Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Commercial sterility does not guarantee the sustained stability of ultrahigh temperature (UHT) milk over 6 months shelf life. We explore the microbiota presented in normal (SZ) and quality deteriorated UHT milk (QY and WY) products from the same brand. Based on high-throughput sequencing research results, 11 phyla and 54 genera were identified as dominant microbiota. Pseudomonas, Streptococcus, and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties. Moreover, principal component analysis (PCA) and multivariate analyses were used to examine the quality characteristics, including 11 physicochemical parameters, 10 fatty acids, and 2 enzyme activities, in normal and quality deteriorated UHT milk. We found that the abundance of Pseudomonas increased in quality deteriorated milk (WY) and showed a significant positive correlation with heat-resistant protease content. Acinetobacter in quality deteriorated milk (QY) also considerably contributed to the content of heat-resistant lipase, which resulted in spoilage deterioration of UHT milk.
M.A. Karlsson, M. Langton, F. Innings, et al., Changes in stability and shelf-life of ultra-high temperature treated milk during long term storage at different temperatures, Heliyon 5 (2019) e02431. https://doi.org/10.1016/j.heliyon.2019.e02431.
S.G. Anema, Age gelation, sedimentation, and creaming in UHT milk: a review, Compr. Rev. Food Sci. Food Saf. 18 (2019) 140-166. https://doi.org/10.1111/1541-4337.12407.
S.G. Anema, Storage stability and age gelation of reconstituted ultra-high temperature skim milk, Int. Dairy J. 75 (2017) 56-67. https://doi.org/10.1016/j.idairyj.2017.06.006.
A.N. Schiano, W.S. Harwood, M.A. Drake, A 100-year review: sensory analysis of milk, J. Dairy Sci. 100 (2017) 9966-9986. https://doi.org/10.3168/jds.2017-13031.
H.C. Deeth, M.J. Lewis, Changes during storage of UHT milk, High Temperature Processing of Milk and Milk Products, John Wiley & Sons, 2017, pp. 261-319. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118460467.ch7.
L. Caldera, L. Franzetti, E. van Coillie, et al., Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods, Food Microbiol. 54 (2016) 142-153. https://doi.org/10.1016/j.fm.2015.10.004.
C. Zhang, E. Bijl, B. Svensson, et al., The extracellular protease AprX from Pseudomonas and its spoilage potential for UHT milk: a review, Compr. Rev. Food Sci. Food Saf. 18 (2019) 12452. https://doi.org/10.1111/1541-4337.12452
S. Marchand, B. Duquenne, M. Heyndrickx, et al., Destabilization and offflavors generated by Pseudomonas proteases during or after UHT-processing of milk, Int. J. Food Contam. 4 (2017) 1-7. https://doi.org/10.1186/s40550-016-0047-1.
V. Gaur, J. Schalk, S. Anema, Sedimentation in UHT milk, Int. Dairy J. 78 (2017) 23630. https://doi.org/10.1016/j.idairyj.2017.11.003.
T. Zhang, Z.Z. Shi, Y.R. Shi, et al., Enterprise digital transformation and production efficiency: mechanism analysis and empirical research, Econ. Res-Ekon Istraz. 35 (2021) 1-12.
R.X. Ding, W.R. Goh, R.N. Wu, et al., Revisit gut microbiota and its impact on human health and disease, J. Food Drug Anal. 27 (2019) 623-631. https://doi.org/10.1016/j.jfda.2018.12.012.
R. Ding, Y. Liu, S. Yang, et al., High-throughput sequencing provides new insights into the roles and implications of core microbiota present in pasteurized milk, Food Res. Int. 137 (2020) 109586. https://doi.org/10.1016/j.foodres.2020.109586.
T. Krishna, A. Najda, A. Bains, et al., Influence of ultra-heat treatment on properties of milk proteins, Polymers 13 (2021) 3164.
C. Douglas, K. Ivey, L. Papanicolas, et al., DNA extraction approaches substantially influence the assessment of the human breast milk microbiome, Sci. Rep. 10 (2020) 123. https://doi.org/10.1038/s41598-019-55568-y.
M. Loeffelholz, Y. Fofanov, The main challenges that remain in applying high-throughput sequencing to clinical diagnostics, Expert. Rev. Mol. Diagn. 15 (2015) 1405-1408. https://doi.org/10.1586/14737159.2015.1088385.
Z. Liu, W. Zheng, C. Shen, et al., Effect of different drying methods on the physical properties of pork jerky, Int. J. Gastron. Food Sci. 30 (2022) 100619.
J. Leite, C. Montoya, S. Loveday, et al., Heat-treatments affect protease activities and peptide profiles of Ruminants’ milk, Front. Nutr. 8 (2021) 626475. https://doi.org/10.3389/fnut.2021.626475.
S. Patui, L. Clincon, C. Peresson, et al., Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination, Plant Sci. 219/220 (2014) 19-25. https://doi.org/10.1016/j.plantsci.2013.12.014.
Y. Zhang, F. Ji, J. Wang, et al., Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124, Extremophiles 22 (2018) 1-14. https://doi.org/10.1007/s00792-018-0997-8.
A. Sunds, V. Rauh, J. Sørensen, et al., Maillard reaction progress in UHT milk during storage at different temperature levels and cycles, Int. Dairy J. 77 (2017) 1346. https://doi.org/10.1016/j.idairyj.2017.08.008.
M. Notou, A. Zotou, P. Tzanavaras, et al., Automated derivatization and fluorimetric determination of biogenic amines in milk by zone fluidics coupled to liquid chromatography, J. Chromatogr. A. 1 (2014) 356. https://doi.org/10.1016/j.chroma.2014.06.047.
A. Devi, R. Buckow, T. Singh, et al., Colour change and proteolysis of skim milk during high pressure thermal processing, J. Food Eng. 3 (2014) 147. https://doi.org/10.1016/j.jfoodeng.2014.09.017.
K. Jakubiec-Krzesniak, A. Rajnisz-Mateusiak, A. Guśpiel, et al., Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties, The Polish Society of Microbiologists 67 (2018) 259-272.
H. Sowani, M. Kulkarni, S. Zinjarde, et al., Gordonia and related genera as opportunistic human pathogens causing infections of skin, soft tissues, and bones, The Microbiology of Skin, Soft Tissue, Bone and Joint Infections, Academic Press, 2017, pp. 105-121. https://doi.org/10.1016/B978-0-12-811079-9.00007-0.
J. Li, M.H. Yousif, Z.Q. Li, et al., Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves, J. Dairy Sci. 102 (2019) 2298-2307. https://doi.org/10.3168/jds.2018-15506.
M. Kable, Y. Srisengfa, M. Laird, et al., The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility, mBio 7 (2016) e00836. https://doi.org/10.1128/mBio.00836-16.
D. Ercolini, F. de Filippis, A. La Storia, et al., “Remake” by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese, Appl. Environ Microb. 78 (2012) 8142-8145. https://doi.org/10.1128/AEM.02218-12.
A. Carvalheira, J. Silva, P. Teixeira, Acinetobacter spp. in food and drinking water: a review, Food Microbiol. 95 (2021) 103675.
E. Rasolofo, D. St-Gelais, G. LaPointe, et al., Molecular analysis of bacteria population structure and dynamics during cold storage of untreated and treated milk, International J. Food Microbiol. 138 (2010) 108-118. https://doi.org/10.1016/j.ijfoodmicro.2010.01.008.
N. Vithanage, M. Dissanayake, G. Bolge, et al., Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential, Int. Dairy J. 57 (2016) 1426. https://doi.org/10.1016/J.IDAIRYJ.2016.02.042.
D. Zhang, J. Palmer, K. Teh, et al., Identification and selection of heat-stable protease and lipase-producing psychrotrophic bacteria from fresh and chilled raw milk during up to five days storage, LWT-Food Sci. Technol. 134 (2020) 1624.
A. Ricciardi, R.G. Ianniello, E. Parente, et al., Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups, J. Appl. Microbiol. 119 (2015) 776-785. https://doi.org/10.1111/jam.12894.
L. Xin, Z. Meng, L. Zhang, et al., The diversity and proteolytic properties of psychrotrophic bacteria in raw cows’ milk from North China, Int. Dairy J. 66 (2016) 1677. https://doi.org/10.1016/j.idairyj.2016.10.014.
D. Ercolini, F. Russo, I. Ferrocino, et al., Molecular identification of mesophilic and psychrotrophic bacteria from raw cow’s milk, Food Microbiol. 26 (2009) 228-231. https://doi.org/10.1016/j.fm.2008.09.005.
L. Quigley, R. McCarthy, O. O’Sullivan, et al., The microbial content of raw and pasteurized cow milk as determined by molecular approaches, J. Dairy Sci. 96 (2013) 2639. https://doi.org/10.3168/jds.2013-6688.
C. Salgado, F. Baglinière, M. Vanetti, Spoilage potential of a heat-stable lipase produced by Serratia liquefaciens isolated from cold raw milk, LWT-Food Sci. Technol. 126 (2020) 109289. https://doi.org/10.1016/j.lwt.2020.109289.
F. Baglinière, J. Jardin, F. Gaucheron, et al., Proteolysis of casein micelles by heat-stable protease secreted by Serratia liquefaciens leads to the destabilisation of UHT milk during its storage, Int. Dairy J. 68 (2016) 1256. https://doi.org/10.1016/j.idairyj.2016.12.012.
S. Alalam, F. Ben Souilah, M.H. Lessard, et al., Characterization of chemical and bacterial compositions of dairy wastewaters, Dairy 2 (2021) 179-190. https://doi.org/10.3390/dairy2020016.
G.M. Douglas, V.J. Maffei, J.R. Zaneveld, et al., PICRUSt2 for prediction of metagenome functions, Nat. Biotechnol. 38 (2020) 685-688. https://doi.org/10.1038/s41587-020-0548-6.
S. Markakiou, P. Gaspar, E. Johansen, et al., Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications, Curr. Opin. Biotech. 61 (2020) 142-152. https://doi.org/10.1016/j.copbio.2019.12.019.
W. Liu, X. Su, N. Duo, et al., A survey of the relationship between functional genes and acetaldehyde production characteristics in Streptococcus thermophilus by multilocus sequence typing, J. Dairy Sci. 102 (2019) 16203. https://doi.org/10.3168/jds.2018-16203.
Y. Yang, J. Wang, Y. Fu, et al., Acinetobacter seifertii isolated from China, Medicine 95 (2016) e2937.
K. MsangoSoko, S. Gandotra, R. Bhattacharya, et al., Screening and characterization of lipase producing bacteria isolated from the gut of a lepidopteran larvae, Samia ricini, J. Asia-Pac. Entomol. 25 (2022) 101856.
E. Snellman, R. Colwell, Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential, J. Ind. Microbiol. Biot. 31 (2004) 391-400.
Ş. Seren, H. Kati, Biochemical characterization of lipases obtained from Acinetobacter psychrotolerans strains, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (2017) 10. https://doi.org/10.19113/sdufbed.10020.
S. Machado, F. Silva, D. Bazzolli, et al., Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk, J. Food Sci. 80 (2015) 1-8. https://doi.org/10.1111/1750-3841.12957.
S. Machado, F. Baglinière, S. Marchand, et al., The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products, Front. Microbiol. 8 (2017) e40189. https://doi.org/10.3389/fmicb.2017.00302.
M. Stoeckel, M. Lidolt, T. Stressler, et al., Heat stability of indigenous milk plasmin and proteases from Pseudomonas: a challenge in the production of UHT milk products, Int. Dairy J. 61 (2016) 4329. https://doi.org/10.1016/j.idairyj.2016.06.009.
1571
Views
184
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).