Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeonif lorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects in vitro. However, whether TMP-PF improves atherosclerosis in vivo needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE-/- mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE-/- mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.
P. Libby, J.E. Buring, L. Badimon, et al., Atherosclerosis, Nat. Rev. Dis. Primers 5 (2019) 56. https://doi.org/10.1038/s41572-019-0106-z.
H.M. Zhen, Q.J. Yan, Y.H. Liu, et al., Chitin oligosaccharides alleviate atherosclerosis progress in ApoE-/- mice by regulating lipid metabolism and inhibiting inflammation, Food Sci. Hum. Wellness 11 (2022) 999-1009. https://doi.org/10.1016/j.fshw.2022.03.027.
B.A. Kappel, L. De Angelis, A. Puetz, et al., Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia, Pharmacol. Res. 187 (2023) 106570. https://doi.org/10.1016/j.phrs.2022.106570.
M.Y. Guo, Y. Cai, C.L. He, et al., Coupled modeling of lipid deposition, inflammatory response and intraplaque angiogenesis in atherosclerotic plaque, Ann. Biomed. Eng. 47 (2019) 439-452. https://doi.org/10.1007/s10439-018-02173-1.
M.X. Di, Y. Zhang, R.Y. Zeng, et al., The pro-angiogenesis effect of miR33a-5p/Ets-1/DKK1 signaling in ox-LDL induced HUVECs, Int. J. Biol. Sci. 17 (2021) 4122-4139. https://doi.org/10.7150/ijbs.60302.
F. Baganha, R. de Jong, E.A. Peters, et al., Atorvastatin pleiotropically decreases intraplaque angiogenesis and intraplaque haemorrhage by inhibiting ANGPT2 release and VE-Cadherin internalization, Angiogenesis 24 (2021) 567-581. https://doi.org/10.1007/s10456-021-09767-9.
X.X. Liu, C.B. Sun, X. Gu, et al., Intraplaque neovascularization attenuated statin benefit on atherosclerotic plaque in CAD patients: a follow-up study with combined imaging modalities, Atherosclerosis 287 (2019) 134-139. https://doi.org/10.1016/j.atherosclerosis.2019.06.912.
M.R. de Vries, L. Parma, H. Peters, et al., Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels, J. Intern. Med. 285 (2019) 59-74. https://doi.org/10.1111/joim.12821.
F. Cademartiri, A. Balestrieri, R. Cau, et al., Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies, Cardiovasc. Diagn. Ther. 10 (2020) 1150-1162. https://doi.org/10.21037/cdt-20-528.
R. Yuan, Y. Wang, W.H. Cong, et al., Treatment of cardiovascular disease with Xiongshao capsule, Zhongguo Zhong Yao Za Zhi 42 (2017) 640-643. https://doi.org/10.19540/j.cnki.cjcmm.2017.0017.
R. Yuan, W.L. Shi, Q.Q. Xin, et al., Progress on Rhizoma Chuanxiong-Radix Paeoniae Rubra herb pair, Global Traditional Chinese Medicine. 12 (2019) 808-811. https://doi.org/10.3969/j.issn.1674-1749.2019.05.047.
J.C. Chen, J.J. Tian, H.F. Ge, et al., Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells, Food Chem. Toxicol. 109 (2017) 930-940. https://doi.org/10.1016/j.fct.2016.12.017.
Q. Kang, J.Y. Sun, B.W. Wang, et al., Wine, beer and Chinese baijiu in relation to cardiovascular health: the impact of moderate drinking, Food Sci. Hum. Wellness 12 (2023) 1-13. https://doi.org/10.1016/j.fshw.2022.07.013.
Z.Z. Bai, J.M. Tang, J. Ni, et al., Comprehensive metabolite profile of multi-bioactive extract from tree peony (Paeonia ostii and Paeonia rockii) fruits based on MS/MS molecular networking, Food Res. Int. 148 (2021) 110609. https://doi.org/10.1016/j.foodres.2021.110609.
R. Yuan, W.L. Shi, Q.Q. Xin, et al., Tetramethylpyrazine and paeoniflorin inhibit oxidized LDL-induced angiogenesis in human umbilical vein endothelial cells via VEGF and Notch pathways, Evid. Based Complement Alternat. Med. 2018 (2018) 3082507. https://doi.org/10.1155/2018/3082507.
F. Dodat, S. Mader, D. Lévesque, Minireview: what is known about SUMOylation among NR4A family members?, J. Mol. Biol. 433 (2021) 167212. https://doi.org/10.1016/j.jmb.2021.167212.
C. Chen, Y. Li, S.Q. Hou, et al., Orphan nuclear receptor TR3/Nur77 biologics inhibit tumor growth by targeting angiogenesis and tumor cells, Microvasc. Res. 128 (2020) 103934. https://doi.org/10.1016/j.mvr.2019.103934.
R. Rodríguez-Calvo, M. Tajes, M. Vázquez-Carrera, The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases, Expert Opin. Ther. Targets 21 (2017) 291-304. https://doi.org/10.1080/14728222.2017.1279146.
D. Crean, E.P. Murphy, Targeting NR4A nuclear receptors to control stromal cell inflammation, metabolism, angiogenesis, and tumorigenesis, Front. Cell Dev. Biol. 9 (2021) 589770. https://doi.org/10.3389/fcell.2021.589770.
T. Ye, J. Peng, X. Liu, et al., Orphan nuclear receptor TR3/Nur77 differentially regulates the expression of integrins in angiogenesis, Microvasc. Res. 122 (2019) 22-33. https://doi.org/10.1016/j.mvr.2018.10.011.
S. Chen, Z.Q. Ye, Z.W. Li, et al., Wenyang Huoxue Jiedu formula inhibits thin-cap fibroatheroma plaque formation via the VEGF/VEGFR signaling pathway, J. Ethnopharmacol. 219 (2018) 213-221. https://doi.org/10.1016/j.jep.2018.03.019.
B. Jiang, C. Huang, X.F. Chen, et al., Tetramethylpyrazine produces antidepressant-like effects in mice through promotion of BDNF signaling pathway, Int. J. Neuropsychopharmacol. 18 (2015) 1-13. https://doi.org/10.1093/ijnp/pyv010.
Q.Y. Shou, L. Jin, J.L. Lang, et al., Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying paeoniflorin for the treatment of allergic asthma, Front. Pharmacol. 9 (2018) 1531. https://doi.org/10.3389/fphar.2018.01531.
R. Yuan, Q. Xin, X. Ma, et al., Identification of a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF in vitro, Molecules 28 (2023). https://doi.org/10.3390/molecules28031271.
G.H. Zheng, J.P. Liu, J.F. Chu, et al., Xiongshao for restenosis after percutaneous coronary intervention in patients with coronary heart disease, Cochrane Database Syst. Rev. (2013) D9581. https://doi.org/10.1002/14651858.CD009581.pub2.
Y.Y. Zhang, L.F. He, C. Ma, et al., Research progress on the pharmacy of tetramethylpyrazine and its pharmacological activity in cardiovascular and cerebrovascular diseases, J. Pharm. Pharmacol. 74 (2022) 843-860. https://doi.org/10.1093/jpp/rgac015.
Y.L. Jiao, S. Zhang, J. Zhang, et al., Tetramethylpyrazine attenuates placental oxidative stress, inflammatory responses and endoplasmic reticulum stress in a mouse model of gestational diabetes mellitus, Arch. Pharm. Res. 42 (2019) 1092-1100. https://doi.org/10.1007/s12272-019-01197-y.
J. Lei, P. Xiang, S.M. Zeng, et al., Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation, Front. Pharmacol. 12 (2021) 791841. https://doi.org/10.3389/fphar.2021.791841.
Y. Wang, J.B. Che, H. Zhao, et al., Paeoniflorin attenuates oxidized lowdensity lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells, J. Cell Biochem. 120 (2019) 9291-9299. https://doi.org/10.1002/jcb.28204.
H.B. Xiao, L. Liang, Z.F. Luo, et al., Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice, Eur. J. Pharmacol. 836 (2018) 122-128. https://doi.org/10.1016/j.ejphar.2018.08.006.
F. Jiao, K. Varghese, S. Wang, et al., Recent insights into the protective mechanisms of paeoniflorin in neurological, cardiovascular, and renal diseases, J. Cardiovasc. Pharmacol. 77 (2021) 728-734. https://doi.org/10.1097/FJC.0000000000001021.
S. Stankov, M. Cuchel, Gene editing for dyslipidemias: new tools to “cut” lipids, Atherosclerosis 368 (2023) 14-24. https://doi.org/10.1016/j.atherosclerosis.2023.01.010.
X. Ye, W. Kong, M.I. Zafar, et al., Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies, Cardiovasc. Diabetol. 18 (2019) 48. https://doi.org/10.1186/s12933-019-0851-z.
P.E. Penson, D.L. Long, G. Howard, et al., Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) Study, Eur. Heart J. 39 (2018) 3641-3653. https://doi.org/10.1093/eurheartj/ehy533.
M. Braile, S. Marcella, L. Cristinziano, et al., VEGF-A in cardiomyocytes and heart diseases, Int. J. Mol. Sci. 21 (2020) 1-18. https://doi.org/10.3390/ijms21155294.
F. Kleefeldt, B. Upcin, H. Bömmel, et al., Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis, Cell Death Dis.13 (2022) 220. https://doi.org/10.1038/s41419-022-04605-2.
E.P. Murphy, D. Crean, NR4A1-3 nuclear receptor activity and immune cell dysregulation in rheumatic diseases, Front. Med. 9 (2022) 874182. https://doi.org/10.3389/fmed.2022.874182.
D. Crean, E.P. Murphy, Targeting NR4A nuclear receptors to control stromal cell inflammation, metabolism, angiogenesis, and tumorigenesis, Front. Cell Dev. Biol. 9 (2021) 589770. https://doi.org/10.3389/fcell.2021.589770.
J.I. Kang, Y. Choi, C.H. Cui, et al., Pro-angiogenic ginsenosides F1 and Rh1 inhibit vascular leakage by modulating NR4A1, Sci. Rep. 9 (2019) 4502. https://doi.org/10.1038/s41598-019-41115-2.
Y. Nishida, Y. Yamada, H. Kanemaru, et al., Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration, Biomed. Res. 39 (2018) 287-294. https://doi.org/10.2220/biomedres.39.287.
A.J. Comerota, C. Oostra, Z. Fayad, et al., A histological and functional description of the tissue causing chronic postthrombotic venous obstruction, Thromb. Res. 135 (2015) 882-887. https://doi.org/10.1016/j.thromres.2015.02.026.
W. Wu, X.B. Li, G.F. Zuo, et al., The role of angiogenesis in coronary artery disease: a double-edged sword: intraplaque angiogenesis in physiopathology and therapeutic angiogenesis for treatment, Curr. Pharm. Des. 24 (2018) 451-464. https://doi.org/10.2174/1381612824666171227220815.
R. Yuan, W.L. Shi, Q.Q. Xin, et al., Holistic regulation of angiogenesis with Chinese herbal medicines as a new option for coronary artery disease, Evid. Based Complement Alternat. Med. 2018 (2018) 3725962. https://doi.org/10.1155/2018/3725962.
Y. Wang, G. Guo, B.R. Yang, et al., Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels, Chin. J. Integr. Med. 23 (2017) 654-662. https://doi.org/10.1007/s11655-017-2408-x.
1113
Views
78
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).