Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study investigated the effects of a xylitol-casein non-covalent complex (XC) on parameters related to type 2 diabetes mellitus (T2DM), in addition to related changes in gut microbiome composition and functions. High-fat-diet (HFD) + streptozotocin (STZ)-induced T2DM mice were treated with xylitol (XY), casein (CN), and XC, after which fecal samples were collected for gut microbiota composition and diversity analyses based on 16S rRNA high-throughput sequencing and multivariate statistics. XC decreased body weight and improved glucose tolerance, insulin sensitivity, pancreas impairment, blood lipid levels, and liver function in T2DM mice compared to XY- and CN-treated mice. Furthermore, XC modulated the α-diversity, β-diversity and gut microbiota composition. Based on Spearman’s correlation analysis, the relative abundances of Alistipes, Bacteroides, and Faecalibaculum were positively correlated and those of Akkermansia, Lactobacillus, Bifi dobacterium, and Turicibacter were negatively correlated with the phenotypes related to the improvement of T2DM. In conclusion, we found that XC alleviated insulin resistance by restoring the gut microbiota of T2DM mice. Our results provide strong evidence for the beneficial effects of XC on T2DM and motivation for further investigation in animal models and, eventually, human trials.
G. Musso, R. Gambino, M. Cassader, Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 33 (2010) 2277-2284. https://doi.org/10.2337/dc10-0556.
Y.Y. Zhu, L.E. Dong, L. Huang, et al., Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats, J. Funct. Foods 69 (2020) 103939. https://doi.org/10.1016/j.jff.2020.103939.
R.B. Jia, J. Wu, Z.R. Li, et al., Structural characterization of polysaccharides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats, Int. J. Biol. Macromol. 155 (2019) 1040-1049. https://doi.org/10.1016/j.ijbiomac.2019.11.068.
Y.L. Liu, M. Dong, Z.Y. Yang, et al., Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway, Int. J. Biol. Macromol. 89 (2016) 484-488. https://doi.org/10.1016/j.ijbiomac.2016.05.015.
M. Arrese, A. Riquelme, A. Soza, et al., Insulin resistance, hepatic steatosis and hepatitis c: a complex relationship with relevant clinical implications, Hepatol. 9 (2010) 112-118. https://doi.org/10.1016/s1665-2681(19)31735-1.
Y.Y. Wang, J. Zhu, H.L. Ma, et al., Antidiabetic activity of a polysaccharide-protein complex from Asian clam (Corbicula fluminea) in streptozotoxin-induced diabetic rats and underlying mechanism, Food Funct. 10 (2019) 5574-5586. https://doi.org/10.1039/c9fo01341e.
M. Markiewicz, C. Jungnickel, S. Stolte, et al., Primary degradation of antidiabetic drugs, J. Hazard. Mater. 324 (2017) 428-435. https://doi.org/10.1016/j.jhazmat.2016.11.008.
R.J. Hu, Y. Li, Q.G. Lv, et al., Acarbose monotherapy and type 2 diabetes prevention in Eastern and Western prediabetes: an ethnicity-specific meta-analysis, Clin. Ther. 37 (2015) 1798-1812. https://doi.org/10.1016/j.clinthera.2015.05.50.
M. Garratt, B. Bower, G.G. Garcia, et al., Sex differences in lifespan extension with acarbose and 17-α estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling, Aging Cell 16 (2017) 1256-1266. https://doi.org/10.1111/acel.12656.
L. Tran, A. Zielinski, A.H. Roach, et al., Pharmacologic treatment of type 2 diabetes, Ann. Pharmacother. 49 (2015) 540-556. https://doi.org/10.1177/1060028014558289.
Z.R. Li, R.B. Jia, J. Wu, et al., Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats, Int. J. Biol. Macromol. 170 (2020) 447-458. https://doi.org/10.1016/j.ijbiomac.2020.12.126.
B. Zheng, T.T. Wang, H.W. Wang, et al., Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type Ⅴ) in rats fed by high-fat diet, Carbohydr. Polym. 246 (2020) 116637. https://doi.org/10.1016/j.carbpol.2020.116637.
M.S. Islam, M. Indrajit, Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats, Ann. Nutr. Metab. 61 (2012) 57-64. https://doi.org/10.1159/000338440.
R.S. Samakradhamrongthai, T. Jannu, Effect of stevia, xylitol, and corn syrup in the development of velvet tamarind (Dialium indum L.) chewy candy, Food Chem. 352 (2021) 129353. https://doi.org/10.1016/j.foodchem.2021.129353.
M.A. Rahman, M.S. Islam, Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study, J. Food Sci. 79 (2014) H1436-H1442. https://doi.org/10.1111/1750-3841.12520.
C.Y. Wang, L. Zheng, G. Su, et al., Evaluation and exploration of potentially bioactive peptides in casein hydrolysates against liver oxidative damage in STZ/HFD-induced diabetic rats, J. Agric. Food Chem. 68 (2020) 2393-2405. https://doi.org/10.1021/acs.jafc.9b07687.
R.J.F. Manders, D. Hansen, A.H.G. Zorenc, et al., Protein co-ingestion strongly increases postprandial insulin secretion in type 2 diabetes patients, J. Med. Food 17 (2014) 758-763. https://doi.org/10.1089/jmf.2012.0294.
J.T. Jonker, M.A. Wijingaarden, J. Kloek, et al., Effects of low doses of casein hydrolysate on post-challenge glucose and insulin levels, Eur. J. Intern. Med. 22 (2011) 245-248. https://doi.org/10.1016/j.ejim.2010.12.015.
Y. Zhang, Effects of dietary fiber and protein on intestinal microflora in patients with type 2 diabetes, Jinan, China: Shandong Normal University, 2018.
F.H. Kong, S.M. Kang, Y.J. An, et al., The effect of non-covalent interactions of xylitol with whey protein and casein on structure and functionality of protein, Int. Dairy J. 111 (2020) 104841. https://doi.org/10.1016/j.idairyj.2020.104841.
R. Lin, X. He, H.F. Chen, et al., Oil tea improves glucose and lipid levels and alters gut microbiota in type 2 diabetic mice, Nutr. Res. 57 (2018) 67-77. https://doi.org/10.1016/j.nutres.2018.05.004.
C.F. Yang, S.S. Lai, Y.H. Chen, et al., Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota, Chem. Toxicol. 131 (2019) 110562. https://doi.org/10.1016/j.fct.2019.110562.
A.S. Neish, Microbes in gastrointestinal health and disease, Gastroenterology 136 (2009) 65-80. https://doi.org/10.1053/j.gastro.2008.10.080.
C.X. He, Y.J. Shan, W. Song, Targeting gut microbiota as a possible therapy for diabetes, Nutr. Res. 35 (2015) 361-367. https://doi.org/10.1016/j.nutres.2015.03.002.
H.L. Yan, J.M. Lu, Y.F. Wang, et al., Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats, Phytomedicine 26 (2017) 45-54. https://doi.org/10.1016/j.phymed.2017.01.007.
B.W. Zhang, W.L. Sun, N. Yu, et al., Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats, J. Funct. Foods 46 (2018) 256-267. https://doi.org/10.1016/j.jff.2018.04.070.
C.Y. Wu, J. Zhou, F. Long, et al., Similar hypoglycemic effects of glucomannan and its enzyme degraded products from amorphophallus albus on type 2 diabetes mellitus in mice and potential mechanisms, Food Funct. 11 (2020) 9740-9751. https://doi.org/10.1039/D0FO02434A.
M. Tamura, C. Hoshi, S. Hori, et al., Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice, Int. J. Mol. Sci. 14 (2013) 23993-24007. https://doi.org/10.3390/ijms141223993.
K. Amo, H. Arai, T. Uebanso, et al., Effects of xylitol on metabolic parameters and visceral fat accumulation, J. Clin. Biochem. Nutr. 49 (2011) 1-7. https://doi.org/10.3164/jcbn.10-111.
Q.S. Shang, X.D. Shan, C. Cai, et al., Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae, Food Funct. 7 (2016) 3224-3232. https://doi.org/10.1039/c6fo00309e.
Y. Li, C. Qin, L.L. Liu, et al., Whole grain benefit: oat β-glucan and phenolic compounds synergistically regulates hyperlipidemia via gut microbiota in high-fat-diet mice, Food Funct. 13 (2022) 12686-12696. https://doi.org/10.1039/d2fo01746f.
M.G.I. Langille, J. Zaneveld, J.G. Caporaso, et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol. 31 (2013) 814-821. https://doi.org/10.1038/nbt.2676.
N. Segata, J. Izard, L. Waldron, et al., Metagenomic biomarker discovery and explanation, Genome Biol. 12 (2011) R60. https://doi.org/10.1186/gb-2011-12-6-r60.
D.E. Roopchand, P. Kuhn, A. Poulev, et al., Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol–soybean flour complex, J. Agric. Food Chem. 60 (2012) 8860-8865. https://doi.org/10.1021/jf300232h.
J. Ye, Y. Zhao, X.M. Chen, et al., Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice, Food Res. Int. 144 (2021) 110360. https://doi.org/10.1016/j.foodres.2021.110360.
S.P. Sah, B. Singh, S. Choudhary, et al., Animal models of insulin resistance: a review, Pharmacol. Rep. 68 (2016) 1165-1177. https://doi.org/10.1016/j.pharep.2016.07.010.
V.K. Kondeti, K.R. Badri, D.R. Maddirala, et al., Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats, Food Chem. Toxicol. 48 (2010) 1281-1287. https://doi.org/10.1016/j.fct.2010.02.023.
W. Wu, L. Wang, J. Qiu, et al., The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells, J. Funct. Foods 50 (2018) 137-146. https://doi.org/10.1016/j.jff.2018.09.032.
T.T. Wang, L. Zheng, T.T. Zhao, et al., Anti-diabetic effects of sea cucumber (Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway, J. Funct. Foods 75 (2020) 104224. https://doi.org/10.1016/j.jff.2020.104224.
Q.F. Ban, Effects of symbiotic yogurt fortified with monk fruit extract on regulating glucose and the mechanism, Harbin, China: Northeast Agricultural University, 2021.
Y.Q. Song, J.E. Manson, L.F. Tinker, et al., Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the women’s health initiative observational study, Diabetes Care 30 (2007) 1747-1752. https://doi.org/10.2337/dc07-0358.
N.N. Than, P. N. Newsome, A concise review of non-alcoholic fatty liver disease, Atherosclerosis 239 (2015) 192-202. https://doi.org/10.1016/j.atherosclerosis.2015.
D. Zhu, The improvement on glucose metabolism disorders and molecular mechanism of cichoric acid, Xianyang, China: Northwest Agricultural and Forestry University, 2017.
V.G. Athyros, M. Doumas, K.P. Imprialos, et al., Diabetes and lipid metabolism, Int. J. Endocrinol. Metab. 17 (2018) 61-67. https://doi.org/10.1007/s42000-018-0014-8.
C. Chen, L.J. You, Q. Huang, et al., Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice, Food Funct. 9 (2018) 3732-3742. https://doi.org/10.1039/c7fo01346a.
T. Jiang, Structural characterization and biological activity of protein-anthocyanin complexes from purple sweet potato, Wuhan, China: Wuhan Polytechnic University, 2018.
Q.X. Nie, J.L. Hu, H. Gao, et al., Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats, Food Hydrocoll. 86 (2017) 34-42. https://doi.org/10.1016/j.foodhyd.2017.12.026.
H.S. Li, Q.Y. Fang, Q.X. Nie, et al., Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration, J. Agric. Food Chem. 68 (2020) 10015-10028. https://doi.org/10.1021/acs.jafc.0c01968.
X.S. Li, R.Y. Wu, Y. Hu, Effect of ginkgo biloba extract on contractility enhancement of diaphragm of rats with type 2 diabetes, Adv. Mater. Res. 3326 (2014) 1015-1019. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1015.
J.C. Clemente, L.K. Ursell, L.W. Parfrey, et al., The impact of the gut microbiota on human health: an integrative view, Cell 148 (2012) 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035.
L.M. Cox, I. Cho, S.A. Young, et al., The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota, The FASEB J. 27 (2013) 692-702. https://doi.org/10.1096/fj.12-219477.
G. Blandino, R. Inturri, F. Lazzara, et al., Impact of gut microbiota on diabetes mellitus, Diabetes Metab. 42 (2016) 303-315. https://doi.org/10.1016/j.diabet.2016.04.004.
J.J. Qin, Y.R. Li, Z.M. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.
N. Larsen, F.K. Vogensen, F.W.J. van den Berg, et al., Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults, PLoS One 5 (2010) e9085. https://doi.org/10.1371/journal.pone.0009085.
X.Y. Wei, J.H. Tao, S.W. Xiao, et al., Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota, Sci. Rep. 8 (2018) 3685. https://doi.org/10.1038/s41598-018-22094-2.
R.E. Ley, F. Backhed, P. Turnbaugh, et al., Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. 102 (2005) 11070-11075. https://doi.org/10.1073/pnas.0504978102.
M. Murri, I. Leiva, J.M. Gomez-Zumaquero, et al., Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study, BMC Med. 11 (2013) 46-57. https://doi.org/10.1186/1741-7015-11-46.
J.F. Gu, S.L. Su, J.M. Guo, et al., The aerial parts of Salvia miltiorrhiza Bge. strengthen intestinal barrier and modulate gut microbiota imbalance in streptozocin-induced diabetic mice, Funct. Foods 36 (2017) 362-274. https://doi.org/10.1016/j.jff.2017.06.010.
H. Han, Y.Y. Li, J. Fang, et al., Gut microbiota and type 1 diabetes, Int. J. Mol. Sci. 19 (2018) 995. https://doi.org/10.3390/ijms19040995.
Y. He, W. Wu, S. Wu, et al., Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis, Microbiome 6 (2018) 172-183. https://doi.org/10.1186/s40168-018-0557-6.
F.F. Anhê, D. Roy, G. Pilon, et al., A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice, Gut 64 (2015) 872-873. http://doi.org/10.1136/gutjnl-2014-307142.
M. Schneeberger, A. Everard, A.G. Gómez-Valadés, et al., Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice, Sci. Rep. 5 (2015) 16643. https://doi.org/10.1038/srep16643.
M. Candela, E. Biagi, M. Soverini, et al., Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet, Br. J. Nutr. 116 (2016) 80-93. https://doi.org/10.1017/s0007114516001045.
M.C. Dao, A. Everard, J. Aron-Wisnewsky, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut 65 (2016) 426-436. https://doi.org/10.1136/gutjnl-2014-308778.
M. Gurung, Z. Li, H. You, et al., Role of gut microbiota in type 2 diabetes pathophysiology, EBioMedicine 51 (2020) 102590. https://doi.org/10.1016/j.ebiom.2019.11.051.
S. Li, W.W. Yu, X. Guan, et al., Effects of millet whole grain supplementation on the lipid profile and gut bacteria in rats fed with high-fat diet, J. Funct. Foods 59 (2019) 49-59. https://doi.org/10.1016/j.jff.2019.05.030.
S.H. Kim, C.S. Huh, I.D. Choi, et al., The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo, J. Appl. Microbiol. 117 (2014) 834-845. https://doi.org/10.1111/jam.12573.
P.D. Cani, A.M. Neyrinck, F. Fava, et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabeologia 50 (2007) 2374-2383. https://doi.org/10.1007/s00125-007-0791-0.
Y.L. Jones-Hall, A. Kozik, C. Nakatsu, Ablation of tumor necrosis factor is associated with decreased inflammation and alterations of the microbiota in a mouse model of inflammatory bowel disease, PLoS One 10 (2015) e0119441. https://doi.org/10.1371/journal.pone.0119441.
Z.B. Liu, Z.C. Chen, H.W. Guo, et al., The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice, Food Funct. 7 (2016) 4869-4879. https://doi.org/10.1039/c6fo01439a.
H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature 535 (2016) 376-381. https://doi.org/10.1038/nature18646.
C. Gar, M. Rottenkolber, C. Prehn, et al., Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes, Crit. Rev. Clin. Lab. Sci. 55 (2017) 21-32. https://doi.org/10.1080/10408363.2017.1414143.
M.H. Do, H.B. Lee, E. Lee, et al., The effects of gelatinized wheat starch and high salt diet on gut microbiota and metabolic disorder, Nutrients 12 (2020) 301-315. https://doi.org/10.3390/nu12020301.
J.J. Chen, Effects of Trichoderma viride fermentation on the physicochemical properties and anti-diabetic activities of dietary fiber from tea residues, Nanchang, China: Nanchang University, 2021.
F. Del Chierico, F. Abbatini, A. Russo, et al., Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns, Front. Microbiol. 9 (2018) 1210. https://doi.org/10.3389/fmicb.2018.01210.
C. Li, Q. Ding, S.P. Nie, et al., Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats, J. Agric. Food Chem. 62 (2014) 11884. https://doi.org/10.1021/jf503681r.
1495
Views
107
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).