Restenosis is a common complication following coronary angioplasty. The traditional use of seaweeds for health benefits has increasingly been explored, however few studies exist reporting its protective effects on the development of restenosis and gut dysbiosis. The aim of this study was to investigate the potential of seaweed extracts (SE) of Ascophyllum nodosum and Fucus vesiculosus in inhibiting intimal hyperplasia in a rat model of restenosis and its underlying mechanisms in macrophages and vascular smooth muscle cells (vSMCs). 16S rRNA sequencing was done to investigate the regulatory effect of SE on the gut microbiome of injured rats. As indicated by the results, SE significantly inhibited the progression of intimal hyperplasia in vivo, attenuated inflammation in macrophages and could inhibit the proliferation, dedifferentiation and migration of vSMCs. It was observed through immunoblotting assays that treatment with SE significantly upregulated PTEN expression in macrophages and inhibited the upregulation of PI3K and AKT expression in vSMCs. Meanwhile, according to the 16S rRNA gene sequencing analysis, supplementation with SE modulated gut microbiota composition in injured rats. In conclusion, SE could ameliorate intimal hyperplasia by inhibiting inflammation and vSMCs proliferation through the regulation of the PTEN/PI3K/AKT pathway and modulating the gut microbiome.
G.A. Roth, G.A. Mensah, C.O. Johnson, et al., Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study, J. Amer. Coll. Card. 76 (2020) 2982-3021. https://doi.org/10.1016/J.JACC.2020.11.010.
T.T. da Silva, R.A. Junior, D.L. de Moura, et al., Effects of coronary angioplasty on inflammatory markers and lipid profile in patients with cardiovascular disease, Open Bio. J. 10 (2020) 1-7. https://doi.org/10.2174/1875318302010010001.
M. Schillinger, M. Exner, W. Mlekusch, et al., Balloon angioplasty and stent implantation induce a vascular inflammatory reaction, J. Endovasc. Ther. 9 (2002) 59-66. https://doi.org/10.1177/152660280200900111.
H. Hanke, S. Hassenstein, A. Ulmer, et al., Accumulation of macrophages in the arterial vessel wall following experimental balloon angioplasty. Eur. Heart J. 15 (1994) 691-698. https://doi.org/10.1093/OXFORDJOURNALS.EURHEARTJ.A060569.
Q.B. Lu, M.Y. Wan, P.Y. Wang, et al., Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade, Redox Bio. 14 (2018) 656-668. https://doi.org/10.1016/J.REDOX.2017.11.012.
Y. Duan, Y. Zhang, C. Qu, et al., CKLF1 aggravates neointimal hyperplasia by inhibiting apoptosis of vascular smooth muscle cells through PI3K/AKT/NF-κB signaling, Biomed. Pharmacother. 117 (2019) 108986. https://doi.org/10.1016/J.BIOPHA.2019.108986.
P.A. Suwanabol, S.M. Seedial, F. Zhang, et al., TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol. 302 (2012) H2211. https://doi.org/10.1152/AJPHEART.00966.2011.
C. Zhai, J. Cheng, H. Mujahid, et al., Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque, PLoS ONE 9 (2014) e90563. https://doi.org/10.1371/JOURNAL.PONE.0090563.
T. Maehama, J.E. Dixon, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate, J. Bio. Chem. 273 (1998) 13375-13378. https://doi.org/10.1074/JBC.273.22.13375.
J. Huang, C.D. Kontos, Inhibition of vascular smooth muscle cell proliferation, migration, and survival by the tumor suppressor protein PTEN, Arterioscler Throm. Vasc Bio. 22 (2002) 745-751. https://doi.org/10.1161/01.ATV.0000016358.05294.8D.
K.S. Moulton, M. Li, K. Strand, et al., PTEN deficiency promotes pathological vascular remodeling of human coronary arteries, JCI Insight 3 (2018). https://doi.org/10.1172/JCI.INSIGHT.97228.
E. Shlofmitz, M. Iantorno, R. Waksman, Restenosis of drug-eluting stents:a new classification system based on disease mechanism to guide treatment and state-of-the-art review, Circ. Cardiovasc. Interv. 12 (2019) e007023. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007023.
J. Torrado, L. Buckley, A. Durán, et al., Restenosis, stent thrombosis, and bleeding complications: navigating between scylla and charybdis, J. Am. Coll. Cardio. 71 (2018) 1676-1695. https://doi.org/10.1016/J.JACC.2018.02.023.
D. Gabbia, S. Dall’Acqua, I.M. Di Gangi, et al., The phytocomplex from fucus vesiculosus and ascophyllum nodosum controls postprandial plasma glucose levels: an in vitro and in vivo study in a mouse model of NASH, Mar. Drugs 15 (2017). https://doi.org/10.3390/MD15020041.
S. De Martin, D. Gabbia, M. Carrara, et al., The brown algae Fucus vesiculosus and Ascophyllum nodosum reduce metabolic syndrome risk factors: a clinical study, NPC Nat. Prod. Comm. 13 (2018) 1691-1694. https://doi.org/10.3390/MD15020041.
J.F.O. Deux, A. Meddahi-Pellé, A.F. Le Blanche, et al., Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model, Arterioscler. Thromb. Vasc. Bio. 22 (2002) 1604-1609. https://doi.org/10.1161/01.atv.0000032034.91020.0a.
S. Oh, M. Son, C.H. Park, et al., Pyrogallol-phloroglucinol-6,6-bieckolon attenuates vascular smooth muscle cell proliferation and phenotype switching in hyperlipidemia through modulation of chemokine receptor 5, Mar. Drugs 18 (2020) 393. https://doi.org/10.3390/md18080393.
B. Bahar, J.V. O’Doherty, T.J. Smyth, et al., A cold water extract of Fucus vesiculosus inhibits lipopolysaccharide (LPS) induced pro-inflammatory responses in the porcine colon ex-vivo model, Innov. Food Sci. Emerg. Technol. 37 (2016) 229-236. https://doi.org/10.1016/J.IFSET.2016.04.014.
M. Dutot, R. Fagon, M. Hemon, et al., Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum, Appl. Biochem. Biotechnol. 167 (2012) 2234-2240. https://doi.org/10.1007/s12010-012-9761-1.
M.D. Catarino, A. Silva, M.T. Cruz, et al., Phlorotannins from Fucus vesiculosus: modulation of inflammatory response by blocking NF-κB signaling pathway, Int. J. Mol. Sci. 21 (2020) 6897. https://doi.org/10.3390/IJMS21186897.
J. Zhang, J.E. Riby, L. Conde, et al., A Fucus vesiculosus extract inhibits estrogen receptor activation and induces cell death in female cancer cell lines, BMC Comp. Alt. Med. 16 (2016) 1-9. https://doi.org/10.1186/S12906-016-1129-6/FIGURES/4.
M.D. Catarino, I. Fernandes, H. Oliveira, et al., Antitumor activity of fucus vesiculosus-derived phlorotannins through activation of apoptotic signals in gastric and colorectal tumor cell lines, Int. J. Mol. Sci. 22 (2021) 7604. https://doi.org/10.3390/IJMS22147604.
M.D. Catarino, C. Marçal, T. Bonifácio-Lopes, et al., Impact of phlorotannin extracts from Fucus vesiculosus on human gut microbiota, Mar. Drugs 19 (2021). https://doi.org/10.3390/MD19070375.
E. Shannon, M. Conlon, M. Hayes, et al., Seaweed components as potential modulators of the gut microbiota, Mar. Drugs (2021). https://doi.org/10.3390/md19070358.
T. Ahmad, M.S. Eapen, M. Ishaq, et al., Anti-inflammatory activity of fucoidan extracts in vitro, Mar. Drugs 19 (2021) 702. https://doi.org/10.3390/md19120702.
B. Bahar, J.V. O’Doherty, T.J. Smyth, et al., A cold water extract of Fucus vesiculosus inhibits lipopolysaccharide (LPS) induced pro-inflammatory responses in the porcine colon ex-vivo model, Innov. Food Sci. Emerg. Technol. 37 (2016) 229-236. https://doi.org/10.1016/j.ifset.2016.04.014.
B. Wu, G. Mottola, M. Schaller, et al., Resolution of vascular injury: specialized lipid mediators and their evolving therapeutic implications, Mol. Aspects Med. 58 (2017) 72. https://doi.org/10.1016/J.MAM.2017.07.005.
S.O. Marx, H. Totary-Jain, A.R. Marks, Vascular smooth muscle cell proliferation in restenosis, Circ. Cardiovasc. Interv. 4 (2011) 104-111. https://doi.org/10.1161/CIRCINTERVENTIONS.110.957332.
C. Fang, K. Zuo, Y. Fu, et al., Dysbiosis of gut microbiota and metabolite Phenylacetylglutamine in coronary artery disease patients with stent stenosis, Front. Cardiovasc. Med. 9 (2022) 832092. https://doi.org/10.3389/FCVM.2022.832092.
E.B. Chen, K.E. Shapiro, K. Wun, et al., Microbial colonization of germ‐free mice restores neointimal hyperplasia development after arterial injury, J. Am. Heart Assoc: Cardiovasc. Cerebrovasc. Dis. 9 (2020). https://doi.org/10.1161/JAHA.119.013496.
C.A. Cason, T.M. Kuntz, E.B. Chen, et al., Microbiota composition modulates inflammation and neointimal hyperplasia after arterial angioplasty, J. Vascular Surgery 71 (2020) 1378-1389.e3. https://doi.org/10.1016/J.JVS.2019.06.208.
L. Cui, T. Zhao, H. Hu, et al., Association study of gut flora in coronary heart disease through high-throughput sequencing, BioMed. Res. Inter. (2017). https://doi.org/10.1155/2017/3796359.
Y.P. Silva, A. Bernardi, R.L. Frozza, The role of short-chain fatty acids from gut microbiota in gut-brain communication, Front. Endocrinol. 11 (2020). https://doi.org/10.1155/2017/3796359.
C.H. Kim, J. Park, M. Kim, Gut microbiota-derived short-chain fatty acids, T cells, and inflammation, Immun. Netw. 14 (2014) 277-288. https://doi.org/10.4110/in.2014.14.6.277.
R.A. Koeth, Z. Wang, B.S. Levison, et al., Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis, Nat. Med. 19 (2013) 576-585. https://doi.org/10.1038/nm.3145.
M. Al-Obaide, R. Singh, P. Datta, et al., Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD, J. Clin. Med. 6 (2017) 86. https://doi.org/10.3390/jcm6090086.
G. Falony, S. Vieira-Silva, J. Raes, Microbiology meets big data: the case of gut microbiota–derived trimethylamine, Annu. Rev. Microbiol. 69 (2015) 305-321. https://doi.org/10.1146/annurev-micro-091014-104422.
E. Shannon, M. Conlon, M. Hayes, Seaweed components as potential modulators of the gut microbiota, Mar. Drugs 19 (2021) 358-358. https://doi.org/10.3390/MD19070358.
A. Lopez-Santamarina, J.M. Miranda, A. Del Carmen Mondragon, et al., Potential use of marine seaweeds as prebiotics: a review, Molecules 25 (2020). https://doi.org/10.3390/MOLECULES25041004.
L. Chen, W. Xu, D. Chen, et al., Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro, Int. J. Bio. Macromol. 112 (2018) 1055-1061. https://doi.org/10.1016/j.ijbiomac.2018.01.183.
E.A. Orellana, A.L. Kasinski, Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation, Bio. Protoc. 6 (2016) e1984. https://doi.org/10.21769/BioProtoc.1984.
J.H. Hwang, J.N. Ma, J.H. Park, et al., Anti-inflammatory and antioxidant effects of MOK, a polyherbal extract, on lipopolysaccharidestimulated RAW 264.7 macrophages, Int. J. Mol. Med. 43 (2019) 26-36. https://doi.org/10.3892/ijmm.2018.3937.
F. Zhou, J. Mei, X. Han, et al., Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes, Acta. Pharm. Sin B. 9 (2019) 973-985. https://doi.org/10.1016/J.APSB.2019.01.015.
C.H. Pan, Y.P. Lin, J.Y. Wang, et al., Preventive effect and mechanism of Crossostephium chinense extract on balloon angioplasty-induced neointimal hyperplasia, Evid Based Complement Alternat Med: eCAM. (2021). https://doi.org/10.1155/2021/8466543.
J.J. Lee, J.H. Lee, W.K. Cho, et al., Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression, BMC Complement. Alt. Med. 16 (2016) 1-10. https://doi.org/10.1186/S12906-016-1224-8/FIGURES/4.
A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J. Bas. Clin. Pharm. 7 (2016) 27. https://doi.org/10.4103/0976-0105.177703.
Y. Zhang, A. Ma, H. Xi, et al., Antrodia cinnamomea ameliorates neointimal formation by inhibiting inflammatory cell infiltration through downregulation of adhesion molecule expression in vitro and in vivo, Food Sci. Human Wellness 10 (2021) 421-430. https://doi.org/10.1016/J.FSHW.2021.04.004.
A.R. Crowe, W. Yue, Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol, Bio-Protoc. 9 (2019). https://doi.org/10.21769/BIOPROTOC.3465.
A. Klindworth, E. Pruesse, T. Schweer, et al., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res. 41 (2013) e1. https://doi.org/10.1093/NAR/GKS808.
L. Yao, E.A. Davidson, M.W. Shaikh, et al., Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS, Analytic. Bioanalytic. Chem. 414 (2022) 4391-4399. https://doi.org/10.1007/s00216-021-03785-8.
J.H. Cummings, E.W. Pomare, W.J. Branch, et al., Short chain fatty acids in human large intestine, portal, hepatic and venous blood, Gut 28 (1987) 1221-1227. https://doi.org/10.1136/gut.28.10.1221.
J.D. Forbes, C.Y. Chen, N.C. Knox, et al., A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist? Microbiome. 6 (2018). https://doi.org/10.1186/s40168-018-0603-4.
K.E. Walters, J.B.H. Martiny, Alpha-, beta-, and gamma-diversity of bacteria varies across habitats, PLOS ONE 15 (2020) e0233872. https://doi.org/10.1371/journal.pone.0233872.
J. Yang, Y. Li, Z. Wen, et al., Oscillospira - a candidate for the next-generation probiotics, Gut Microbes. 13 (2021). https://doi.org/10.1080/19490976.2021.1987783.
Y.R. Lee, M. Chen, P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor: new modes and prospects, Nat. Rev. Mol. Cell Bio. 19 (2018) 547-562. https://doi.org/10.1038/S41580-018-0015-0.
P. Petsophonsakul, M. Furmanik, R. Forsythe, et al., Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation, Arterioscler. Thromb. Vasc. Bio. 39 (2019) 1351-1368. https://doi.org/10.1161/ATVBAHA.119.312787.
M. Baay, A. Brouwer, P. Pauwels, et al., Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy, Clin. Develop. Immunol. 2011 (2011). https://doi.org/10.1155/2011/565187.
C.E. Hart, A.W. Clowes, Platelet-derived growth factor and arterial response to injury, Circ. 95 (1997) 555-556. https://doi.org/10.1161/01.CIR.95.3.555.
A.N. Lyle, W.R. Taylor, The pathophysiological basis of vascular disease, Lab. Investig. 99 (2019) 284-289. https://doi.org/10.1038/s41374-019-0192-2.
B. Tucker, K. Vaidya, B.J. Cochran, et al., Inflammation during percutaneous coronary intervention—prognostic value, mechanisms and therapeutic targets, Cells 10 (2021) 1391. https://doi.org/10.3390/cells10061391.
E. Forkosh, Y. Ilan, The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy, Open Heart 6 (2019) e000993. https://doi.org/10.1136/openhrt-2018-000993.
Y. Liu, M. Dai, Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: new insights into atherosclerosis, Mediators Inflamm. 2020 (2020). https://doi.org/10.1155/2020/4634172.
B. Tucker, K. Vaidya, B.J. Cochran, et al., Inflammation during percutaneous coronary intervention-prognostic value, mechanisms and therapeutic targets, Cells 10 (2021). https://doi.org/10.3390/cells10061391.
J.M. Pickard, M.Y. Zeng, R. Caruso, et al., Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease, Immunol. Rev. 279 (2017) 70-89. https://doi.org/10.1111/imr.12567.
H. Rajkumar, N. Mahmood, M. Kumar, et al., Effect of probiotic(VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial, Mediators Inflamm. 2014 (2014) 348959. https://doi.org/10.1155/2014/348959.
X. Wen, H.G. Wang, M.N. Zhang, et al., Fecal microbiota transplantation ameliorates experimental colitis via gut microbiota and T-cell modulation, World J. Gastroenterol. 27 (2021) 2834-2849. https://doi.org/10.3748/wjg.v27.i21.2834.
J. Li, F. Zhao, Y. Wang, et al., Gut microbiota dysbiosis contributes to the development of hypertension, Microbiome 5 (2017). https://doi.org/10.1186/s40168-016-0222-x.
F. Altemani, H.L. Barrett, L. Gomez-Arango, et al., Pregnant women who develop preeclampsia have lower abundance of the butyrate-producer Coprococcus in their gut microbiota, Pregnancy Hypertens. 23 (2021) 211-219. https://doi.org/10.1016/j.preghy.2021.01.002.
U. Gophna, T. Konikoff, H.B. Nielsen, Oscillospira and related bacteria-from metagenomic species to metabolic features, Environ Microbio. 19 (2017) 835-841. https://doi.org/10.1111/1462-2920.13658.
A. Nogal, P. Louca, X. Zhang, et al., Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat, Front Microbiol. 12 (2021) 711359. https://doi.org/10.3389/fmicb.2021.711359.
L. Song, Q. Sun, H. Zheng, et al., Roseburia hominis alleviates neuroinflammation via short‐chain fatty acids through histone deacetylase inhibition, Mol. Nutri. Food Res. (2022) 2200164. https://doi.org/10.1002/mnfr.202200164.
K. Kasahara, K.A. Krautkramer, E. Org, et al., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model, Nat. Microbio. 3 (2018) 1461. https://doi.org/10.1038/S41564-018-0272-X.
F. Liu, S. Shan, H. Li, J. Shi, et al., Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE−/− mice, Food Funct. 12 (2021) 7298-7309. https://doi.org/10.1039/D1FO00991E.
M.Y. Lim, S. Hong, J.H. Kim, et al., Association between gut microbiome and frailty in the older adult population in Korea, J. Gerontol. A Bio. Sci. Med. Sci. 76 (2021) 1362-1368. https://doi.org/10.1093/gerona/glaa319.
A. Tomova, I. Bukovsky, E. Rembert, Wet al., The effects of vegetarian and vegan diets on gut microbiota, Front Nutri. 6 (2019). https://doi.org/10.3389/fnut.2019.00047.
W. Yang, G. Guo, J. Chen, et al., Effects of dietary fucoidan supplementation on serum biochemical parameters, small intestinal barrier function, and cecal microbiota of weaned goat kids, Animals 12 (2022) 1591. https://doi.org/10.3390/ani12121591.
O.V. Karnachuk, I.I. Rusanov, I.A. Panova, et al., Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-90256-w.
D. Macabrey, A. Longchamp, S. Déglise, et al., Clinical use of hydrogen sulfide to protect against intimal hyperplasia, Front Cardiovasc. Med. (2022) 850. https://doi.org/10.3389/FCVM.2022.876639.
A. Jacobson, L. Lam, M. Rajendram, et al., A Gut commensal-produced metabolite mediates colonization resistance to salmonella infection, Cell Host Microbe. 24 (2018) 296-307. https://doi.org/10.1016/j.chom.2018.07.002.
M.J. Gosalbes, J.F. Vázquez-Castellanos, C. Angebault, et al., Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an amerindian community, Antimicrob. Agents Chemother. 60 (2016) 507-514. https://doi.org/10.1128/aac.01528-15.
Y. Oishi, I. Manabe, Macrophages in inflammation, repair and regeneration, Int. Immunol. 30 (2018) 511-528. https://doi.org/10.1093/INTIMM/DXY054.
M. Vodouhè, J. Marois, V. Guay, et al., Marginal impact of brown seaweed Ascophyllum nodosum and Fucus vesiculosus extract on metabolic and inflammatory response in overweight and obese prediabetic subjects, Mar. Drugs 20 (2022). https://doi.org/10.3390/MD20030174/S1.
O.N. Pozharitskaya, E.D. Obluchinskaya, A.N. Shikov, Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the barents sea, Mar. Drugs 18 (2020). https://doi.org/10.3390/MD18050275.
J.W. Jeong, S.J. Hwang, M.H. Han, et al., Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae, Mol. Cellul. Toxicol. 13 (2017) 405-417. https://doi.org/10.1007/S13273-017-0045-2.
N. Clément, M. Glorian, M. Raymondjean, et al., PGE2 amplifies the effects of IL-1β on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8, J. Cell Physiol. 208 (2006) 495-505. https://doi.org/10.1002/jcp.20673.
M.R. Alexander, M. Murgai, C.W. Moehle, et al., Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms, Physiol. Genomics. 44 (2012) 417-429. https://doi.org/10.1152/physiolgenomics.00160.2011.
H. Xu, B. Fang, C. Bao, et al., The prostaglandin e2 receptor ep4 promotes vascular neointimal hyperplasia through translational control of tenascin C via the cAMP/PKA/mTORC1/rpS6 pathway, Cells 11 (2022) 2720. https://doi.org/10.3390/cells11172720.
A. Farb, M. John, E. Acampado, et al., Oral everolimus inhibits in-stent neointimal growth, Circulation 106 (2002) 2379-2384. https://doi.org/10.1161/01.CIR.0000033973.06059.04.
T. Deuse, R.G. Erben, B. Behnisch, et al., Inhibition of restenosis development by a novel drug-eluting stent coated with the immunosuppressive leflunomide: distinct inhibition of endothelial and smooth muscle cells, J. Heart Lung Transpl. 27 (2008) S226. https://doi.org/10.1016/J.HEALUN.2007.11.473.
S.A. Smith, A.C. Newby, M. Bond, Ending restenosis: inhibition of vascular smooth muscle cell proliferation by cAMP, Cells 8 (2019). https://doi.org/10.3390/CELLS8111447.
P. Religa, M. Kazi, J. Thyberg, et al., Fucoidan inhibits smooth muscle cell proliferation and reduces mitogen-activated protein kinase activity, Eur. J. Vasc. Endovasc. Surg. 20 (2000) 419-426. https://doi.org/10.1053/ejvs.2000.1220.
Y. Lin, X. Qi, H. Liu, et al., The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations, Cancer Cell Int. 20 (2020) 1-14. https://doi.org/10.1186/S12935-020-01233-8/TABLES/5.
C.M. Shanahan, P.L. Weissberg, J.C. Metcalfe, Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells, Circ. Res. 73 (1993) 193-204. https://doi.org/10.1161/01.RES.73.1.193.
A. Hultgårdh-Nilsson, C. Lövdahl, K. Blomgren, et al., Expression of phenotype- and proliferation-related genes in rat aortic smooth muscle cells in primary culture, Cardiovasc. Res. 34 (1997) 418-430. https://doi.org/10.1016/S0008-6363(97)00030-8/2/34-2-418-FIG13.GIF.
A. Minami, T. Murai, A. Nakanishi, et al., Roles of PTEN/PI3K/AKT/GSK3β pathway in neuron signaling involved in autism, Brain Disorders Therapy (2015). https://doi.org/10.4172/2168-975X.1000165.
C. Gao, X. Yuan, Z. Jiang, et al., Regulation of AKT phosphorylation by GSK3β and PTEN to control chemoresistance in breast cancer, Breast Cancer Res. Treat. 176 (2019) 291-301. https://doi.org/10.1007/S10549-019-05239-3/FIGURES/6.
S.M. Gross, P. Rotwein, Mapping growth-factor-modulated Akt signaling dynamics. J. Cell Sci. 129 (2016) 2052-2063. https://doi.org/10.1242/JCS.183764/-/DC1.
S. Dimmeler, A.M. Zeiher, PTEN-uating restenosis, Arterioscler. Thrombo. Vasc. Bio. 22 (2002) 715-716. https://doi.org/10.1161/01.ATV.0000019007.74346.FB.
R. Lin, J. Lv, L. Wang, et al., Potential target miR-455 delaying arterial stenosis progression through PTEN, Front. Cardiovasc. Med. (2021) 14. https://doi.org/10.3389/FCVM.2021.611116.
S.Y. Wu, M.D. Yan, A.T.H. Wu, et al., Brown seaweed fucoidan inhibits cancer progression by dual regulation of mir-29c/ADAM12 and miR-17-5p/PTEN axes in human breast cancer cells, J. Cancer 7 (2016) 2408-2419. https://doi.org/10.7150/jca.15703.
X. Pang, J. Qiao, Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the inactivation of PI3K/Akt signaling pathway, Biosci. Rep. 40 (2020). https://doi.org/10.1042/BSR20193899.
L.M. Fan, B. Fan, Jiawei Wu, et al., Role of PDGFR-β/PI3K/AKT signaling pathway in PDGF-BB induced myocardial fibrosis in rats, Am. J. Transl.Res. 6 (2014) 714-723.
L. Li, M. Xu, X. Li, et al., Platelet-derived growth factor-B (PDGF-B) induced by hypoxia promotes the survival of pulmonary arterial endothelial cells through the PI3K/Akt/Stat3 pathway, Cell Physiol. Biochem. 35 (2015) 441-451. https://doi.org/10.1159/000369709.
X.F. Li, X. Chen, J. Bao, et al., PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3687-3696. https://doi.org/10.1080/21691401.2019.1661849.
X.F. Li, S. Wu, Q. Yan, et al., PTEN methylation promotes inflammation and activation of fibroblast-like synoviocytes in rheumatoid arthritis, Front. Pharmacol. 12 (2021) 700373. https://doi.org/10.3389/fphar.2021.700373.
C. Fu, Z. Wei, D. Zhang, PTEN inhibits inflammatory bone loss in ligature-induced periodontitis via IL1 and TNF-alpha, Biomed. Res. Int. 2019 (2019) 6712591. https://doi.org/10.1155/2019/6712591.