Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Immune checkpoint blockade (ICB) therapeutics are highly effective in cancer immunotherapy, but gastrointestinal toxicity limited the application. Intestinal microbiota plays a crucial role in ICB-associated colitis. 2’-Fucosyllactose (2’FL) is most abundance prebiotic in human milk that can reshape gut microbiota and exert immune regulatory effect. The study aimed to determine the effects of 2’FL on ICB-associated colitis and to uncover the mediating mechanism. ICB-associated colitis was induced by the ipilimumab and dextran sulfate sodium. Oral administration of 2’FL (0.6 g/(kg’day)) ameliorated ICB-induced colitis by enhancing regulatory T cells (Treg) and the M2/M1 ratio of macrophages in colon. 2’FL treatment also increased the expression of tight junction proteins (zonula occludens-1 (ZO-1) and mucin 2 (MUC2)) and antioxidant stress indicators (superoxide dismutase (SOD) and catalase (CAT)). In addition, administration of 2’FL increased the abundance of Bifidobacterium and Lactobacillus, and elevated the levels of microbial metabolites, such as indole-3-lactic acid (ILA), which activated the aryl hydrocarbon receptor ligands (AHR) pathway. The protective effect of 2’FL was abolished upon depletion of gut microbiota, and ILA treatment partially simulated the protective effect of 2’FL. Notably, 2’FL did not exhibit inhibition of antitumor immunity. These f indings suggest that 2’FL could serve as a potential protective strategy for ICB-associated colitis by modulating the intestinal microbiota and bacterial metabolites.
F.S. Hodi, S.J. O’Day, D.F. McDermott, et al., Improved survival with ipilimumab in patients with metastatic melanoma, N. Engl. J. Med. 363 (2010) 711-723. https://doi.org/10.1056/NEJMoa1003466.
F. Martins, L. Sofiya, G.P. Sykiotis, et al., Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance, Nat. Rev. Clin. Oncol. 16 (2019) 563-580. https://doi.org/10.1038/s41571-019-0218-0.
D.B. Johnson, C.A. Nebhan, J.J. Moslehi, et al., Immune-checkpoint inhibitors: long-term implications of toxicity, Nat. Rev. Clin. Oncol. 19 (2022) 254-267. https://doi.org/10.1038/s41571-022-00600-w.
A.M. Luoma, S. Suo, H.L. Williams, et al., Molecular pathways of colon inflammation induced by cancer immunotherapy, Cell 182 (2020) 655-671. https://doi.org/10.1016/j.cell.2020.06.001.
Y.B. Medik, Y. Zhou, L.M. Kahn, et al., Outcome of concurrent treatment with a-CTLA4 and metronidazole in murine model of colon adenocarcinoma, J. Clin. Oncol. 39 (2021) e14566. https://doi.org/10.1200/JCO.2021.39.15_suppl.e14566.
C.N. Spencer, J.L. McQuade, V. Gopalakrishnan, et al., Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response, Science 374 (2021) 1632-1640. https://doi.org/doi:10.1126/science.aaz7015.
N. Chaput, P. Lepage, C. Coutzac, et al., Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab, Ann. Oncol. 28 (2017) 1368-1379. https://doi.org/10.1093/annonc/mdx108.
K. Dubin, M.K. Callahan, B. Ren, et al., Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis, Nat. Commun. 7 (2016) 1-13. https://doi.org/10.1038/ncomms10391.
T. Wang, N. Zheng, Q. Luo, et al., Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells, Front. Immunol. 10 (2019) 1-12. https://doi.org/10.3389/fimmu.2019.01235.
F. Wang, Q. Yin, L. Chen, et al., Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 157-161. https://doi.org/10.1073/pnas.1712901115.
A.E. Chang, J.L. Golob, T.M. Schmidt, et al., Targeting the gut microbiome to mitigate immunotherapy-induced colitis in cancer, Trends Cancer 7 (2021) 583-593. https://doi.org/10.1016/j.trecan.2021.02.005.
R.J. Sullivan, J.S. Weber, Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies, Nat. Rev. Drug Discov. 21 (2022) 495-508. https://doi.org/10.1038/s41573-021-00259-5.
K.A. Krautkramer, J. Fan, F. Bäckhed. Gut microbial metabolites as multi-kingdom intermediates, Nat. Rev. Microbiol. 19 (2021) 77-94. https://doi.org/10.1038/s41579-020-0438-4.
G. Renga, E. Nunzi, M. Pariano, et al., Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite, J. Immuno. Ther. Cancer 10 (2022) 1-16. https://doi.org/10.1136/jitc-2021-003725.
M. Sakanaka, M.E. Hansen, A. Gotoh, et al., Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis, Sci. Adv. 5 (2019) 1-15. https://doi.org/10.1126/sciadv.aaw7696.
E.J. Reverri, A.A. Devitt, J.A. Kajzer, et al., Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2’-fucosyllactose, Nutrients 10 (2018) 1-12. https://doi.org/10.3390/nu10101346.
K. Salli, J. Hirvonen, J. Siitonen, et al., Selective utilization of the human milk oligosaccharides 2’-fucosyllactose, 3-fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria, J. Agric. Food Chem. 69 (2021) 170-182. https://doi.org/10.1021/acs.jafc.0c06041.
K.C. Goehring, B.J. Marriage, J.S. Oliver, et al., Similar to those who are breastfed, infants fed a formula containing 2’-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial, J. Nutr. 146 (2016) 2559-2566. https://doi.org/10.3945/jn.116.236919.
C.P. Sodhi, P. Wipf, Y. Yamaguchi, et al., The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling, Pediatr. Res. 89 (2021) 91-101. https://doi.org/10.1038/s41390-020-0852-3.
Q. Yao, L. Fan, N. Zheng, et al., 2’-Fucosyllactose ameliorates inflammatory bowel disease by modulating gut microbiota and promoting MUC2 expression, Front. Nutr. 9 (2022) 1-14. https://doi.org/10.3389/fnut.2022.822020.
E. Perez-Ruiz, L. Minute, I. Otano, et al., Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy, Nature 569 (2019) 428-432. https://doi.org/10.1038/s41586-019-1162-y.
A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J. Basic. Clin. Physiol. Pharmacol. 7 (2016) 27-31. https://doi.org/10.4103/0976-0105.177703.
Z. Liu, X. Dai, H. Zhang, et al., Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment, Nat. Commun. 11 (2020) 1-15. https://doi.org/10.1038/s41467-020-14676-4.
E. Bolyen, J.R. Rideout, M.R. Dillon, et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol. 37 (2019) 852-857. https://doi.org/10.1038/s41587-019-0209-9.
H. Liu, X. Chen, X. Hu, et al., Alterations in the gut microbiome and metabolism with coronary artery disease severity, Microbiome 7 (2019) 1-16. https://doi.org/10.1186/s40168-019-0683-9.
E. Romano, M. Kusio-Kobialka, P.G. Foukas, et al., Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 6140-6145. https://doi.org/10.1073/pnas.1417320112.
A. Bhattacharyya, R. Chattopadhyay, S. Mitra, et al., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal disease, Physiol. Rev. 94 (2014) 329-354. https://doi.org/10.1152/physrev.00040.2012.
L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156. https://doi.org/10.1126/science.aao5774.
G.M. Douglas, V.J. Maffei, J.R. Zaneveld, et al., PICRUSt2 for prediction of metagenome functions, Nat. Biotechnol. 38 (2020) 685-688. https://doi.org/10.1038/s41587-020-0548-6.
A. Lavelle, H. Sokol, Gut microbiota-derived metabolites as key actors in inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 223-237. https://doi.org/10.1038/s41575-019-0258-z.
A.M. Ehrlich, A.R. Pacheco, B.M. Henrick, et al., Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells, BMC Microbiol. 20 (2020) 357. https://doi.org/10.1186/s12866-020-02023-y.
W. Huang, K.Y. Cho, D. Meng, et al., The impact of indole-3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis, Sci. Rep. 11 (2021) 1-14. https://doi.org/10.1038/s41598-021-87353-1.
H.M. Roager, T.R. Licht, Microbial tryptophan catabolites in health and disease, Nat. Commun. 9 (2018) 1-16. https://doi.org/10.1038/s41467-018-05470-4.
D. Meng, E. Sommella, E. Salviati, et al., Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine, Pediatr. Res. 88 (2020) 209-217. https://doi.org/10.1038/s41390-019-0740-x.
B. Stockinger, K. Shah, E. Wincent, AHR in the intestinal microenvironment: safeguarding barrier function, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 559-570. https://doi.org/10.1038/s41575-021-00430-8.
Y.Q. Tan, Y.N. Wang, H.Y. Feng, et al., Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling, Free Radicals. Biol. Med. 184 (2022) 30-41. https://doi.org/10.1016/j.freeradbiomed.2022.03.025.
Y. Wang, D.H. Wiesnoski, B.A. Helmink, et al., Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis, Nat. Med. 24 (2018) 1804-1808. https://doi.org/10.1038/s41591-018-0238-9.
M.C. Andrews, C.P.M. Duong, V. Gopalakrishnan, et al., Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade, Nat. Med. 27 (2021) 1432-1441. https://doi.org/10.1038/s41591-021-01406-6.
M.J. Walsh, M. Dougan, Checkpoint blockade toxicities: insights into autoimmunity and treatment, Semin. Immunol. 52 (2021) 1-14. https://doi.org/10.1016/j.smim.2021.101473.
R. Liu, L. Peng, L. Zhou, et al., Oxidative stress in cancer immunotherapy: molecular mechanisms and potential applications, Antioxidants 11 (2022) 1-12. https://doi.org/10.3390/antiox11050853.
L. Liu, R. Jin, J. Hao, et al., Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in protumor macrophages, Cancer Res. 80 (2020) 2564-2574. https://doi.org/10.1158/0008-5472.Can-19-3184.
M.E. Sanders, D.J. Merenstein, G. Reid, et al., Probiotics and prebiotics in intestinal health and disease: from biology to the clinic, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 605-616. https://doi.org/10.1038/s41575-019-0173-3.
J.E. Button, C.A. Autran, A.L. Reens, et al., Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics, Cell Host Microbe. 30 (2022) 712-725. https://doi.org/10.1016/j.chom.2022.04.001.
S. Yan, R. Shi, L. Li, et al., Mannan oligosaccharide suppresses lipid accumulation and appetite in western-diet-induced obese mice via reshaping gut microbiome and enhancing short-chain fatty acids production, Mol. Nutr. Food Res. 63 (2019) 1-16. https://doi.org/10.1002/mnfr.201900521.
U.K. Jana, N. Kango, B. Pletschke, Hemicellulose-derived oligosaccharides: emerging prebiotics in disease alleviation, Front. Nutr. 8 (2021) 1-13. https://doi.org/10.3389/fnut.2021.670817.
R. Verma, C. Lee, E.J. Jeun, et al., Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells, Sci. Immunol. 3 (2018) 1-12. https://doi.org/10.1126/sciimmunol.aat6975.
Y. Wang, H. Liu, J. Zhao, Macrophage polarization induced by probiotic bacteria: a concise review, Probiotics Antimicrob. Proteins. 12 (2020) 798-808. https://doi.org/10.1007/s12602-019-09612-y.
C. Gutiérrez-Vázquez, F.J. Quintana, Regulation of the immune response by the aryl hydrocarbon receptor, Immunity 48 (2018) 19-33. https://doi.org/10.1016/j.immuni.2017.12.012.
R. Singh, S. Chandrashekharappa, S.R. Bodduluri, et al., Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway, Nat. Commun. 10 (2019) 1-15. https://doi.org/10.1038/s41467-018-07859-7.
Y. Zhao, R.K. Bao, S.Y. Zhu, et al., Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway, Environ. Pollut. 285 (2021) 1-11. https://doi.org/10.1016/j.envpol.2021.117080.
A.N. Skelly, Y. Sato, S. Kearney, et al., Mining the microbiota for microbial and metabolite-based immunotherapies, Nat. Rev. Immunol. 19 (2019) 305- 323. https://doi.org/10.1038/s41577-019-0144-5.
T. Sakurai, T. Odamaki, J.Z. Xiao, Production of indole-3-lactic acid by bifidobacterium strains isolated from human infants, Microorganisms 7 (2019) 1-13. https://doi.org/10.3390/microorganisms7090340.
M.F. Laursen, M. Sakanaka, N. Burg, et al., Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut, Nat. Microbiol. 6 (2021) 1367-1382. https://doi.org/10.1038/s41564-021-00970-4.
1311
Views
164
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).