AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Alleviatory effect of isoquercetin on benign prostatic hyperplasia via IGF-1/PI3K/Akt/mTOR pathway

Young-Jin Choia,b,c,Meiqi FandNishala Erandi Wedamullaa,b,c,eYujiao TangfEun-Kyung Kimg,h( )
Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
Center for Silver-targeted Biomaterials, Brain Busan 21 Plus program, Dong-A University, Busan 49315, Republic of Korea
Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Republic of Korea
Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China
Nutritional Education Major, Graduate School of Education, Dong-A University, Busan 49315, Republic of Korea
Nutrinomics Lab. Co., Ltd., Busan 49315, Republic of Korea

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

We evaluated the effect of isoquercetin (quercetin-O-3-glucoside-quercetin, IQ) as a functional component of Abeliophyllum disistichum Nakai ethanol extract (ADLE) on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia (BPH). Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC. IQ was orally administered (1 or 10 mg/kg) to a testosterone propionate-induced BPH rat model, and its effects on the prostate weight were evaluated. The effect of IQ on androgen receptor (AR) signaling was analyzed in LNCaP cells. Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined. The metabolites in ADLE were identified and quantified, which confirmed that ADLE contained abundant IQ (20.88 mg/g). IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model, and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner. IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells. In BPH-1 cells, IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis. Thus, IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.

References

[1]

A. Ghorbanibirgani, A. Khalili, L. Zamani, The efficacy of stinging nettle (Urtica dioica) in patients with benign prostatic hyperplasia: a randomized double blind study in 100 patients, Iran. Red Crescent Med. J. 15 (2013) 9-10. https://doi.org/10.5812/ircmj.2386.

[2]

M.P. O’Leary, Lower urinary tract symptoms/benign prostatic hyperplasia:maintaining symptom control and reducing complications, Urology 62 (2003) 15-23. https://doi.org/10.1016/s0090-4295(03)00480-1.

[3]

J.Y. Leong, A.S. Patel, R. Ramasamy, Minimizing sexual dysfunction in BPH surgery, Curr. Sex. Health Rep. 11 (2019) 190-200. https://doi.org/10.1007/s11930-019-00210-1.

[4]

K. Kolontarev, A. Govorov, G. Kasyan, et al., Current drug therapy of patients with BPH LUTS with the special emphasis on PDE5 inhibitors, Cent. European J. Urol. 69 (2016) 398-403. https://doi.org/10.5173/ceju.2016.879.

[5]

A.W. Partin, J.E. Oesterling, J.I. Epstein, et al., Influence of age and endocrine factors on the volume of benign prostatic hyperplasia, J. Urol. 145 (1991) 405-409. https://doi.org/10.1016/s0022-5347(17)38353-2.

[6]

S.E. Dahle, A.P. Chokkalingam, Y.T. Gao, et al, Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia, J. Urol. 168 (2002) 599-604.

[7]

J.K. Parsons, H.B. Carter, A.W. Partin, et al., Metabolic factors associated with benign prostatic hyperplasia, J. Clin. Endocrinol. Metab. 91 (2006) 2562-2568. https://doi.org/10.1210/jc.2005-2799.

[8]

H. Nandeesha, B.C. Koner, L.N. Dorairajan, et al., Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia, Clin. Chim. Acta. 370 (2006) 89-93. https://doi.org/10.1016/j.cca.2006.01.019.

[9]

J. Hammarsten, B. Högstedt, Clinical, anthropometric, metabolic and insulin profile of men with fast annual growth rates of benign prostatic hyperplasia, Blood Press. 8 (1999) 29-36. https://doi.org/10.1080/080370599438365.

[10]

A. Ziada, M. Rosenblum, E.D. Crawford, Benign prostatic hyperplasia: an overview, Urology 53 (1999) 1-6. https://doi.org/10.1016/s0090-4295(98)00532-9.

[11]

R.E. Vickman, O.E. Franco, D.C. Moline, et al., The role of the androgen receptor in prostate development and benign prostatic hyperplasia: a review, Asian J. Urol. 7 (2020) 191-202. https://doi.org/10.1016/j.ajur.2019.10.003.

[12]

T.M. Nicholson, W.A. Ricke, Androgens and estrogens in benign prostatic hyperplasia: past, present and future, Differentiation 82 (2011) 184-199. https://doi.org/10.1016/j.diff.2011.04.006.

[13]

P.P. Banerjee, S. Banerjee, T.R. Brown, et al., Androgen action in prostate function and disease, Am. J. Clin. Exp. Urol. 6 (2018) 62-77.

[14]

T.M. Morgan, T.D. Koreckij, E. Corey, Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway, Curr. Cancer Drug Targets 9 (2009) 237-249. https://doi.org/10.2174/156800909787580999.

[15]

N. Ohlson, A. Bergh, P. Stattin, et al., Castration‐induced epithelial cell death in human prostate tissue is related to locally reduced IGF-1 levels, Prostate 67 (2007) 32-40. https://doi.org/10.1002/pros.20480.

[16]

E.A. Lesovaya, K.I. Kirsanov, E.E. Antoshina, et al., Rapatar, a nanoformulation of rapamycin, decreases chemically-induced benign prostate hyperplasia in rats, Oncotarget 6 (2015) 9718-9727. https://doi.org/10.18632/oncotarget.3929.

[17]

D. Liu, J.E. Shoag, D. Poliak, et al., Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes, Nat. Commun. 11 (2020) 1987. https://doi.org/10.1038/s41467-020-15913-6.

[18]

Z. Wang, X. Xiao, R. Ge, et al., Metformin inhibits the proliferation of benign prostatic epithelial cells, PloS One 12 (2017) e0173335. https://doi.org/10.1371/journal.pone.0173335.

[19]

H.H. Mosli, A. Esmat, R.T. Atawia, et al., Metformin attenuates testosteroneinduced prostatic hyperplasia in rats: a pharmacological perspective, Sci. Rep. 23 (2015) 15639. https://doi.org/10.1038/srep15639.

[20]

S.M. Tang, X.T. Deng, J. Zhou, et al., Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects, Biomed. Pharmacother. 121 (2020) 109604. https://doi.org/10.1016/j.biopha.2019.109604.

[21]

M. Lesjak, I. Beara, N. Simin, et al., Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J. Funct, Foods 40 (2018) 68-75. https://doi.org/10.1016/j.jff.2017.10.047.

[22]

J. Mlcek, T. Jurikova, S. Skrovankova, et al., Quercetin and its anti-allergic immune response, Molecules 21 (2016) 623. https://doi.org/10.3390/molecules21050623.

[23]

H.M. Eid, P.S. Haddad, The antidiabetic potential of quercetin: underlying mechanisms, Curr. Med. Chem. 24 (2017) 355-364. https://doi.org/10.2174/0929867323666160909153707.

[24]

K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem. 13 (2002) 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5.

[25]

Y.J. Choi, M. Fan, Y. Tang, et al., Ameliorative effect of Abeliophyllum distichum Nakai on benign prostatic hyperplasia in vitro and in vivo, Nutr. Res. Pract. 15 (2021) e69. https://doi.org/10.4162/nrp.2022.16.4.419.

[26]

I.G. Schauer, D.R. Rowley, The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 82 (2011) 200-210. https://doi.org/10.1016/j.diff.2011.05.007.

[27]

R. Liu, G. Fu, J. Li, et al., Roles of autophagy in androgen-induced benign prostatic hyperplasia in castrated rats, Exp. Ther. Med. 15 (2018) 2703-2710. https://doi.org/10.3892/etm.2018.5772.

[28]

Y.S. Won, J.H. Kim, R.C.M. Lizardo, et al., The flavonol isoquercitrin promotes mitochondrial-dependent apoptosis in SK-Mel-2 melanoma cell via the PI3K/AKT/mTOR pathway, Nutrients 12 (2020) 3683. https://doi.org/10.3390/nu12123683.

[29]

F. Chen, X. Chen, D. Yang, et al., Isoquercitrin inhibits bladder cancer progression in vivo and in vitro by regulating the PI3K/Akt and PKC signaling pathways, Oncol. Rep. 36 (2016) 165-172. https://doi.org/10.3892/or.2016.4794.

[30]

C.Y. Lan, S.Y. Chen, C.W. Kuo, et al., Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells, J. Food Drug Anal. 27 (2019) 887-896. https://doi.org/10.1016/j.jfda.2019.07.001.

[31]

M. Reyes-Farias, C. Carrasco-Pozo, The anti-cancer effect of quercetin: molecular implications in cancer metabolism, Int. J. Mol. Sci. 20 (2019) 3177. https://doi.org/10.3390/ijms20133177.

[32]

A. Bruning, Inhibition of mTOR signaling by quercetin in cancer treatment and prevention, Anticancer Agents Med. Chem. 13 (2013) 1025-1031. https://doi.org/10.2174/18715206113139990114.

[33]

N. Xing, Y. Chen, S.H. Mitchell, et al., Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells, Carcinogenesis 22 (2001) 409-414. https://doi.org/10.1093/carcin/22.3.409.

[34]

L. Vignozzi, M. Gacci, M. Maggi, Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome, Nat. Rev. Urol. 13 (2016) 108-119. https://doi.org/10.1038/nrurol.2015.301.

[35]

S. Kasturi, S. Russell, K.T. McVary, Metabolic syndrome and lower urinary tract symptoms secondary to benign prostatic hyperplasia, Curr. Urol. Rep. 4 (2006) 127-131. https://doi.org/10.1007/s11934-996-0008-y.

[36]

C. Ozden, O.L. Ozdal, G. Urgancioglu, et al., The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia, Eur. Urol. 51 (2007) 199-206. https://doi.org/10.1016/j.eururo.2006.05.040.

[37]

J. Hammarsten, J.E. Damber, M. Karlsson, et al., Insulin and free oestradiol are independent risk factors for benign prostatic hyperplasi, Prostate Cancer Prostatic Dis. 12 (2009) 160-165. https://doi.org/10.1038/pcan.2008.50.

[38]

A. Vikram, G. Jena, P. Ramarao, Insulin-resistance and benign prostatic hyperplasia: the connection, Eur. J. Pharmacol. 641 (2010) 75-81. https://doi.org/10.1016/j.ejphar.2010.05.042.

[39]

J. Bogdanos, D. Karamanolakis, R. Tenta, et al., Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton, Endocr. Relat. Canc. 10 (2003) 279-289. https://doi.org/10.1677/erc.0.0100279.

[40]

Y.C. Kim, K.L. Guan, mTOR: a pharmacologic target for autophagy regulation, J. Clin. Invest. 125 (2015) 25-32. https://doi.org/10.1172/JCI73939.

[41]

J.E. Wilkinson, L. Burmeister, S.V. Brooks, et al., Rapamycin slows aging in mice, Aging cell 11 (2012) 675-682. https://doi.org/10.1111/j.1474-9726.2012.00832.x.

[42]

M. Hidalgo, E.K. Rowinsky, The rapamycin-sensitive signal transduction pathway as a target for cancer therapy, Oncogene 19 (2000) 6680-6686. https://doi.org/10.1038/sj.onc.1204091.

[43]

M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, et al., mTOR inhibition by rapamycin prevents β-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes, Diabetes 57 (2008) 945-957. https://doi.org/10.2337/db07-0922.

[44]

Z.Z. Chong, K. Maiese, Mammalian target of rapamycin signaling in diabetic cardiovascular disease, Cardiovasc. Diabetol. 11 (2012) 1-8. https://doi.org/10.1186/1475-2840-11-45.

[45]

L. Shui, W. Wang, M. Xie, et al., Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway, Aging (Albany NY) 12 (2020) 24318-24332. https://doi.org/10.18632/aging.202237.

[46]

K. Wang, R. Liu, J. Li, et al., Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR-and hypoxia-induced factor 1α-mediated signaling, Autophagy 7 (2011) 966-978. https://doi.org/10.4161/auto.7.9.15863.

[47]

J.L. Chang, J.M. Chow, J.H. Chang, et al., Quercetin simultaneously induces G0/G1-phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells, Environ. Toxicol. 32 (2017) 1857-1868. https://doi.org/10.1002/tox.22408.

[48]

P.C.H. Hollman, J.M.P. van Trijp, M.J.B. Mengelers, et al., Bioavailability of the dietary antioxidant flavonol quercetin in man, Cancer Lett. 114 (1997) 139-140. https://doi.org/10.1016/s0304-3835(97)04644-2.

[49]

S. Wolffram, M. Blöck, P. Ader, Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine, J. Nutr. 132 (2002) 630- 635. https://doi.org/10.1093/jn/132.4.630.

[50]

Z. Chen, S. Zheng, L. Li, et al., Metabolism of flavonoids in human: a comprehensive review, Curr. Drug Metab. 15 (2014) 48-61. https://doi.org/10.2174/138920021501140218125020.

Food Science and Human Wellness
Pages 1698-1710
Cite this article:
Choi Y-J, Fan M, Wedamulla NE, et al. Alleviatory effect of isoquercetin on benign prostatic hyperplasia via IGF-1/PI3K/Akt/mTOR pathway. Food Science and Human Wellness, 2024, 13(3): 1698-1710. https://doi.org/10.26599/FSHW.2022.9250216

1466

Views

434

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 August 2022
Revised: 04 November 2022
Accepted: 06 December 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return