PDF (9.7 MB)
Collect
Submit Manuscript
Open Access

Saikosaponin D improves nonalcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway

Lan Lia,1Shengye Yanga,b,1Xinyu Liangc,1Yameng LiudHualing XucXiaozhen Guod()Cen Xiec,d()Xiaojun Xua,b()
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210029, China
Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

1 These authors share joint first authorship.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• SSD can regulate hepatic lipid metabolism and improve liver steatosis.

• SSD modulated levels of conjugated and unconjugated bile acids in serum and ileal, thereby inhibiting the intestinal FXR signaling pathway.

• SSD influenced the function of gut microbiota involved in bile acid metabolism.

• SSD reduced the content of 7-oxo-CA by decreasing the expression of 7α-HSDH, which exerted potent activation effect of FXR.

• SSD induced the accumulation of conjugated bile acids in serum and ileum by reducing BSH activity.

Graphical Abstract

View original image Download original image

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide. Bupleurum is widely used in the treatment of non-alcoholic fatty liver, and saikosaponin D (SSD) is one of the main active components of Bupleurum. The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on “gut-liver axis”. Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice, improved insulin sensitivity, and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor (Fxr), small heterodimer partner (Shp), recombinant fibroblast growth factor 15 (Fgf15) and apical sodium dependent bile acid transporter (Asbt) in the intestine, suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling. SSD can significantly reduce the gut microbiota associated with bile salt hydrolase (BSH) expression, such as Clostridium. Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids, thereby inhibiting the intestinal FXR. These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.

Electronic Supplementary Material

Download File(s)
fshw-13-5-2703_ESM.docx (4.2 MB)

References

[1]

Z. Younossi, Q.M. Anstee, M. Marietti, et al., Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention, Nat. Rev. Gastroenterol. Hepatol. 15(1) (2018) 11-20. https://doi.org/10.1038/nrgastro.2017.109.

[2]

E.E. Powell, V.W.S. Wong, M. Rinella, Non-alcoholic fatty liver disease, The Lancet 397(10290) (2021) 2212-2224. https://doi.org/10.1016/s0140-6736(20)32511-3.

[3]

I. Milosevic, A. Vujovic, A. Barac, et al., Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature, Int. J. Mol. Sci. 20(2) (2019) 395. https://doi.org/10.3390/ijms20020395.

[4]

M. Poeta, L. Pierri, P. Vajro, Gut-liver axis derangement in non-alcoholic fatty liver disease, Children (Basel.) 4(8) (2017) 66. https://doi.org/10.3390/children4080066.

[5]

O. Chávez-Talavera, A. Tailleux, P. Lefebvre, et al., Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease, Gastroenterology 152(7) (2017) 1679-1694. https://doi.org/10.1053/j.gastro.2017.01.055.

[6]

M. Schoeler, R. Caesar, Dietary lipids, gut microbiota and lipid metabolism, Rev. Endocr. Metab. Disord. 20(4) (2019) 461-472. https://doi.org/10.1007/s11154-019-09512-0.

[7]

R. Radun, M. Trauner, Role of FXR in bile acid and metabolic homeostasis in NASH: pathogenetic concepts and therapeutic opportunities, Semin. Liver Dis. 41(4) (2021) 461-475. https://doi.org/10.1055/s-0041-1731707.

[8]

L. Sun, C. Xie, G. Wang, et al., Gut microbiota and intestinal FXR mediate the clinical benefits of metformin, Nat. Med. 24(12) (2018) 1919-1929. https://doi.org/10.1038/s41591-018-0222-4.

[9]

K. Wang, M. Liao, N. Zhou, et al., Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids, Cell Rep. 26(1) (2019) 222-235. https://doi.org/10.1016/j.celrep.2018.12.028.

[10]

F. Yang, X. Dong, X. Yin, et al., Radix bupleuri: a review of traditional uses, botany, phytochemistry, pharmacology, and toxicology, Biomed. Res. Int. 2017 (2017) 7597596. https://doi.org/10.1155/2017/7597596.

[11]

X. Li, X. Li, N. Huang, et al., A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins, Phytomedicine 50 (2018) 73-87. https://doi.org/10.1016/j.phymed.2018.09.174.

[12]

Y. Gu, S. Duan, M. Ding, et al., Saikosaponin D attenuates metabolic associated fatty liver disease by coordinately tuning PPARα and INSIG/SREBP1c pathway, Phytomedicine 103 (2022) 154219. https://doi.org/10.1016/j.phymed.2022.154219.

[13]

G.R. Chang, W.L. Lin, T.C. Lin, et al., The ameliorative effects of saikosaponin in thioacetamide-induced liver injury and non-alcoholic fatty liver disease in mice, Int. J. Mol. Sci. 22(21) (2021) 1383. https://doi.org/10.3390/ijms222111383.

[14]

X. Li, J. Ge, Y. Li, et al., Integrative lipidomic and transcriptomic study unravels the therapeutic effects of saikosaponins A and D on non-alcoholic fatty liver disease, Acta Pharm. Sin. B. 11(11) (2021) 3527-3541. https://doi.org/10.1016/j.apsb.2021.03.018.

[15]

S. Chen, X. Liu, C. Peng, et al., The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity, Cell Metab. 33(3) (2021) 565-580. https://doi.org/10.1016/j.cmet.2021.02.007.

[16]

R. Li, Y. Yao, P. Gao, et al., The therapeutic efficacy of curcumin vs. metformin in modulating the gut microbiota in NAFLD rats: a comparative study, Front. Microbiol. 11 (2020) 555293. https://doi.org/10.3389/fmicb.2020.555293.

[17]

X.C. Zhong, Y.M. Liu, X.X. Gao, et al., Caffeic acid phenethyl ester suppresses intestinal FXR signaling and ameliorates nonalcoholic fatty liver disease by inhibiting bacterial bile salt hydrolase activity, Acta Pharmacol. Sin. 44 (2023) 145-156. https://doi.org/10.1038/s41401-022-00921-7.

[18]

C. Jiang, C. Xie, Y. Lv, et al., Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction, Nat. Commun. 6 (2015) 10166. https://doi.org/10.1038/ncomms10166.

[19]

D. Sacks, B. Baxter, B.C.V. Campbell, et al., Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute is chemic stroke, Int. J. Stroke. 13(6) (2018) 612-632. https://doi.org/10.1177/1747493018778713.

[20]

C. Lozupone, R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol. 71(12) (2005) 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.

[21]

D.H. Ipsen, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease, Cell. Mol. Life Sci. 75(18) (2018) 3313-3327. https://doi.org/10.1007/s00018-018-2860-6.

[22]

M. Alves-Bezerra, D.E. Cohen, Triglyceride metabolism in the liver, Compr. Physiol. 8(1) (2017) 1-8. https://doi.org/10.1002/cphy.c170012.

[23]

C. Jiang, C. Xie, F. Li, et al., Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J. Clin. Invest. 125(1) (2015) 386-402. https://doi.org/10.1172/JCI76738.

[24]

S.I. Sayin, A. Wahlstrom, J. Felin, et al., Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist, Cell Metab. 17(2) (2013) 225-235. https://doi.org/10.1016/j.cmet.2013.01.003.

[25]

F. Huang, X. Zheng, X. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10(1) (2019) 4971. https://doi.org/10.1038/s41467-019-12896-x.

[26]

W. Jia, G. Xie, W. Jia, Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis, Nat. Rev. Gastroenterol. Hepatol. 15(2) (2018) 111-128. https://doi.org/10.1038/nrgastro.2017.119.

[27]

A.A. Adhikari, T.C.M. Seegar, S.B. Ficarro, et al., Development of a covalent inhibitor of gut bacterial bile salt hydrolases, Nat. Chem. Biol. 16(3) (2020) 318-326. https://doi.org/10.1038/s41589-020-0467-3.

[28]

Z. Song, Y. Cai, X. Lao, et al., Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome, Microbiome 7(1) (2019) 9. https://doi.org/10.1186/s40168-019-0628-3.

[29]

C. Leung, L. Rivera, J.B. Furness, et al., The role of the gut microbiota in NAFLD, Nat. Rev. Gastroenterol. Hepatol. 13(7) (2016) 412-425. https://doi.org/10.1038/nrgastro.2016.85.

[30]

J. Yan, L. Sheng, H. Li, Akkermansia muciniphila: is it the Holy Grail for ameliorating metabolic diseases? Gut Microbes. 13(1) (2021) 1984104. https://doi.org/10.1080/19490976.2021.1984104.

[31]

Y. Rao, Z. Kuang, C. Li, et al., Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis, Gut Microbes. 13(1) (2021) 1-19. https://doi.org/10.1080/19490976.2021.1927633.

[32]

C.C. Li, C. Liu, M. Fu, et al., Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice, Mol. Nutr. Food Res. 62(8) (2018) e1700738. https://doi.org/10.1002/mnfr.201700738.

[33]

M.R. Bomhof, J.A. Parnell, H.R. Ramay, et al., Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial, Eur. J. Nutr. 58(4) (2019) 1735-1745. https://doi.org/10.1007/s00394-018-1721-2.

[34]

S. Marion, N. Studer, L. Desharnais, et al., In vitro and in vivo characterization of Clostridium scindens bile acid transformations, Gut Microbes. 10(4) (2019) 481-503. https://doi.org/10.1080/19490976.2018.1549420.

[35]

M. Bourgin, A. Kriaa, H. Mkaouar, et al., Bile salt hydrolases: at the crossroads of microbiota and human health, Microorganisms 9(6) (2021) 1122. https://doi.org/10.3390/microorganisms9061122.

[36]

J.Y.L. Chiang, Bile acid metabolism and signaling in liver disease and therapy, Liver Res. 1(1) (2017) 3-9. https://doi.org/10.1016/j.livres.2017.05.001.

[37]

J.Y.L. Chiang, J.M. Ferrell, Bile acids as metabolic regulators and nutrient sensors, Annu. Rev. Nutr. 39 (2019) 175-200. https://doi.org/10.1146/annurev-nutr-082018-124344.

[38]

H. Wang, Q. He, G. Wang, et al., FXR modulators for enterohepatic and metabolic diseases, Expert Opin. Ther. Pat. 28(11) (2018) 765-782. https://doi.org/10.1080/13543776.2018.1527906.

[39]

Z.M. Younossi, V. Ratziu, R. Loomba, et al., Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial, Lancet 394(10215) (2019) 2184-2196. https://doi.org/10.1016/S0140-6736(19)33041-7.

[40]

A. Sanyal, P. Lopez, E. Lawitz, et al., Tropifexor, a farnesoid X receptor agonist for the treatment of non-alcoholic steatohepatitis: interim results based on baseline body mass index from first two parts of Phase 2b study FLIGHT-FXR, J. Hepatol. 70(1) (2019) E796-E797. https://doi.org/10.1016/s0618-8278(19)31587-7

[41]

T.Y. Jiao, Y.D. Ma, X.Z. Guo, et al., Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease, Acta Pharmacol. Sin. 43(5) (2022) 1103-1119. https://doi.org/10.1038/s41401-022-00880-z.

Food Science and Human Wellness
Pages 2703-2717
Cite this article:
Li L, Yang S, Liang X, et al. Saikosaponin D improves nonalcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway. Food Science and Human Wellness, 2024, 13(5): 2703-2717. https://doi.org/10.26599/FSHW.2022.9250218
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return