We evaluated the effect of isoquercetin (quercetin-O-3-glucoside-quercetin, IQ) as a functional component of Abeliophyllum disistichum Nakai ethanol extract (ADLE) on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia (BPH). Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC. IQ was orally administered (1 or 10 mg/kg) to a testosterone propionate-induced BPH rat model, and its effects on the prostate weight were evaluated. The effect of IQ on androgen receptor (AR) signaling was analyzed in LNCaP cells. Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined. The metabolites in ADLE were identified and quantified, which confirmed that ADLE contained abundant IQ (20.88 mg/g). IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model, and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner. IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells. In BPH-1 cells, IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis. Thus, IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
A. Ghorbanibirgani, A. Khalili, L. Zamani, The efficacy of stinging nettle (Urtica dioica) in patients with benign prostatic hyperplasia: a randomized double blind study in 100 patients, Iran. Red Crescent Med. J. 15 (2013) 9-10. https://doi.org/10.5812/ircmj.2386.
M.P. O’Leary, Lower urinary tract symptoms/benign prostatic hyperplasia:maintaining symptom control and reducing complications, Urology 62 (2003) 15-23. https://doi.org/10.1016/s0090-4295(03)00480-1.
J.Y. Leong, A.S. Patel, R. Ramasamy, Minimizing sexual dysfunction in BPH surgery, Curr. Sex. Health Rep. 11 (2019) 190-200. https://doi.org/10.1007/s11930-019-00210-1.
K. Kolontarev, A. Govorov, G. Kasyan, et al., Current drug therapy of patients with BPH LUTS with the special emphasis on PDE5 inhibitors, Cent. European J. Urol. 69 (2016) 398-403. https://doi.org/10.5173/ceju.2016.879.
A.W. Partin, J.E. Oesterling, J.I. Epstein, et al., Influence of age and endocrine factors on the volume of benign prostatic hyperplasia, J. Urol. 145 (1991) 405-409. https://doi.org/10.1016/s0022-5347(17)38353-2.
S.E. Dahle, A.P. Chokkalingam, Y.T. Gao, et al, Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia, J. Urol. 168 (2002) 599-604.
J.K. Parsons, H.B. Carter, A.W. Partin, et al., Metabolic factors associated with benign prostatic hyperplasia, J. Clin. Endocrinol. Metab. 91 (2006) 2562-2568. https://doi.org/10.1210/jc.2005-2799.
H. Nandeesha, B.C. Koner, L.N. Dorairajan, et al., Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia, Clin. Chim. Acta. 370 (2006) 89-93. https://doi.org/10.1016/j.cca.2006.01.019.
J. Hammarsten, B. Högstedt, Clinical, anthropometric, metabolic and insulin profile of men with fast annual growth rates of benign prostatic hyperplasia, Blood Press. 8 (1999) 29-36. https://doi.org/10.1080/080370599438365.
A. Ziada, M. Rosenblum, E.D. Crawford, Benign prostatic hyperplasia: an overview, Urology 53 (1999) 1-6. https://doi.org/10.1016/s0090-4295(98)00532-9.
R.E. Vickman, O.E. Franco, D.C. Moline, et al., The role of the androgen receptor in prostate development and benign prostatic hyperplasia: a review, Asian J. Urol. 7 (2020) 191-202. https://doi.org/10.1016/j.ajur.2019.10.003.
T.M. Nicholson, W.A. Ricke, Androgens and estrogens in benign prostatic hyperplasia: past, present and future, Differentiation 82 (2011) 184-199. https://doi.org/10.1016/j.diff.2011.04.006.
P.P. Banerjee, S. Banerjee, T.R. Brown, et al., Androgen action in prostate function and disease, Am. J. Clin. Exp. Urol. 6 (2018) 62-77.
T.M. Morgan, T.D. Koreckij, E. Corey, Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway, Curr. Cancer Drug Targets 9 (2009) 237-249. https://doi.org/10.2174/156800909787580999.
N. Ohlson, A. Bergh, P. Stattin, et al., Castration‐induced epithelial cell death in human prostate tissue is related to locally reduced IGF-1 levels, Prostate 67 (2007) 32-40. https://doi.org/10.1002/pros.20480.
E.A. Lesovaya, K.I. Kirsanov, E.E. Antoshina, et al., Rapatar, a nanoformulation of rapamycin, decreases chemically-induced benign prostate hyperplasia in rats, Oncotarget 6 (2015) 9718-9727. https://doi.org/10.18632/oncotarget.3929.
D. Liu, J.E. Shoag, D. Poliak, et al., Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes, Nat. Commun. 11 (2020) 1987. https://doi.org/10.1038/s41467-020-15913-6.
Z. Wang, X. Xiao, R. Ge, et al., Metformin inhibits the proliferation of benign prostatic epithelial cells, PloS One 12 (2017) e0173335. https://doi.org/10.1371/journal.pone.0173335.
H.H. Mosli, A. Esmat, R.T. Atawia, et al., Metformin attenuates testosteroneinduced prostatic hyperplasia in rats: a pharmacological perspective, Sci. Rep. 23 (2015) 15639. https://doi.org/10.1038/srep15639.
S.M. Tang, X.T. Deng, J. Zhou, et al., Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects, Biomed. Pharmacother. 121 (2020) 109604. https://doi.org/10.1016/j.biopha.2019.109604.
M. Lesjak, I. Beara, N. Simin, et al., Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J. Funct, Foods 40 (2018) 68-75. https://doi.org/10.1016/j.jff.2017.10.047.
J. Mlcek, T. Jurikova, S. Skrovankova, et al., Quercetin and its anti-allergic immune response, Molecules 21 (2016) 623. https://doi.org/10.3390/molecules21050623.
H.M. Eid, P.S. Haddad, The antidiabetic potential of quercetin: underlying mechanisms, Curr. Med. Chem. 24 (2017) 355-364. https://doi.org/10.2174/0929867323666160909153707.
K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem. 13 (2002) 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5.
Y.J. Choi, M. Fan, Y. Tang, et al., Ameliorative effect of Abeliophyllum distichum Nakai on benign prostatic hyperplasia in vitro and in vivo, Nutr. Res. Pract. 15 (2021) e69. https://doi.org/10.4162/nrp.2022.16.4.419.
I.G. Schauer, D.R. Rowley, The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 82 (2011) 200-210. https://doi.org/10.1016/j.diff.2011.05.007.
R. Liu, G. Fu, J. Li, et al., Roles of autophagy in androgen-induced benign prostatic hyperplasia in castrated rats, Exp. Ther. Med. 15 (2018) 2703-2710. https://doi.org/10.3892/etm.2018.5772.
Y.S. Won, J.H. Kim, R.C.M. Lizardo, et al., The flavonol isoquercitrin promotes mitochondrial-dependent apoptosis in SK-Mel-2 melanoma cell via the PI3K/AKT/mTOR pathway, Nutrients 12 (2020) 3683. https://doi.org/10.3390/nu12123683.
F. Chen, X. Chen, D. Yang, et al., Isoquercitrin inhibits bladder cancer progression in vivo and in vitro by regulating the PI3K/Akt and PKC signaling pathways, Oncol. Rep. 36 (2016) 165-172. https://doi.org/10.3892/or.2016.4794.
C.Y. Lan, S.Y. Chen, C.W. Kuo, et al., Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells, J. Food Drug Anal. 27 (2019) 887-896. https://doi.org/10.1016/j.jfda.2019.07.001.
M. Reyes-Farias, C. Carrasco-Pozo, The anti-cancer effect of quercetin: molecular implications in cancer metabolism, Int. J. Mol. Sci. 20 (2019) 3177. https://doi.org/10.3390/ijms20133177.
A. Bruning, Inhibition of mTOR signaling by quercetin in cancer treatment and prevention, Anticancer Agents Med. Chem. 13 (2013) 1025-1031. https://doi.org/10.2174/18715206113139990114.
N. Xing, Y. Chen, S.H. Mitchell, et al., Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells, Carcinogenesis 22 (2001) 409-414. https://doi.org/10.1093/carcin/22.3.409.
L. Vignozzi, M. Gacci, M. Maggi, Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome, Nat. Rev. Urol. 13 (2016) 108-119. https://doi.org/10.1038/nrurol.2015.301.
S. Kasturi, S. Russell, K.T. McVary, Metabolic syndrome and lower urinary tract symptoms secondary to benign prostatic hyperplasia, Curr. Urol. Rep. 4 (2006) 127-131. https://doi.org/10.1007/s11934-996-0008-y.
C. Ozden, O.L. Ozdal, G. Urgancioglu, et al., The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia, Eur. Urol. 51 (2007) 199-206. https://doi.org/10.1016/j.eururo.2006.05.040.
J. Hammarsten, J.E. Damber, M. Karlsson, et al., Insulin and free oestradiol are independent risk factors for benign prostatic hyperplasi, Prostate Cancer Prostatic Dis. 12 (2009) 160-165. https://doi.org/10.1038/pcan.2008.50.
A. Vikram, G. Jena, P. Ramarao, Insulin-resistance and benign prostatic hyperplasia: the connection, Eur. J. Pharmacol. 641 (2010) 75-81. https://doi.org/10.1016/j.ejphar.2010.05.042.
J. Bogdanos, D. Karamanolakis, R. Tenta, et al., Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton, Endocr. Relat. Canc. 10 (2003) 279-289. https://doi.org/10.1677/erc.0.0100279.
Y.C. Kim, K.L. Guan, mTOR: a pharmacologic target for autophagy regulation, J. Clin. Invest. 125 (2015) 25-32. https://doi.org/10.1172/JCI73939.
J.E. Wilkinson, L. Burmeister, S.V. Brooks, et al., Rapamycin slows aging in mice, Aging cell 11 (2012) 675-682. https://doi.org/10.1111/j.1474-9726.2012.00832.x.
M. Hidalgo, E.K. Rowinsky, The rapamycin-sensitive signal transduction pathway as a target for cancer therapy, Oncogene 19 (2000) 6680-6686. https://doi.org/10.1038/sj.onc.1204091.
M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, et al., mTOR inhibition by rapamycin prevents β-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes, Diabetes 57 (2008) 945-957. https://doi.org/10.2337/db07-0922.
Z.Z. Chong, K. Maiese, Mammalian target of rapamycin signaling in diabetic cardiovascular disease, Cardiovasc. Diabetol. 11 (2012) 1-8. https://doi.org/10.1186/1475-2840-11-45.
L. Shui, W. Wang, M. Xie, et al., Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway, Aging (Albany NY) 12 (2020) 24318-24332. https://doi.org/10.18632/aging.202237.
K. Wang, R. Liu, J. Li, et al., Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR-and hypoxia-induced factor 1α-mediated signaling, Autophagy 7 (2011) 966-978. https://doi.org/10.4161/auto.7.9.15863.
J.L. Chang, J.M. Chow, J.H. Chang, et al., Quercetin simultaneously induces G0/G1-phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells, Environ. Toxicol. 32 (2017) 1857-1868. https://doi.org/10.1002/tox.22408.
P.C.H. Hollman, J.M.P. van Trijp, M.J.B. Mengelers, et al., Bioavailability of the dietary antioxidant flavonol quercetin in man, Cancer Lett. 114 (1997) 139-140. https://doi.org/10.1016/s0304-3835(97)04644-2.
S. Wolffram, M. Blöck, P. Ader, Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine, J. Nutr. 132 (2002) 630- 635. https://doi.org/10.1093/jn/132.4.630.
Z. Chen, S. Zheng, L. Li, et al., Metabolism of flavonoids in human: a comprehensive review, Curr. Drug Metab. 15 (2014) 48-61. https://doi.org/10.2174/138920021501140218125020.