PDF (6.4 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (1)
Table 1
Open Access

Lactobacillus from fermented bamboo shoots prevents inflammation in DSS-induced colitis mice via modulating gut microbiome and serum metabolites

Xiangru LiuXiaoling LuHao NieJing YanZhiwen MaHailin LiShixin TangQi Yin()Jingfu Qiu
School of Public Health, Chongqing Medical University, Chongqing 400016, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• This is the first study to investigate the probiotic characteristics of Lactobacillus isolated from fermented bamboo shoots both in vitro and in vivo, especially the type strain of Lentilactobacillus senioris, DSM 24302T was isolated in 2010, yet its probiotic potential has never been investigated, suggesting that fermented food has great potential to become a probiotic resource bank.

Lactiplantilactobacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 had more positive effects than Lactobacillus rhamnosus GG on reducing intestinal inflammation in DSS-induced colitis mice by regulating the disordered gut microbiome, thereby affecting serum metabolites and colon cytokine expression, which may be the potential probiotic mechanism of Lactobacillus spp. in improving colitis symptom.

• In this study, mice that ingested Lentilactobacillus senioris YQ005 recovered better and showed a long-lived individual-prone pattern of gut microbiota, Lentilactobacillus senioris YQ005 showed great potential in promoting human health.

• Fermented bamboo shoots as a daily food for people in long-lived and healthy areas provides new insights into the development of daily intake of foods rich in Lactobacillus for the treatment of chronic intestinal disease instead of pharmacological therapy.

Abstract

Fermented bamboo shoots (FBS) is a region-specific food widely consumed in Southwestern China, with Lactobacillus as the predominant fermenting bacteria. However, the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored, especially for diseases with a low prevalence in areas consuming FBS, namely, inflammatory bowel disease. In this study, Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse. They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response. The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice, including Muribaculaceae and Akkermansia. In the serum metabolome, they modulated the DSS-disturbed levels of metabolites, with significant increment of cinnamic acid. Meanwhile, they reduced the expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) inflammatory factors and increased zonula occludens-1 (ZO-1), Occludin, and cathelicidin-related antimicrobial peptide (CRAMP) in the colon. Consequently, these results demonstrated that Lactobacillus spp. isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation, anti-inflammation and intestinal barrier protection in UC mice.

Electronic Supplementary Material

Download File(s)
fshw-13-5-2833_ESM1.pdf (4.3 MB)
fshw-13-5-2833_ESM2.pdf (87.5 KB)

References

[1]

Y.Z. Zhang, Y.Y. Li, Inflammatory bowel disease: pathogenesis, World J. Gastroenterol. 20 (2014) 91-99. https://doi.org/10.3748/wjg.v20.i1.91.

[2]

G.G. Kaplan, The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 720-727. http://doi.org/10.1038/nrgastro.2015.150.

[3]

V.D. Palumbo, M. Romeo, A. Marino Gammazza, et al., The long-term effects of probiotics in the therapy of ulcerative colitis: a clinical study, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 160 (2016) 372-377. http://doi.org/10.5507/bp.2016.044.

[4]

S.K. Hegazy, M.M. El-Bedewy, Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis, World J. Gastroenterol. 16 (2010) 4145-4151. http://doi.org/10.3748/wjg.v16.i33.4145.

[5]

W.F. van Zyl, S.M. Deane, L.M.T. Dicks, Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria, Gut Microbes. 12 (2020) 1831339. http://doi.org/10.1080/19490976.2020.1831339.

[6]

R. Marion-Letellier, G. Savoye, S. Ghosh, IBD: in food we trust, J. Crohns. Colitis. 10 (2016) 1351-1361. http://doi.org/10.1093/ecco-jcc/jjw106.

[7]

B.O. Schroeder, G.M.H. Birchenough, M. Stahlman, et al., Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration, Cell Host. Microbe. 23 (2018) 27-40. http://doi.org/10.1016/j.chom.2017.11.004.

[8]

Q. Deng, L. Chen, Y. Wei, et al., Understanding the association between environmental factors and longevity in Hechi, China: a drinking water and soil quality perspective, Int. J. Environ. Res. Public Health 15 (2018) 2272. http://doi.org/10.3390/ijerph15102272.

[9]

C. Chen, G. Cheng, Y. Liu, et al., Correlation between microorganisms and flavor of Chinese fermented sour bamboo shoot: roles of Lactococcus and Lactobacillus in flavor formation, Food Biosci. 50 (2022) 101994. http://doi.org/10.1016/j.fbio.2022.101994.

[10]

P. Behera, S. Balaji, Health benefits of fermented bamboo shoots: the twenty-first century green gold of Northeast India, Appl. Biochem. Biotechnol. 193 (2021) 1800-1812. http://doi.org/10.1007/s12010-021-03506-y.

[11]

E. Metchnikoff, Quelques Remarques sur le Lait Aigri, E. Rémy, 1908.

[12]

S. Kim, S.M. Jazwinski, The gut microbiota and healthy aging: a mini-review, Gerontology 64 (2018) 513-520. http://doi.org/10.1159/000490615.

[13]

W.P. Charteris, P.M. Kelly, L. Morelli, et al., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract, J. Appl. Microbiol. 84 (1998) 759-768. http://doi.org/10.1046/j.1365-2672.1998.00407.x.

[14]

C.N. Jacobsen, V. Rosenfeldt Nielsen, A.E. Hayford, et al., Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans, Appl. Environ. Microbiol. 65 (1999) 4949-4956. http://doi.org/10.1128/AEM.65.11.4949-4956.1999.

[15]

M. Rosenberg, D. Gutnick, E. Rosenberg, Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett. 9 (1980) 29-33. http://doi.org/10.1111/j.1574-6968.1980.tb05599.x.

[16]

J.P. Meier-Kolthoff, M. Goker, TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy, Nat. Commun. 10 (2019) 2182. http://doi.org/10.1038/s41467-019-10210-3.

[17]

A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics 23 (2007) 673-679. http://doi.org/10.1093/bioinformatics/btm009.

[18]

M. Borodovsky, J. McIninch, GENMARK: parallel gene recognition for both DNA strands, Comput. Chem. 17 (1993) 123-133. http://doi.org/10.1016/0097-8485(93)85004-V.

[19]

P.D. Schloss, S.L. Westcott, T. Ryabin, et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol. 75 (2009) 7537-7541. http://doi.org/10.1128/AEM.01541-09.

[20]

N. Segata, J. Izard, L. Waldron, et al., Metagenomic biomarker discovery and explanation, Genome Biol. 12 (2011) R60. http://doi.org/10.1186/gb-2011-12-6-r60.

[21]

X. Wang, G. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression, Cell Res. 29 (2019) 787-803. http://doi.org/10.1038/s41422-019-0216-x.

[22]

S. Zhang, X. Jiang, S. Cheng, et al., Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice, Arch. Toxicol. 94 (2020) 1173-1190. http://doi.org/10.1007/s00204-020-02698-2.

[23]

J. Klesney-Tait, K. Keck, X. Li, et al., Transepithelial migration of neutrophils into the lung requires TREM-1, J. Clin. Invest. 123 (2013) 138-149. http://doi.org/10.1172/JCI64181.

[24]

H.A. Seddik, F. Bendali, F. Gancel, et al., Lactobacillus plantarum and its probiotic and food potentialities, Probiotics Antimicrob. Proteins 9 (2017) 111-122. http://doi.org/10.1007/s12602-017-9264-z.

[25]

Y.W. Liu, M.T. Liong, Y.C. Tsai, New perspectives of Lactobacillus plantarum as a probiotic: the gut-heart-brain axis, J. Microbiol. 56 (2018) 601-613. http://doi.org/10.1007/s12275-018-8079-2.

[26]

C. Linninge, J. Xu, M.I. Bahl, et al., Lactobacillus fermentum and Lactobacillus plantarum increased gut microbiota diversity and functionality, and mitigated Enterobacteriaceae, in a mouse model, Benef. Microbes. 10 (2019) 413-424. http://doi.org/10.3920/BM2018.0074.

[27]

Y. Wu, R. Jha, A. Li, et al., Probiotics (Lactobacillus plantarum HNU082) Supplementation relieves ulcerative colitis by affecting intestinal barrier functions, immunity-related gene expression, gut microbiota, and metabolic pathways in mice, Microbiol. Spectr. 10 (2022) e0165122. http://doi.org/10.1128/spectrum.01651-22.

[28]

D. Bajrami, S. Fischer, H. Barth, et al., In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy, NPJ Biofilms Microbiomes 8 (2022) 92. http://doi.org/10.1038/s41522-022-00353-5.

[29]

M. Diaz, B. Del Rio, E. Sanchez-Llana, et al., Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel, Food Microbiol. 59 (2016) 85-91. http://doi.org/10.1016/j.fm.2016.05.012.

[30]

F. Pace, M. Pace, G. Quartarone, Probiotics in digestive diseases: focus on Lactobacillus GG, Minerva Gastroenterol. Dietol. 61 (2015) 273-292.

[31]

L. Capurso, Thirty years of Lactobacillus rhamnosus GG: a review, J. Clin. Gastroenterol. 53(Suppl 1) (2019) S1-S41. http://doi.org/10.1097/MCG.0000000000001170.

[32]

P. Gupta, H. Andrew, B.S. Kirschner, et al., Is Lactobacillus GG helpful in children with Crohn’s disease? results of a preliminary, open-label study, J. Pediatr. Gastroenterol. Nutr. 31 (2000) 453-457. http://doi.org/10.1097/00005176-200010000-00024.

[33]

M. Schultz, A. Timmer, H.H. Herfarth, et al., Lactobacillus GG in inducing and maintaining remission of Crohn’s disease, BMC Gastroenterol. 4 (2004) 5. http://doi.org/10.1186/1471-230X-4-5.

[34]

M.A. Zocco, L.Z. dal Verme, F. Cremonini, et al., Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis, Aliment. Pharmacol. Ther. 23 (2006) 1567-1574. http://doi.org/10.1111/j.1365-2036.2006.02927.x.

[35]

M. Lee, E.B. Chang, Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues, Gastroenterology 160 (2021) 524-537. http://doi.org/10.1053/j.gastro.2020.09.056.

[36]

B.D. Muegge, J. Kuczynski, D. Knights, et al., Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans, Science 332 (2011) 970-974. http://doi.org/10.1126/science.1198719.

[37]

Z.H. Shen, C.X. Zhu, Y.S. Quan, et al., Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation, World J. Gastroenterol. 24 (2018) 5-14. http://doi.org/10.3748/wjg.v24.i1.5.

[38]

B.P. Abraham, E.M.M. Quigley, Probiotics in inflammatory bowel disease, Gastroenterol. Clin. North Am. 46 (2017) 769-782. http://doi.org/10.1016/j.gtc.2017.08.003.

[39]

J. Cai, S. Chen, G. Yu, et al., Comparations of major and trace elements in soil, water and residents’ hair between longevity and non-longevity areas in Bama, China, Int. J. Environ. Health Res. 31 (2021) 581-594. http://doi.org/10.1080/09603123.2019.1677863.

[40]

Q. Guan, T. Huang, F. Peng, et al., The microbial succession and their correlation with the dynamics of flavor compounds involved in the natural fermentation of suansun, a traditional Chinese fermented bamboo shoots, Food Res. Int. 157 (2022) 111216. http://doi.org/10.1016/j.foodres.2022.111216.

[41]

C. Caggia, M. de Angelis, I. Pitino, et al., Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses, Food Microbiol. 50 (2015) 109-117. http://doi.org/10.1016/j.fm.2015.03.010.

[42]

L.A. Derikx, L.A. Dieleman, F. Hoentjen, Probiotics and prebiotics in ulcerative colitis, Best Pract. Res. Clin. 30 (2016) 55-71. http://doi.org/10.1016/j.bpg.2016.02.005.

[43]

Z. Zhang, J. Lü, L. Pan, et al., Roles and applications of probiotic Lactobacillus strains, Appl. Microbiol. Biotechnol. 102 (2018) 8135-8143. http://doi.org/10.1007/s00253-018-9217-9.

[44]

M.A.K. Azad, M. Sarker, T. Li, et al., Probiotic species in the modulation of gut microbiota: an overview, Biomed. Res. Int. 2018 (2018) 9478630. http://doi.org/10.1155/2018/9478630.

[45]

J. Plaza-Diaz, F.J. Ruiz-Ojeda, M. Gil-Campos, et al., Mechanisms of action of probiotics, Adv. Nutr. 10 (2019) S49-S66. http://doi.org/10.1093/advances/nmy063.

[46]

R. Huang, F. Wu, Q. Zhou, et al., Lactobacillus and intestinal diseases: mechanisms of action and clinical applications, Microbiol. Res. 260 (2022) 127019. http://doi.org/10.1016/j.micres.2022.127019.

[47]

G. Wang, G. Zhu, C. Chen, et al., Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism, Benef. Microbes. 12 (2021) 267-281. http://doi.org/10.3920/BM2020.0148.

[48]

P. Markowiak-Kopec, K. Slizewska, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients 12 (2020) 1107. http://doi.org/10.3390/nu12041107.

[49]

N. Gasaly, P. de Vos, M.A. Hermoso, Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation, Front. Immunol. 12 (2021) 658354. http://doi.org/10.3389/fimmu.2021.658354.

[50]

S. Tejero-Sarinena, J. Barlow, A. Costabile, et al., In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids, Anaerobe 18 (2012) 530-538. http://doi.org/10.1016/j.anaerobe.2012.08.004.

[51]

M.P. Arena, A. Silvain, G. Normanno, et al., Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms, Front. Microbiol. 7 (2016) 464. http://doi.org/10.3389/fmicb.2016.00464.

[52]

C. Ratzke, J. Gore, Modifying and reacting to the environmental pH can drive bacterial interactions, PLoS Biol. 16 (2018) e2004248. http://doi.org/10.1371/journal.pbio.2004248.

[53]

V.F. Rodrigues, J. Elias-Oliveira, I.S. Pereira, et al., Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes, Front. Immunol. 13 (2022) 934695. http://doi.org/10.3389/fimmu.2022.934695.

[54]

I.G. Macchione, L.R. Lopetuso, G. Ianiro, et al., Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 8075-8083. http://doi.org/10.26355/eurrev_201909_19024.

[55]

R. Zhai, X. Xue, L. Zhang, et al., Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice, Front. Cell Infect. Microbiol. 9 (2019) 239. http://doi.org/10.3389/fcimb.2019.00239.

[56]

J. Li, S. Lin, P.M. Vanhoutte, et al., Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice, Circulation 133 (2016) 2434-2346. http://doi.org/10.1161/CIRCULATIONAHA.115.019645.

[57]

J. Li, C.Y. Sung, N. Lee, et al., Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E1306-E1315. http://doi.org/10.1073/pnas.1518189113.

[58]

C.T. Brown, A.G. Davis-Richardson, A. Giongo, et al., Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes, PLoS ONE 6 (2011) e25792. http://doi.org/10.1371/journal.pone.0025792.

[59]

B.J. Parker, P.A. Wearsch, A.C.M. Veloo, et al., The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health, Front. Immunol. 11 (2020) 906. http://doi.org/10.3389/fimmu.2020.00906.

[60]

L. Dong, H. Du, M. Zhang, et al., Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota, Phytother. Res. 36 (2022) 2081-2094. http://doi.org/10.1002/ptr.7429.

[61]

H.G. Wang, M.N. Zhang, X. Wen, et al., Cepharanthine ameliorates dextran sulphate sodium-induced colitis through modulating gut microbiota, Microb. Biotechnol. 15 (2022) 2208-2222. http://doi.org/10.1111/1751-7915.14059.

[62]

C.C. Wong, L. Zhang, W.K. Wu, et al., Cathelicidin-encoding Lactococcus lactis promotes mucosal repair in murine experimental colitis, J. Gastroenterol. Hepatol. 32 (2017) 609-619. http://doi.org/10.1111/jgh.13499.

[63]

S.C. Yang, C.H. Lin, C.T. Sung, et al., Antibacterial activities of bacteriocins: application in foods and pharmaceuticals, Front. Microbiol. 5 (2014) 241. http://doi.org/10.3389/fmicb.2014.00241.

[64]

M. Bermudez-Brito, J. Plaza-Diaz, S. Munoz-Quezada, et al., Probiotic mechanisms of action, Ann. Nutr. Metab. 61 (2012) 160-174. http://doi.org/10.1159/000342079.

[65]

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature 415 (2002) 389-395. http://doi.org/10.1038/415389a.

[66]

K. Kandler, R. Shaykhiev, P. Kleemann, et al., The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands, Int. Immunol. 18 (2006) 1729-1736. http://doi.org/10.1093/intimm/dxl107.

[67]

E.K. Tai, W.K. Wu, H.P. Wong, et al., A new role for cathelicidin in ulcerative colitis in mice, Exp. Biol. Med. (Maywood) 232 (2007) 799-808.

[68]

J. Gubatan, D.R. Holman, C.J. Puntasecca, et al., Antimicrobial peptides and the gut microbiome in inflammatory bowel disease, World J. Gastroenterol. 27 (2021) 7402-7422. http://doi.org/10.3748/wjg.v27.i43.7402.

[69]

T. Yoshimura, M.H. McLean, A.K. Dzutsev, et al., The antimicrobial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance, J. Immunol. 200 (2018) 2174-2185. http://doi.org/10.4049/jimmunol.1602073.

[70]

Y. Lu, X. Li, S. Liu, et al., Toll-like receptors and inflammatory bowel disease, Front. Immunol. 9 (2018) 72. http://doi.org/10.3389/fimmu.2018.00072.

[71]

D.P. McKernan, D.P. Finn, An apPEAling new therapeutic for ulcerative colitis? Gut 63 (2014) 1207-1208. http://doi.org/10.1136/gutjnl-2013-305929.

[72]

K.P. Scott, S.W. Gratz, P.O. Sheridan, et al., The influence of diet on the gut microbiota, Pharmacol. Res. 69 (2013) 52-60. http://doi.org/10.1016/j.phrs.2012.10.020.

[73]

W.R. Wikoff, A.T. Anfora, J. Liu, et al., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 3698-3703. http://doi.org/10.1073/pnas.0812874106.

[74]

I. Zarei, V.M. Koistinen, M. Kokla, et al., Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition, Sci. Rep. 12 (2022) 15018. http://doi.org/10.1038/s41598-022-19327-w.

[75]

A. Visconti, C.I. Le Roy, F. Rosa, et al., Interplay between the human gut microbiome and host metabolism, Nat. Commun. 10 (2019) 4505. http://doi.org/10.1038/s41467-019-12476-z.

[76]

Q. Liu, Z. Yu, F. Tian, et al., Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier, Microb. Cell Fact. 19 (2020) 23. http://doi.org/10.1186/s12934-020-1289-4.

[77]

L. Aldars-Garcia, J.P. Gisbert, M. Chaparro, Metabolomics insights into inflammatory bowel disease: a comprehensive review, Pharmaceuticals 14 (2021) 1190. http://doi.org/10.3390/ph14111190.

[78]

S. Noerman, R. Landberg, Blood metabolite profiles linking dietary patterns with health-toward precision nutrition, J. Intern. Med. 293 (2023) 408-432. http://doi.org/10.1111/joim.13596.

[79]

N. Ruwizhi, B.A. Aderibigbe, Cinnamic acid derivatives and their biological efficacy, Int. J. Mol. Sci. 21 (2020) E5712. http://doi.org/10.3390/ijms21165712.

[80]

Y. Wang, C. Bi, W. Pang, et al., Plasma metabolic profiling analysis of gout party on acute gout arthritis rats based on UHPLC-Q-TOF/MS combined with multivariate statistical analysis, Int. J. Mol. Sci. 20 (2019) E5753. http://doi.org/10.3390/ijms20225753.

[81]

S. Li, M. Cai, Q. Wang, et al., Effect of long-term exposure to dyeing wastewater treatment plant effluent on growth and gut microbiota of adult zebrafish (Danio rerio), Environ. Sci. Pollut. Res. Int. 30 (2023) 53674-53684. http://doi.org/10.1007/s11356-023-26167-2.

[82]

Y. Liu, L. Liu, J. Luo, et al., Metabolites from specific intestinal bacteria in vivo fermenting Lycium barbarum polysaccharide improve collagenous arthritis in rats, Int. J. Biol. Macromol. 226 (2023) 1455-1467. http://doi.org/10.1016/j.ijbiomac.2022.11.257.

[83]

J. Wu, Z. Lin, X. Wang, et al., Limosilactobacillus reuteri SLZX19-12 protects the colon from infection by enhancing stability of the gut microbiota and barrier integrity and reducing inflammation, Microbiol Spectr. 10 (2022) e0212421. http://doi.org/10.1128/spectrum.02124-21.

[84]

Y. Ma, C. Hu, W. Yan, et al., Lactobacillus pentosus increases the abundance of Akkermansia and affects the serum metabolome to alleviate DSS-induced colitis in a murine model, Front. Cell Dev. Biol. 8 (2020) 591408. http://doi.org/10.3389/fcell.2020.591408.

[85]

G.A. Cresci, E. Bawden, Gut microbiome: what we do and don’t know, Nutr. Clin. Pract. 30 (2015) 734-746. http://doi.org/10.1177/0884533615609899.

[86]

F. Kong, Y. Hua, B. Zeng, et al., Gut microbiota signatures of longevity, Curr. Biol. 26 (2016) R832-R833. http://doi.org/10.1016/j.cub.2016.08.015.

[87]

F. Deng, Y. Li, J. Zhao, The gut microbiome of healthy long-living people, Aging. 11 (2019) 289-290. http://doi.org/10.18632/aging.101771.

[88]

V.D. Badal, E.D. Vaccariello, E.R. Murray, et al., The gut microbiome, aging, and longevity: a systematic review, Nutrients 12 (2020) 3759. http://doi.org/10.3390/nu12123759.

[89]

B.J. Smith, R.A. Miller, T.M. Schmidt, Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice, mSphere. 6 (2021) e0085121. http://doi.org/10.1128/msphere.00851-21.

[90]

M. Sibai, E. Altuntas, B. Yildirim, et al., Microbiome and longevity: high abundance of longevity-linked muribaculaceae in the gut of the long-living rodent Spalax leucodon, OMICS 24 (2020) 592-601. http://doi.org/10.1089/omi.2020.0116.

[91]

I. Lagkouvardos, T.R. Lesker, T.C.A. Hitch, et al., Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family, Microbiome 7 (2019) 28. http://doi.org/10.1186/s40168-019-0637-2.

[92]

D. Ratto, E. Roda, M. Romeo, et al., The many ages of microbiome-gutbrain axis, Nutrients 14 (2022) 2937. http://doi.org/10.3390/nu14142937.

[93]

K. Oki, Y. Kudo, K. Watanabe, Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces, Int. J. Syst. Evol. Microbiol. 62 (2012) 601-607. http://doi.org/10.1099/ijs.0.031658-0.

Food Science and Human Wellness
Pages 2833-2846
Cite this article:
Liu X, Lu X, Nie H, et al. Lactobacillus from fermented bamboo shoots prevents inflammation in DSS-induced colitis mice via modulating gut microbiome and serum metabolites. Food Science and Human Wellness, 2024, 13(5): 2833-2846. https://doi.org/10.26599/FSHW.2022.9250229
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return