AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway

Rong Yuana,bQiqi Xina,bWeili Shia,bYu Miaoa,bZhengchuan ZhubYahui Yuana,bYing ChencXiaoning ChendSean Xiao Lenge( )Keji Chena,b( )Weihong Conga,b( )
Cardiovascular Diseases Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224, United States

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeonif lorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects in vitro. However, whether TMP-PF improves atherosclerosis in vivo needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE-/- mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE-/- mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.

References

[1]

P. Libby, J.E. Buring, L. Badimon, et al., Atherosclerosis, Nat. Rev. Dis. Primers 5 (2019) 56. https://doi.org/10.1038/s41572-019-0106-z.

[2]

H.M. Zhen, Q.J. Yan, Y.H. Liu, et al., Chitin oligosaccharides alleviate atherosclerosis progress in ApoE-/- mice by regulating lipid metabolism and inhibiting inflammation, Food Sci. Hum. Wellness 11 (2022) 999-1009. https://doi.org/10.1016/j.fshw.2022.03.027.

[3]

B.A. Kappel, L. De Angelis, A. Puetz, et al., Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia, Pharmacol. Res. 187 (2023) 106570. https://doi.org/10.1016/j.phrs.2022.106570.

[4]

M.Y. Guo, Y. Cai, C.L. He, et al., Coupled modeling of lipid deposition, inflammatory response and intraplaque angiogenesis in atherosclerotic plaque, Ann. Biomed. Eng. 47 (2019) 439-452. https://doi.org/10.1007/s10439-018-02173-1.

[5]

M.X. Di, Y. Zhang, R.Y. Zeng, et al., The pro-angiogenesis effect of miR33a-5p/Ets-1/DKK1 signaling in ox-LDL induced HUVECs, Int. J. Biol. Sci. 17 (2021) 4122-4139. https://doi.org/10.7150/ijbs.60302.

[6]

F. Baganha, R. de Jong, E.A. Peters, et al., Atorvastatin pleiotropically decreases intraplaque angiogenesis and intraplaque haemorrhage by inhibiting ANGPT2 release and VE-Cadherin internalization, Angiogenesis 24 (2021) 567-581. https://doi.org/10.1007/s10456-021-09767-9.

[7]

X.X. Liu, C.B. Sun, X. Gu, et al., Intraplaque neovascularization attenuated statin benefit on atherosclerotic plaque in CAD patients: a follow-up study with combined imaging modalities, Atherosclerosis 287 (2019) 134-139. https://doi.org/10.1016/j.atherosclerosis.2019.06.912.

[8]

M.R. de Vries, L. Parma, H. Peters, et al., Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels, J. Intern. Med. 285 (2019) 59-74. https://doi.org/10.1111/joim.12821.

[9]

F. Cademartiri, A. Balestrieri, R. Cau, et al., Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies, Cardiovasc. Diagn. Ther. 10 (2020) 1150-1162. https://doi.org/10.21037/cdt-20-528.

[10]

R. Yuan, Y. Wang, W.H. Cong, et al., Treatment of cardiovascular disease with Xiongshao capsule, Zhongguo Zhong Yao Za Zhi 42 (2017) 640-643. https://doi.org/10.19540/j.cnki.cjcmm.2017.0017.

[11]

R. Yuan, W.L. Shi, Q.Q. Xin, et al., Progress on Rhizoma Chuanxiong-Radix Paeoniae Rubra herb pair, Global Traditional Chinese Medicine. 12 (2019) 808-811. https://doi.org/10.3969/j.issn.1674-1749.2019.05.047.

[12]

J.C. Chen, J.J. Tian, H.F. Ge, et al., Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells, Food Chem. Toxicol. 109 (2017) 930-940. https://doi.org/10.1016/j.fct.2016.12.017.

[13]

Q. Kang, J.Y. Sun, B.W. Wang, et al., Wine, beer and Chinese baijiu in relation to cardiovascular health: the impact of moderate drinking, Food Sci. Hum. Wellness 12 (2023) 1-13. https://doi.org/10.1016/j.fshw.2022.07.013.

[14]

Z.Z. Bai, J.M. Tang, J. Ni, et al., Comprehensive metabolite profile of multi-bioactive extract from tree peony (Paeonia ostii and Paeonia rockii) fruits based on MS/MS molecular networking, Food Res. Int. 148 (2021) 110609. https://doi.org/10.1016/j.foodres.2021.110609.

[15]

R. Yuan, W.L. Shi, Q.Q. Xin, et al., Tetramethylpyrazine and paeoniflorin inhibit oxidized LDL-induced angiogenesis in human umbilical vein endothelial cells via VEGF and Notch pathways, Evid. Based Complement Alternat. Med. 2018 (2018) 3082507. https://doi.org/10.1155/2018/3082507.

[16]

F. Dodat, S. Mader, D. Lévesque, Minireview: what is known about SUMOylation among NR4A family members?, J. Mol. Biol. 433 (2021) 167212. https://doi.org/10.1016/j.jmb.2021.167212.

[17]

C. Chen, Y. Li, S.Q. Hou, et al., Orphan nuclear receptor TR3/Nur77 biologics inhibit tumor growth by targeting angiogenesis and tumor cells, Microvasc. Res. 128 (2020) 103934. https://doi.org/10.1016/j.mvr.2019.103934.

[18]

R. Rodríguez-Calvo, M. Tajes, M. Vázquez-Carrera, The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases, Expert Opin. Ther. Targets 21 (2017) 291-304. https://doi.org/10.1080/14728222.2017.1279146.

[19]

D. Crean, E.P. Murphy, Targeting NR4A nuclear receptors to control stromal cell inflammation, metabolism, angiogenesis, and tumorigenesis, Front. Cell Dev. Biol. 9 (2021) 589770. https://doi.org/10.3389/fcell.2021.589770.

[20]

T. Ye, J. Peng, X. Liu, et al., Orphan nuclear receptor TR3/Nur77 differentially regulates the expression of integrins in angiogenesis, Microvasc. Res. 122 (2019) 22-33. https://doi.org/10.1016/j.mvr.2018.10.011.

[21]

S. Chen, Z.Q. Ye, Z.W. Li, et al., Wenyang Huoxue Jiedu formula inhibits thin-cap fibroatheroma plaque formation via the VEGF/VEGFR signaling pathway, J. Ethnopharmacol. 219 (2018) 213-221. https://doi.org/10.1016/j.jep.2018.03.019.

[22]

B. Jiang, C. Huang, X.F. Chen, et al., Tetramethylpyrazine produces antidepressant-like effects in mice through promotion of BDNF signaling pathway, Int. J. Neuropsychopharmacol. 18 (2015) 1-13. https://doi.org/10.1093/ijnp/pyv010.

[23]

Q.Y. Shou, L. Jin, J.L. Lang, et al., Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying paeoniflorin for the treatment of allergic asthma, Front. Pharmacol. 9 (2018) 1531. https://doi.org/10.3389/fphar.2018.01531.

[24]

R. Yuan, Q. Xin, X. Ma, et al., Identification of a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF in vitro, Molecules 28 (2023). https://doi.org/10.3390/molecules28031271.

[25]

G.H. Zheng, J.P. Liu, J.F. Chu, et al., Xiongshao for restenosis after percutaneous coronary intervention in patients with coronary heart disease, Cochrane Database Syst. Rev. (2013) D9581. https://doi.org/10.1002/14651858.CD009581.pub2.

[26]

Y.Y. Zhang, L.F. He, C. Ma, et al., Research progress on the pharmacy of tetramethylpyrazine and its pharmacological activity in cardiovascular and cerebrovascular diseases, J. Pharm. Pharmacol. 74 (2022) 843-860. https://doi.org/10.1093/jpp/rgac015.

[27]

Y.L. Jiao, S. Zhang, J. Zhang, et al., Tetramethylpyrazine attenuates placental oxidative stress, inflammatory responses and endoplasmic reticulum stress in a mouse model of gestational diabetes mellitus, Arch. Pharm. Res. 42 (2019) 1092-1100. https://doi.org/10.1007/s12272-019-01197-y.

[28]

J. Lei, P. Xiang, S.M. Zeng, et al., Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation, Front. Pharmacol. 12 (2021) 791841. https://doi.org/10.3389/fphar.2021.791841.

[29]

Y. Wang, J.B. Che, H. Zhao, et al., Paeoniflorin attenuates oxidized lowdensity lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells, J. Cell Biochem. 120 (2019) 9291-9299. https://doi.org/10.1002/jcb.28204.

[30]

H.B. Xiao, L. Liang, Z.F. Luo, et al., Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice, Eur. J. Pharmacol. 836 (2018) 122-128. https://doi.org/10.1016/j.ejphar.2018.08.006.

[31]

F. Jiao, K. Varghese, S. Wang, et al., Recent insights into the protective mechanisms of paeoniflorin in neurological, cardiovascular, and renal diseases, J. Cardiovasc. Pharmacol. 77 (2021) 728-734. https://doi.org/10.1097/FJC.0000000000001021.

[32]

S. Stankov, M. Cuchel, Gene editing for dyslipidemias: new tools to “cut” lipids, Atherosclerosis 368 (2023) 14-24. https://doi.org/10.1016/j.atherosclerosis.2023.01.010.

[33]

X. Ye, W. Kong, M.I. Zafar, et al., Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies, Cardiovasc. Diabetol. 18 (2019) 48. https://doi.org/10.1186/s12933-019-0851-z.

[34]

P.E. Penson, D.L. Long, G. Howard, et al., Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) Study, Eur. Heart J. 39 (2018) 3641-3653. https://doi.org/10.1093/eurheartj/ehy533.

[35]

M. Braile, S. Marcella, L. Cristinziano, et al., VEGF-A in cardiomyocytes and heart diseases, Int. J. Mol. Sci. 21 (2020) 1-18. https://doi.org/10.3390/ijms21155294.

[36]

F. Kleefeldt, B. Upcin, H. Bömmel, et al., Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis, Cell Death Dis.13 (2022) 220. https://doi.org/10.1038/s41419-022-04605-2.

[37]

E.P. Murphy, D. Crean, NR4A1-3 nuclear receptor activity and immune cell dysregulation in rheumatic diseases, Front. Med. 9 (2022) 874182. https://doi.org/10.3389/fmed.2022.874182.

[38]

D. Crean, E.P. Murphy, Targeting NR4A nuclear receptors to control stromal cell inflammation, metabolism, angiogenesis, and tumorigenesis, Front. Cell Dev. Biol. 9 (2021) 589770. https://doi.org/10.3389/fcell.2021.589770.

[39]

J.I. Kang, Y. Choi, C.H. Cui, et al., Pro-angiogenic ginsenosides F1 and Rh1 inhibit vascular leakage by modulating NR4A1, Sci. Rep. 9 (2019) 4502. https://doi.org/10.1038/s41598-019-41115-2.

[40]

Y. Nishida, Y. Yamada, H. Kanemaru, et al., Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration, Biomed. Res. 39 (2018) 287-294. https://doi.org/10.2220/biomedres.39.287.

[41]

A.J. Comerota, C. Oostra, Z. Fayad, et al., A histological and functional description of the tissue causing chronic postthrombotic venous obstruction, Thromb. Res. 135 (2015) 882-887. https://doi.org/10.1016/j.thromres.2015.02.026.

[42]

W. Wu, X.B. Li, G.F. Zuo, et al., The role of angiogenesis in coronary artery disease: a double-edged sword: intraplaque angiogenesis in physiopathology and therapeutic angiogenesis for treatment, Curr. Pharm. Des. 24 (2018) 451-464. https://doi.org/10.2174/1381612824666171227220815.

[43]

R. Yuan, W.L. Shi, Q.Q. Xin, et al., Holistic regulation of angiogenesis with Chinese herbal medicines as a new option for coronary artery disease, Evid. Based Complement Alternat. Med. 2018 (2018) 3725962. https://doi.org/10.1155/2018/3725962.

[44]

Y. Wang, G. Guo, B.R. Yang, et al., Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels, Chin. J. Integr. Med. 23 (2017) 654-662. https://doi.org/10.1007/s11655-017-2408-x.

Food Science and Human Wellness
Pages 2642-2652
Cite this article:
Yuan R, Xin Q, Shi W, et al. Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway. Food Science and Human Wellness, 2024, 13(5): 2642-2652. https://doi.org/10.26599/FSHW.2022.9250212

1379

Views

97

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 April 2023
Revised: 05 May 2023
Accepted: 20 May 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return