expression, Environ. Sci. Pollut. Res. Int. 25 (2018) 15785-15792. https://doi.org/10.1007/s11356-018-1778-8.
C.A. Virgen-Carrillo, A.G. Martinez Moreno, E.H. Valdes Miramontes, Potential hypoglycemic effect of pomegranate juice and its mechanism of action: a systematic review, J. Med. Food 23 (2020) 1-11. https://doi.org/10.1089/jmf.2019.0069.
S. Agarwal, V.L. Fulgoni Iii, D. Welland, Intake of 100% fruit juice is associated with improved diet quality of adults: NHANES 2013-2016 Analysis, Nutr. 11 (2019) 2513. https://doi.org/10.3390/nu11102513.
A.S. Anderson, D.N. Cox, S. McKellar, et al., Take 5, a nutrition education intervention to increase fruit and vegetable intakes: impact on attitudes towards dietary change, Brit. J. Nutr. 80 (1998) 133-140. https://doi.org/10.1017/s0007114598001032.
Y. Li, D.L. Zhang, J.A. Pagan, Social norms and the consumption of fruits and vegetables across New York City neighborhoods, J. Urban Health 93 (2016) 244-255. https://doi.org/10.1007/s11524-016-0028-y.
E. Almironroig, A. Drewnowski, Hunger, thirst, and energy intakes following consumption of caloric beverages, Physiol. Behav. 79 (2003) 767-773. https://doi.org/10.1016/s0031-9384(03)00212-9.
M.R. Dicklin, R. Barron, S. Goltz, et al., Fiber and micronutrient intakes among fruit juice consumers and non-consumers in the united kingdom and france: modeling the effects of consumption of an orange pomace juice product, J. Hum. Nutr. Diet. (2022) 12995. https://doi.org/10.1111/jhn.12995.
C.H.S. Ruxton, E. Derbyshire, J.L. Sievenpiper, Pure 100% fruit juices-more than just a source of free sugars? a review of the evidence of their effect on risk of cardiovascular disease, type 2 diabetes and obesity, Nutr. Bull. 46 (2021) 415-431. https://doi.org/10.1111/nbu.12526.
S. Agarwal, V.L. Fulgoni, D. Welland, Intake of 100% fruit juice is associated with improved diet quality of adults: NHANES 2013-2016 Analysis, Nutr. 11 (2019) 2513. https://doi.org/10.3390/nu11102513.
M.M.G. Karasawa, C. Mohan, Fruits as prospective reserves of bioactive compounds: a review, Nat. Prod. Bioprospect. 8 (2018) 335-346. https://doi.org/10.1007/s13659-018-0186-6.
B.P. Marriott, N. Cole, E. Lee, National estimates of dietary fructose intake increased from 1977 to 2004 in the United States, J. Nutr. 139 (2009) S1228-S1235. https://doi.org/10.3945/jn.108.098277.
D.M. DellaValle, L.S. Roe, B.J. Rolls, Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite 44 (2005) 187-193. https://doi.org/10.1016/j.appet.2004.11.003.
D.P. DiMeglio, R.D. Mattes, Liquid versus solid carbohydrate: effects on food intake and body weight, Int. J. Obes. Relat. Metab. Disord. 24 (2000) 794-800. https://doi.org/10.1038/sj.ijo.0801229.
A. Chanson-Rolle, V. Braesco, J. Chupin, et al., Nutritional composition of orange juice: a comparative study between French commercial and home-made juices, Food Nutr. Sci. 7 (2016) 252-261. https://doi.org/10.4236/fns.2016.74027.
G.E. Swan, N.A. Powell, B.L. Knowles, et al., A definition of free sugars for the UK, Public Health Nutr. 21 (2018) 1636-1638. https://doi.org/10.1017/S136898001800085X.
D.J. Mela, A proposed simple method for objectively quantifying free sugars in foods and beverages, Eur. J. Clin. Nutr. 74 (2020) 1366-1368. https://doi.org/10.1038/s41430-020-0575-x.
R. Kibblewhite, A. Nettleton, R. McLean, et al., Estimating free and added sugar intakes in New Zealand, Nutrients 9 (2017) 1292. https://doi.org/10.3390/nu9121292.
A. Pepin, K.L. Stanhope, P. Imbeault, Are fruit juices healthier than sugar-sweetened beverages? a review, Nutrients 11 (2019) 1006. https://doi.org/10.3390/nu11051006.
M. Guasch-Ferre, F.B. Hu, Are fruit juices just as unhealthy as sugar-sweetened beverages? JAMA Netw. Open 2 (2019) e193109. https://doi.org/10.1001/jamanetworkopen.2019.3109.
G.M. Singh, R. Micha, S. Khatibzadeh, et al., Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries, PLoS One 10 (2015) e0124845. https://doi.org/10.1371/journal.pone.0124845.
L.S.A. Augustin, C.W.C. Kendall, D.J.A. Jenkins, et al., Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC), Nutr. Metab. Cardiovasc. Dis. 25 (2015) 795-815. https://doi.org/10.1016/j.numecd.2015.05.005.
T.M. Wolever, Carbohydrate and the regulation of blood glucose and metabolism, Nutr. Rev. 61 (2003) 40-48. https://doi.org/10.1301/nr.2003.may.S40-S48.
F. Busing, F.A. Hagele, A. Nas, et al., High intake of orange juice and cola differently affects metabolic risk in healthy subjects, Clin. Nutr. 38 (2019) 812-819. https://doi.org/10.1016/j.clnu.2018.02.028.
A.L. Rocha Faria Duque, M. Monteiro, M.A. Tallarico Adorno, et al., An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model, Food Res. Int. 84 (2016) 160-169. https://doi.org/10.1016/j.foodres.2016.03.028.
M. Fidelix, D. Milenkovic, K. Sivieri, et al., Microbiota modulation and effects on metabolic biomarkers by orange juice: a controlled clinical trial, Food Funct. 11 (2020) 1599-1610. https://doi.org/10.1039/c9fo02623a.
A.C.D. Lima, C. Cecatti, M.P. Fidelix, et al., Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials, J. Med. Food 22 (2019) 202-210. https://doi.org/10.1089/jmf.2018.0080.
S.W. Ng, M.M. Slining, B.M. Popkin, Use of caloric and noncaloric sweeteners in US consumer packaged foods, 2005-2009, J. Acad. Nutr. Diet. 112 (2012) 1828-1834. https://doi.org/10.1016/j.jand.2012.07.009.
M.R. Taskinen, C.J. Packard, J. Boren, Dietary fructose and the metabolic syndrome, Nutrients 11 (2019) 1987. https://doi.org/10.3390/nu11091987.
K.W. ter Horst, M.J. Serlie, Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease, Nutrients 9 (2017) 981. https://doi.org/10.3390/nu9090981.
L. de Koning, V.S. Malik, M.D. Kellogg, et al., Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men, Circulation 125 (2012) 1735-1784. https://doi.org/10.1161/circulationaha.111.067017.
L.R. DeChristopher, J. Uribarri, K.L. Tucker, Intake of high fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent coronary heart disease, in U.S. adults, ages 45-59 y, BMC Nutr. 3 (2017) 51. https://doi.org/10.1186/s40795-017-0168-9.
S.R. Taylor, S. Ramsamooj, R.J. Liang, et al., Dietary fructose improves intestinal cell survival and nutrient absorption, Nature 597 (2021) 263-267. https://doi.org/10.1038/s41586-021-03827-2.
K.L. Stanhope, Sugar consumption, metabolic disease and obesity: the state of the controversy, Crit. Rev. Clin. Lab. Sci. 53 (2016) 52-67. https://doi.org/10.3109/10408363.2015.1084990.
P.E.S. Munekata, J.Á. Pérez-Álvarez, M. Pateiro, et al., Satiety from healthier and functional foods, Trends Food Sci. Technol. 113 (2021) 397-410. https://doi.org/10.1016/j.tifs.2021.05.025.
R. Clemens, A. Drewnowski, M.G. Ferruzzi, et al., Squeezing fact from fiction about 100% fruit juice, Adv. Nutr. 6 (2015) 236S-243S. https://doi.org/10.3945/an.114.007328.
B.R. Thakur, R.K. Singh, A.K. Handa, Chemistry and uses of pectin-a review, Crit. Rev. Food Sci. Nutr. 37 (1997) 47-73. https://doi.org/10.1080/10408399709527767.
A. de Roeck, D.N. Sila, T. Duvetter, et al., Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue, Commun. Agric. Appl. Biol. Sci. 72 (2007) 141-146.
R.P. Bolton, K.W. Heaton, L.F. Burroughs, The role of dietary fiber in satiety, glucose, and insulin: studies with fruit and fruit juice, Am. J. Clin Nutr. 34 (1981) 211-217. https://doi.org/10.1093/ajcn/34.2.211.
N. Bosch-Sierra, R. Marques-Cardete, A. Gurrea-Martinez, et al., Effect of fibre-enriched orange juice on postprandial glycaemic response and satiety in healthy individuals: an acute, randomised, placebo-controlled, double-blind, crossover study, Nutrients 11 (2019) 3014. https://doi.org/10.3390/nu11123014.
D.J. Baer, W.V. Rumpler, C.W. Miles, et al., Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans, J. Nutr. 127 (1997) 579-586. https://doi.org/10.1093/jn/127.4.579.
C.L. Dikeman, G.C. Fahey, Viscosity as related to dietary fiber: a review, Crit. Rev. Food Sci. Nutr. 46 (2006) 649-663. https://doi.org/10.1080/10408390500511862.
M.L. Sleeth, E.L. Thompson, H.E. Ford, et al., Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation, Nutr. Res. Rev. 23 (2010) 135-145. https://doi.org/10.1017/S0954422410000089.
A.J. Wanders, J.J. van den Borne, C. de Graaf, et al., Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials, Obes. Rev. 12 (2011) 724-739. https://doi.org/10.1111/j.1467-789X.2011.00895.x.
E. Capuano, The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect, Crit. Rev. Food Sci. Nutr. 57 (2017) 3543-3564. https://doi.org/10.1080/10408398.2016.1180501.
F. Shahidi, J. Yeo, Bioactivities of phenolics by focusing on suppression of chronic diseases: a review, Int. J. Mol. Sci. 19 (2018) 1573. https://doi.org/10.3390/ijms19061573.
D. Benton, H.A. Young, Role of fruit juice in achieving the 5-a-day recommendation for fruit and vegetable intake, Nutr. Rev. 77 (2019) 829-843. https://doi.org/10.1093/nutrit/nuz031.
K. Ho, M.G. Ferruzzi, J.D. Wightman, Potential health benefits of (poly) phenols derived from fruit and 100% fruit juice, Nutr. Rev. 78 (2020) 145-174. https://doi.org/10.1093/nutrit/nuz041.
J.Q. Silveira, T.B. Cesar, J.A. Manthey, et al., Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed orange juice versus commercially processed orange juice in healthy humans, J. Agric. Food Chem. 62 (2014) 12576-12584. https://doi.org/10.1021/jf5038163.
L. Zhao, Y. Wang, D. Qiu, et al., Effect of ultrafiltration combined with high-pressure processing on safety and quality features of fresh apple juice, Food Bioproc. Tech. 7 (2014) 3246-3258. https://doi.org/10.1007/s11947-014-1307-9.
P. Yang, Y. Wang, X. Wu, et al., Effect of high pressure processing and high-temperature short-time sterilization on the quality of sea buckthorn juice, Food Sci. 43 (2022) 23-32. https://doi.org/10.7506/spkx1002-6630-20210306-078.
A. Fardet, C. Richonnet, Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: a narrative review, Crit. Rev. Food Sci. Nutr. 60 (2020) 3233-3258. https://doi.org/10.1080/10408398.2019.1682512.
G. Azofeifa, S. Quesada, A.M. Perez, et al., Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals, J. Food Compost. Anal. 42 (2015) 56-62. https://doi.org/10.1016/j.jfca.2015.01.015.
I. Odriozola-Serrano, R. Soliva-Fortuny, O. Martin-Belloso, Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments, Eur. Food Res. Technol. 228 (2008) 239-248. https://doi.org/10.1007/s00217-008-0928-5.
F.N. Vieira, S. Lourenco, L.G. Fidalgo, et al., Long-term effect on bioactive components and antioxidant activity of thermal and high-pressure pasteurization of orange juice, Molecules 23 (2018) 2706. https://doi.org/10.3390/molecules23102706.
V. Santhirasegaram, Z. Razali, D.S. George, et al., Effects of thermal and non-thermal processing on phenolic compounds, antioxidant activity and sensory attributes of chokanan mango (Mangifera indica L.) juice, Food Bioproc. Tech. 8 (2015) 2256-2267. https://doi.org/10.1007/s11947-015-1576-y.
A. Suarez-Jacobo, C.E. Rufer, R. Gervilla, et al., Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice, Food Chem. 127 (2011) 447-454. https://doi.org/10.1016/j.foodchem.2010.12.152.
J. Vanamala, L. Reddivari, K.S. Yoo, et al., Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices, J. Food Compost. Anal. 19 (2006) 157-166. https://doi.org/10.1016/j.jfca.2005.06.002.
V. Ivanova, M. Stefova, F. Chinnici, Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods, J. Serb. Chem. Soc. 75 (2010) 45-59. https://doi.org/10.2298/jsc1001045i.
C. Manach, G. Williamson, C. Morand, et al., Bioavailability and bioefficacy of polyphenols in humans. I. review of 97 bioavailability studies, Am. J. Clin. Nutr. 81 (2005) 230S-242S.
S.V. Madeira, C. Auger, E. Anselm, et al., eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries, J. Vasc. Res. 46 (2009) 406-416. https://doi.org/10.1159/000194271.
C. Morand, C. Dubray, D. Milenkovic, et al., Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers, Am J. Clin Nutr. 93 (2011) 73-80. https://doi.org/10.3945/ajcn.110.004945.
C. Hermenegildo, P.J. Oviedo, M.A. Garcia-Perez, et al., Effects of phytoestrogens genistein and daidzein on prostacyclin production by human endothelial cells, J. Pharmacol. Exp. Ther. 315 (2005) 722-728. https://doi.org/10.1124/jpet.105.090456.
D.D. Schramm, J.F. Wang, R.R. Holt, et al., Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells, Am. J. Clin. Nutr. 73 (2001) 36-40. https://doi.org/10.1093/ajcn/73.1.36.
X. Li, H. Wasila, L. Liu, et al., Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis, Food Chem. 175 (2015) 575-584. https://doi.org/10.1016/j.foodchem.2014.12.003.
L. Yuan, F. Cheng, J. Yi, et al., Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice, Food Chem. 373 (2022) 131397. https://doi.org/10.1016/j.foodchem.2021.131397.
A. Kerimi, J.S. Gauer, S. Crabbe, et al., Effect of the flavonoid hesperidin on glucose and fructose transport, sucrase activity and glycaemic response to orange juice in a crossover trial on healthy volunteers, Br. J. Nutr. 121 (2019) 782-792. https://doi.org/10.1017/S0007114519000084.
G. Borges, M.E.J. Lean, S.A. Roberts, et al., Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in small and large intestine, Food Funct. 4 (2013) 754-762. https://doi.org/10.1039/c3fo60024f.
A. Banerjee, P. Dhar, Amalgamation of polyphenols and probiotics induce health promotion, Crit. Rev. Food Sci. Nutr. 59 (2019) 2903-2926. https://doi.org/10.1080/10408398.2018.1478795.
Y. Stevens, E. Van Rymenant, C. Grootaert, et al., The intestinal fate of citrus flavanones and their effects on gastrointestinal health, Nutrients 11 (2019) 1464. https://doi.org/10.3390/nu11071464.
D. Rios-Covian, P. Ruas-Madiedo, A. Margolles, et al., Intestinal short chain fatty acids and their link with diet and human health, Front. Microbiol. 7 (2016) 185. https://doi.org/10.3389/fmicb.2016.00185.
J. Zheng, Y. Zhou, S. Li, et al., Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases, Int. J. Mol. Sci. 18 (2017) 555. https://doi.org/10.3390/ijms18030555.
R.J. Williams, J.P. Spencer, C. Rice-Evans, Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36 (2004) 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001.
A.N. Kim, H.J. Kim, W.L. Kerr, et al., The effect of grinding at various vacuum levels on the color, phenolics, and antioxidant properties of apple, Food Chem. 216 (2017) 234-242. https://doi.org/10.1016/j.foodchem.2016.08.025.
J.F. Reis, V.V. Monteiro, R. de Souza Gomes, et al., Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies, J. Transl. Med. 14 (2016) 315. https://doi.org/10.1186/s12967-016-1076-5.
R. Yang, J. Tian, Y. Liu, et al., Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: the structure, iron redox, and polymerization evaluation, Food Chem. 349 (2021) 129144. https://doi.org/10.1016/j.foodchem.2021.129144.
A.R. Proteggente, A.S. Pannala, G. Paganga, et al., The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition, Free Radical Res. 36 (2002) 217-233. https://doi.org/10.1080/10715760290006484.
R. Mahdavi, Z. Nikniaz, M. Rafraf, et al., Determination and comparison of total polyphenol and vitamin C contents of natural fresh and commercial fruit juices, Pak. J. Nutr. 9 (2010) 968-972.
A. Gil-Izquierdo, M.I. Gil, F. Ferreres, Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds, J. Agric. Food Chem. 50 (2002) 5107-5114. https://doi.org/10.1021/jf020162+.
B.K. Tiwari, C.P. Donnell, K. Muthukumarappan, et al., Effect of sonication on orange juice quality parameters during storage, Int. J. Food Sci. Tech. 44 (2009) 586-595. https://doi.org/10.1111/j.1365-2621.2008.01858.x.
X.Y. Xie, X.Q. Wang, X.F. Bi, et al., Effects of ultrafiltration combined with high-pressure processing, ultrasound and heat treatments on the quality of a blueberry-grape-pineapple-cantaloupe juice blend, Int. J. Food Sci. Tech. 57 (2022) 4368-4379. https://doi.org/10.1111/ijfs.15763.
B. de Ancos, M.J. Rodrigo, C. Sanchez-Moreno, et al., Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges ‘Navel’ and the red-fleshed ‘Cara Cara’, Food Res. Int. 132 (2020) 109105. https://doi.org/10.1016/j.foodres.2020.109105.
B. Hornig, Vitamins, antioxidants and endothelial function in coronary artery disease, Cardiovasc. Drugs Ther. 16 (2002) 401-409. https://doi.org/10.1023/a:1022182201534.
S. Guarnieri, P. Riso, M. Porrini, Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells, Brit. J. Nutr. 97 (2007) 639-643. https://doi.org/10.1017/s0007114507657948.
T. Maoka, Carotenoids as natural functional pigments, J. Nat. Med. 74 (2020) 1-16. https://doi.org/10.1007/s11418-019-01364-x.
M.G. Dias, B. Olmedilla-Alonso, D. Hornero-Mendez, et al., Comprehensive database of carotenoid contents in ibero-american foods. a valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives, J. Agric. Food Chem. 66 (2018) 5055-5107. https://doi.org/10.1021/acs.jafc.7b06148.
Y. Wang, F. Yang, T. Liu, et al., Carotenoid fates in plant foods: chemical changes from farm to table and nutrition, Crit. Rev. Food Sci. Nutr. (2022) 1-19. https://doi.org/10.1080/10408398.2022.2115002.
T.K. Koley, J. Nishad, C. Kaur, et al., Effect of high-pressure microfluidization on nutritional quality of carrot (Daucus carota L.) juice, J. Food Sci. Technol. 57 (2020) 2159-2168. https://doi.org/10.1007/s13197-020-04251-6.
M.J. Esteve, F.J. Barba, S. Palop, et al., The effects of non-thermal processing on carotenoids in orange juice, Czech. J. Food Sci. 27 (2009) S304-S306. https://doi.org/10.17221/1094-cjfs.
J. Szczepańska, S. Skąpska, J.M. Lorenzo, et al., The influence of static and multi-pulsed pressure processing on the enzymatic and physico-chemical quality, and antioxidant potential of carrot juice during refrigerated storage, Food Bioproc. Tech. 14 (2021) 52-64. https://doi.org/10.1007/s11947-020-02577-9.
W. Zhang, Y. Yu, F. Xie, et al., High pressure homogenization versus ultrasound treatment of tomato juice: effects on stability and in vitro bioaccessibility of carotenoids, LWT-Food Sci. Technol. 116 (2019) 108597. https://doi.org/10.1016/j.lwt.2019.108597.
L. Etzbach, R. Stolle, K. Anheuser, et al., Impact of different pasteurization techniques and subsequent ultrasonication on the in vitro bioaccessibility of carotenoids in valencia orange (Citrus sinensis (L.) osbeck) juice, Antioxidants 9 (2020) 534. https://doi.org/10.3390/antiox9060534.
E. Reboul, Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins, Nutrients 5 (2013) 3563-3581. https://doi.org/10.3390/nu5093563.
A. Nagao, Bioavailability of dietary carotenoids: intestinal absorption and metabolism, JARQ 48 (2014) 385-391. https://doi.org/10.6090/jarq.48.385.
R. Massenti, A. Perrone, M.A. Livrea, et al., Regular consumption of fresh orange juice increases human skin carotenoid content, Int. J. Food Sci. Nutr. 66 (2015) 718-721. https://doi.org/10.3109/09637486.2015.1077794.
B. Olmedilla-Alonso, F. Granado-Lorencio, B. de Ancos, et al., Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure processed, pulsed electric field treated, low-temperature pasteurised, and freshly squeezed) in a crossover study in healthy individuals, Food Chem. 371 (2022) 130821. https://doi.org/10.1016/j.foodchem.2021.130821.
E.A. Christofides, POINT: artificial sweeteners and obesity-not the solution and potentially a problem, Endocr Pract. 27 (2021) 1052-1055. https://doi.org/10.1016/j.eprac.2021.08.001.
A.K. Choudhary, aspartame: should individuals with type ii diabetes be taking it? Curr. Diabetes Rev. 14 (2018) 350-362. https://doi.org/10.2174/1573399813666170601093336.
M. Ishidate, T. Sofuni, K. Yoshikawa, et al., Primary mutagenicity screening of food-additives currently used in Japan, Food Chem. Toxicol. 22 (1984) 623-636. https://doi.org/10.1016/0278-6915(84)90271-0.
L. Wu, C. Zhang, Y. Long, et al., Food additives: from functions to analytical methods, Crit. Rev. Food Sci. Nutr. (2021) 1-21. https://doi.org/10.1080/10408398.2021.1929823.
A. Drewnowski, Perspective: identifying ultra-processed plant-basedmilk alternatives in the USDA branded food products database, Adv. Nutr. 12 (2021) 2068-2075. https://doi.org/10.1093/advances/nmab089.
D.M. Small, A.G. DiFeiceantonio, Processed foods and food reward, Science 363 (2019) 346-347. https://doi.org/10.1126/science.aav0556.
M.B. Heyman, S.A. Abrams, N. Sect Gastroenterology Hepatology, et al., Fruit juice in infants, children, and adolescents: current recommendations, Pediatrics 139 (2017) 967. https://doi.org/10.1542/peds.2017-0967.
E.R. Cheng, E. Batista, L. Chen, et al., Correlates of sugar-sweetened beverage intake among low-income women during the first 1000 days, Public Health Nutr. 24 (2021) 2496-2501. https://doi.org/10.1017/s1368980020003390.
S.A. Stanner, J. Hughes, C.N. Kelly, et al., A review of the epidemiological evidence for the ‘antioxidant hypothesis’, Public Health Nutr. 7 (2004) 407-422. https://doi.org/10.1079/phn2003543.
M. Nikbakht Nasrabadi, A. Sedaghat Doost, R. Mezzenga, Modification approaches of plant-based proteins to improve their techno-functionality and use in food products, Food Hydrocoll. 118 (2021) 106789. https://doi.org/10.1016/j.foodhyd.2021.106789.
E.S. Kovaleski, L.K. Goncalves, G. Bortolato, et al., Effects of the ingestion of different kinds of white grape juice (Vitis labrusca) during adolescence on body weight, biochemical parameters and oxidative stress in liver of adult Wistar rats, Food Chem. 291 (2019) 110-116. https://doi.org/10.1016/j.foodchem.2019.03.122.
R. Kumar, S. Bhoumik, S.I. Rizvi, Redox modulating effects of grape juice during aging, J. Basic Clin. Physiol. Pharmacol. 31 (2019) 144. https://doi.org/10.1515/jbcpp-2019-0144.
J. Saimin, H. Hendarto, S. Soetjipto, The effect of tomato juice on the expression of matrix metalloproteinase-2 (MMP-2) and type-1 collagen on the vaginal wall of the menopausal rats, Bali. Medical. J. 8 (2019) 707. https://doi.org/10.15562/bmj.v8i3.1277.
R.I. Guzman-Geronimo, M. Herrera-Soterob, B. Grijalva, et al., Impact of blackberry juice on biochemical and histopathological profile in Wistar rats fed with a high-sucrose and high-colesterol diet, Cyta-J. Food. 18 (2020) 359-366. https://doi.org/10.1080/19476337.2020.1762747.
E. Ogunwole, O.T. Kunle-Alabi, O.O. Akindele, et al., Saccharum officinarum juice alters reproductive functions in male Wistar rats, J. Basic Clin. Physiol. Pharmacol. 31 (2020) 235. https://doi.org/10.1515/jbcpp-2019-0235.
S.A. El-Shazly, M.M. Ahmed, M.S. Al-Harbi, et al., Physiological and molecular study on the anti-obesity effects of pineapple (Ananas comosus) juice in male Wistar rat, Food Sci. Biotechnol. 27 (2018) 1429-1438. https://doi.org/10.1007/s10068-018-0378-1.
B.O. Ajiboye, M.T. Shonibare, B.E. Oyinloye, Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats, J. Diabetes Metab. Disord. 19 (2020) 343-352. https://doi.org/10.1007/s40200-020-00515-2.
M.L. Magalhaes, R.V. de Sousa, J.R. Miranda, et al., Effects of Moro orange juice (Citrus sinensis (L.) Osbeck) on some metabolic and morphological parameters in obese and diabetic rats, J. Sci. Food Agric. 101 (2021) 1053-1064. https://doi.org/10.1002/jsfa.10714.
L.I. Elvira-Torales, I. Navarro-Gonzalez, R. Gonzalez-Barrio, et al., Tomato juice supplementation influences the gene expression related to steatosis in rats, Nutr. 10 (2018) 1215. https://doi.org/10.3390/nu10091215.
K. Rahimi, H.R. Kazerani, Antiarrhythmic effects of pomegranate (Punica granatum) juice on isolated rat hearts following ischemia and reperfusion, Pharm. Chem. J. 55 (2021) 81-85. https://doi.org/10.1007/s11094-021-02376-2.
A.O. Ademosun, A. Mohammed, G. Oboh, et al., Influence of lemon (Citrus limon) and lime (Citrus aurantifolia) juices on the erectogenic properties of sildenafil in rats with L-NAME-induced erectile dysfunction, J. Food Biochem. 46 (2022) e14074. https://doi.org/10.1111/jfbc.14074.
H.H. Orak, Evaluation of antioxidant activity, colour and some nutritional characteristics of pomegranate (Punica granatum L.) juice and its sour concentrate processed by conventional evaporation, Int. J. Food Sci. Nutr. 60 (2009) 1-11. https://doi.org/10.1080/09637480701523306.
S.S. Dhumal, A.R. Karale, V.K. Garande, et al., Recent advances and developments in pomegranate processing and utilization: a review, J. Agric. Crop Sci. 1 (2014) 1-17.
G. Brunda, U. Kavyashree, S.S. Shetty, et al., Comparative study of not from concentrate and reconstituted from concentrate of pomegranate juices on nutritional and sensory profile, Food Sci. Technol. Int. (2021) 10820132211003707. https://doi.org/10.1177/10820132211003707.
Y. Zhang, X.C. Liu, Y.T. Wang, et al., Quality comparison of carrot juices processed by high-pressure processing and high-temperature short-time processing, Innov. Food Sci. Emerg. 33 (2016) 135-144. https://doi.org/10.1016/j.ifset.2015.10.012.
G. Gao, L. Zhao, Y. Ma, et al., Microorganisms and some quality of red grapefruit juice affected by high pressure processing and high temperature short time, Food Bioproc. Tech. 8 (2015) 2096-2108. https://doi.org/10.1007/s11947-015-1556-2.
L.E. Ordonez-Santos, J. Martinez-Giron, M.E. Arias-Jaramillo, Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice, Food Chem. 233 (2017) 96-100. https://doi.org/10.1016/j.foodchem.2017.04.114.
S. Pandraju, P.S. Rao, High-pressure processing of sugarcane juice (Saccharum officinarum) for shelf-life extension during ambient storage, Sugar Tech. 22 (2020) 340-353. https://doi.org/10.1007/s12355-019-00769-y.
J. Xu, Y. Wang, X. Zhang, et al., A novel method of a high pressure processing pre-treatment on the juice yield and quality of persimmon, Foods 10 (2021) 3069. https://doi.org/10.3390/foods10123069.
L. Zhao, Y. Wang, X. Hu, et al., Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time, LWT-Food Sci. Technol. 65 (2016) 283-289. https://doi.org/10.1016/j.lwt.2015.08.011.
X.H. Chen, W.D. Qin, L.H. Ma, et al., Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice, LWT-Food Sci. Technol. 62 (2015) 927-933. https://doi.org/10.1016/j.lwt.2014.10.068.
G. Yildiz, Application of ultrasound and high-pressure homogenization against high temperature-short time in peach juice, J. Food Process Eng. 42 (2019) 12997. https://doi.org/10.1111/jfpe.12997.
X. Feng, Z. Zhou, X. Wang, et al., Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend, Foods 9 (2020) 218. https://doi.org/10.3390/foods9020218.
S. Peng, Z. Hou, Z. Xu, et al., Effects of high pressure and high temperature short time sterilization on the quality of cherry juice, Sci. Technol. Food Ind. 39 (2018) 71-78.
S. Yildiz, P.R. Pokhrel, S. Unluturk, et al., Changes in quality characteristics of strawberry juice after equivalent high pressure, ultrasound, and pulsed electric fields processes, Food Eng. Rev. 13 (2021) 601-612. https://doi.org/10.1007/s12393-020-09250-z.
L. Zhao, Y.T. Wang, X.T. Hu, et al., Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time, LWT 65 (2016) 283-289. https://doi.org/10.1016/j.lwt.2015.08.011.
1630
Views
207
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).