Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Akkermansia muciniphila is one of the commensals residing within the mammalian gut and co-evolving with the host. Numerous studies have demonstrated the benefits of A. muciniphila in ameliorating metabolic disorders, while little is known about the antimicrobial potential of A. muciniphila against pathogens. Here, we examined the antimicrobial and anti-virulence properties of cell free supernatant (CFS) of A. muciniphila against Salmonella Typhimurium. CFS retarded bacterial growth and inhibited the motility of S. Typhimurium SL1344 and S. Typhimurium 14028. CFS dose-dependently reduced cell hydrophobicity and auto-aggregation of both strains. Also, CFS from A. muciniphila significantly attenuated biofilm formation. Compared with untreated bacteria, CFS-treated bacteria significantly decreased adhesion and invasion to Caco-2 cells, and reduced intracellular survival in macrophages. CFS maintained antimicrobial properties after treatment with high temperatures and various proteases, while it lost its antimicrobial activity after pH neutralization. Gas chromatography-mass spectrometry (GC-MS) confirmed that A. muciniphila produced a certain amount of acetate and propionate, and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) identified other organic acids and metabolites in CFS. In summary, CFS from A. muciniphila exhibited anti-biofilm and anti-virulence properties against Salmonella and could be potentially utilized in the food industry for controlling Salmonella contamination and reducing infection.
C.S. Marchello, M. Birkhold, J.A. Crump, Complications and mortality of non-typhoidal Salmonella invasive disease: a global systematic review and meta-analysis, Lancet Infect. Dis. 22 (2022) 692-705. https://doi.org/10.1016/s1473-3099(21)00615-0.
J.E. Harrell, M.M. Hahn, S.J. D’Souza, et al., Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract, Front. Cell Infect. Microbiol. 10 (2020) 624622. https://doi.org/10.3389/fcimb.2020.624622.
S.K. Desai, A. Padmanabhan, S. Harshe, et al., Salmonella biofilms program innate immunity for persistence in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 12462-12467. https://doi.org/10.1073/pnas.1822018116.
P. Kaiser, M. Diard, B. Stecher, et al., The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response, Immunol. Rev. 245 (2012) 56-83. https://doi.org/10.1111/j.1600-065X.2011.01070.x.
B. Chassaing, E. Cascales, Antibacterial weapons: targeted destruction in the microbiota, Trends Microbiol. 26 (2018) 329-338. https://doi.org/10.1016/j.tim.2018.01.006.
A. Jacobson, L. Lam, M. Rajendram, et al., A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection, Cell Host Microbe. 24 (2018) 296-307. https://doi.org/10.1016/j.chom.2018.07.002.
J.S. You, J.H. Yong, G.H. Kim, et al., Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine, Microbiome 7 (2019) 132. https://doi.org/10.1186/s40168-019-0746-y.
M. Sorbara, K. Dubin, E. Littmann, et al., Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification, J. Exp. Med. 216 (2019) 84-98. https://doi.org/10.1084/jem.20181639.
E.J.E. Brownlie, D. Chaharlangi, E.O. Wong, et al., Acids produced by Lactobacilli inhibit the growth of commensal Lachnospiraceae and S24-7 bacteria, Gut Microbes. 14 (2022) 2046452. https://doi.org/10.1080/19490976.2022.2046452.
H. Pauer, F.L. Teixeira, A. . Robinson, et al., Bioactive small molecules produced by the human gut microbiome modulate Vibrio cholerae sessile and planktonic lifestyles, Gut Microbes. 13 (2021) 1-19. https://doi.org/10.1080/19490976.2021.1918993.
R.J.M. Peixoto, E.S. Alves, M. Wang, et al., Repression of Salmonella host cell invasion by aromatic small molecules from the human fecal metabolome, Appl. Environ. Microbiol. 83 (2017) 01148-17. https://doi.org/10.1128/aem.01148-17.
M. Derrien, E.E. Vaughan, C.M. Plugge, et al., Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium, Int. J. Syst. Evol. Microbiol. 54 (2004) 1469-1476. https://doi.org/10.1099/ijs.0.02873-0.
A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.
M. Dao, A. Everard, J. Aron-Wisnewsky, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut 65 (2016) 426-436. https://doi.org/10.1136/gutjnl-2014-308778.
S. Qu, L. Fan, Y. Qi, et al., Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation, Microbiol Spectr. 9 (2021) e0073021. https://doi.org/10.1128/Spectrum.00730-21.
H. Yoon, C. Cho, M. Yun, et al., Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice, Nat. Microbiol. 6 (2021) 563-573. https://doi.org/10.1038/s41564-021-00880-5.
L. Wang, L. Tang, Y. Feng, et al., A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice, Gut 69 (2020) 1988-1997. https://doi.org/10.1136/gutjnl-2019-320105.
C. Depommier, A. Everard, C. Druart, et al., Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study, Nat. Med. 25 (2019) 1096. https://doi.org/10.1038/s41591-019-0495-2.
M. Bae, C.D. Cassilly, X. Liu, et al., Akkermansia muciniphila phospholipid induces homeostatic immune responses, Nature 608 (2022) 168-173. https://doi.org/10.1038/s41586-022-04985-7.
Y. Jiang, Y. Xu, C. Zheng, et al., Acetyltransferase from Akkermansia muciniphila blunts colorectal tumourigenesis by reprogramming tumour microenvironment, Gut 72 (2023) 1308-1318. https://doi.org/10.1136/gutjnl-2022-327853.
R. Zhai, X. Xue, L. Zhang, et al., Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice, Front. Cell. Infect. Microbiol. 9 (2019) 239. https://doi.org/10.3389/fcimb.2019.00239.
J. Xie, H. Li, X. Zhang, et al., Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen, Nat. Microbiol. 8 (2023) 91-106. https://doi.org/10.1038/s41564-022-01279-6.
T. Mao, C. Su, Q. Ji, et al., Hyaluronan-induced alterations of the gut microbiome protects mice against Citrobacter rodentium infection and intestinal inflammation, Gut Microbes. 13 (2021) 1972757. https://doi.org/10.1080/19490976.2021.1972757.
M.T. Henke, D.J. Kenny, C.D. Cassilly, et al., Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 12672-12677. https://doi.org/10.1073/pnas.1904099116.
M. Peng, Z. Tabashsum, P. Patel, et al., Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice, Gut Microbes. 11 (2020) 433-452. https://doi.org/10.1080/19490976.2019.1638724.
K.J. Rangan, V.A. Pedicord, Y.C. Wang, et al., A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens, Science 353 (2016) 1434-1437. https://doi.org/10.1126/science.aaf3552.
E. Mani-López, D. Arrioja-Bretón, A. López-Malo, The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods, Compr. Rev. Food Sci. F. 21 (2022) 604-641. https://doi.org/10.1111/1541-4337.12872.
W. Pelyuntha, C. Chaiyasut, D. Kantachote, et al., Organic acids and 2,4-ditert-butylphenol: major compounds of Weissella confusa WM36 cell-free supernatant against growth, survival and virulence of Salmonella Typhi, PeerJ. 8 (2020) e8410. https://doi.org/10.7717/peerj.8410.
N. Singh, R. Kaur, B.P. Singh, et al., Impairment of Cronobacter sakazakii and Listeria monocytogenes biofilms by cell-free preparations of lactobacilli of goat milk origin, Folia Microbiol. (Praha). 65 (2020) 185-196. https://doi.org/10.1007/s12223-019-00721-3.
G. Li, C. Yan, Y. Xu, et al., Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential Appl. Environ. Microbiol. 80 (2014) 6204. https://doi.org/10.1128/AEM.01458-14.
M.A. Golowczyc, P. Mobili, G.L. Garrote, et al., Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar enteritidis, Int. J. Food Microbiol. 118 (2007) 264-273. https://doi.org/10.1016/j.ijfoodmicro.2007.07.042.
M.C. Collado, J. Meriluoto, S. Salminen, Adhesion and aggregation properties of probiotic and pathogen strains, Eur. Food Res. Technol. 226 (2008) 1065-1073. https://doi.org/10.1007/s00217-007-0632-x.
N.N. Kim, W.J. Kim, S.S. Kang, Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium, Food Control. 98 (2019) 274-280. https://doi.org/10.1016/j.foodcont.2018.11.004.
M.A. Amalaradjou, K. Kim, K. Venkitanarayanan, Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro, Int. J. Mol. Sci. 15 (2014) 8639-8655. https://doi.org/10.3390/ijms15058639.
M. Dubois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017.
P.D. Cani, C. Depommier, M. Derrien, et al., Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms, Nat. Rev. Gastroenterol. Hepatol. 19 (2022) 625-637. https://doi.org/10.1038/s41575-022-00631-9.
A. Lamas, P. Regal, B. Vázquez, et al., Short chain fatty acids commonly produced by gut microbiota influence Salmonella enterica motility, biofilm formation, and gene expression, Antibiotics 8 (2019) 265. https://doi.org/10.3390/antibiotics8040265.
B. Stecher, M. Barthel, M.C. Schlumberger, et al., Motility allows S. Typhimurium to benefit from the mucosal defence, Cell. Microbiol. 10 (2008) 1166-1180. https://doi.org/10.1111/j.1462-5822.2008.01118.x.
J. Liu, W. Zhu, N. Qin, et al., Propionate and butyrate inhibit biofilm formation of Salmonella Typhimurium grown in laboratory media and food models, Foods (Basel, Switzerland). 11 (2022) 3493. https://doi.org/10.3390/foods11213493.
A.H. Rickard, P. Gilbert, N.J. High, et al., Bacterial coaggregation: an integral process in the development of multi-species biofilms, Trends Microbiol. 11 (2003) 94-100. https://doi.org/10.1016/s0966-842x(02)00034-3.
S. Vesterlund, J. Paltta, M. Karp, et al., Adhesion of bacteria to resected human colonic tissue: quantitative analysis of bacterial adhesion and viability, Res. Microbiol. 156 (2005) 238-244. https://doi.org/10.1016/j.resmic.2004.08.012.
N. Dewake, X. Ma, K. Sato, et al., β-Glycyrrhetinic acid inhibits the bacterial growth and biofilm formation by supragingival plaque commensals, Microbiol. Immunol. 65 (2021) 343-351. https://doi.org/10.1111/1348-0421.12884.
R.D. Rossoni, P.P. de Barros, J.A. de Alvarenga, et al., Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis, Biofouling. 34 (2018) 212-225. https://doi.org/10.1080/08927014.2018.1425402.
J.J. Ahire, C. Jakkamsetty, M.S. Kashikar, et al., In vitro evaluation of probiotic properties of Lactobacillus plantarum ublp40 isolated from traditional indigenous fermented food, Probiotics Antimicro. 13 (2021) 1413-1424. https://doi.org/10.1007/s12602-021-09775-7.
Y. Kim, S. Oh, S.H. Kim, Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun. 379 (2009) 324-329. https://doi.org/10.1016/j.bbrc.2008.12.053.
K.H. Ishikawa, D. Mita, D. Kawamoto, et al., Probiotics alter biofilm formation and the transcription of Porphyromonas gingivalis virulence-associated genes, J. Oral Microbiol. 12 (2020) 1805553. https://doi.org/10.1080/20002297.2020.1805553.
L. Osbelt, S. Thiemann, N. Smit, et al., Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production, PLoS Pathog. 16 (2020) e1008448. https://doi.org/10.1371/journal.ppat.1008448.
M.A. El-Mokhtar, K.M. Hassanein, A.S. Ahmed, et al., Antagonistic activities of cell-free supernatants of Lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa, Infect. Drug Resist. 13 (2020) 543-552. https://doi.org/10.2147/idr.S235603.
E.M. Lehto, S.J. Salminen, Inhibition of Salmonella Typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: only a pH effect? FEMS Immunol. Med. Microbiol. 18 (1997) 125-132. https://doi.org/10.1111/j.1574-695X.1997.tb01037.x.
I.Y. Sedillo-Torres, Á.O. Hernández-Rangel, Y.G.Y. Gómez, et al., Hibiscus acid from Hibiscus sabdariffa L. inhibits flagellar motility and cell invasion in Salmonella enterica, Molecules 27 (2022) 655. https://doi.org/10.3390/molecules27030655.
J. Li, W. Sun, Z. Guo, et al., Fusaric acid modulates type three secretion system of Salmonella enterica serovar Typhimurium, Biochem. Biophys. Res. Commun. 449 (2014) 455-459. https://doi.org/10.1016/j.bbrc.2014.05.044.
C.C. Bain, A. Bravo-Blas, C.L. Scott, et al., Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice, Nat. Immunol. 15 (2014) 929-937. https://doi.org/10.1038/ni.2967.
J. Schulthess, S. Pandey, M. Capitani, et al., The short chain fatty acid butyrate imprints an antimicrobial program in macrophages, Immunity 50 (2019) 432-445. https://doi.org/10.1016/j.immuni.2018.12.018.
M. Živković, M.S. Miljković, P. Ruas-Madiedo, et al., EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells, Front. Microbiol. 7 (2016) 286. https://doi.org/10.3389/fmicb.2016.00286.
1432
Views
309
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).