Methionine restriction (MR) is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body, especially in the middle-aged and elderly population. However, the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR. Highland barley (HB), a low-methionine cereal, not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties. Therefore, this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms. Middle-aged C57BL/6J mice were fed a control diet (CON), a high-fat diet (HFD), a whole-grain HB high-fat diet (HBHF), or a HBHF + methionine diet (HBHFmet) for 25 weeks. The results showed that the HBHF could keep the body weight, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), blood lipids, inflammation, and oxidative stress of HFD mice at normal levels. Compared with the HFD groups, HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism. However, these efficacies were attenuated in HBHFmet group mice. These findings suggest that HBHF has an MR strategy.
N. Orentreich, J.R. Matias, A. DeFelice, et al., Low methionine ingestion by rats extends life span, J. Nutr. 123 (1993) 269-274. https://doi.org/10.1093/jn/123.2.269.
I. Sanchez-Roman, A. Gómez, I. Pérez, et al., Effects of aging and methionine restriction applied at old age on ros generation and oxidative damage in rat liver mitochondria, Biogerontology 13 (2012) 399-411. https://doi.org/10.1007/s10522-012-9384-5.
S. Maddineni, S. Nichenametla, R. Sinha, et al., Methionine restriction affects oxidative stress and glutathione-related redox pathways in the rat, Exp. Biol. Med. 238 (2013) 392-399. https://doi.org/10.1177/1535370213477988.
Y. Yang, Y. Ji, G. Wu, et al., Dietary l-methionine restriction decreases oxidative stress in porcine liver mitochondria, Exp. Gerontol. 65 (2015) 35-41. https://doi.org/10.1016/j.exger.2015.03.004.
K.P. Stone, D. Wanders, M. Orgeron, et al., Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice, Diabetes 63 (2014) 3721-3733. https://doi.org/10.2337/db14-0464.
G.P. Ables, C.E. Perrone, D. Orentreich, et al., Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density, PLoS One 7 (2012) e51357. https://doi.org/10.1371/journal.pone.0051357.
T. Luo, Y. Yang, Y. Xu, et al., Dietary methionine restriction improves glucose metabolism in the skeletal muscle of obese mice, Food Funct. 10 (2019) 2676-2690. https://doi.org/10.1039/c8fo02571a.
X. Zhou, L. He, D. Wan, et al., Methionine restriction on lipid metabolism and its possible mechanisms, Amino Acids 48 (2016) 1533-1540. https://doi.org/10.1007/s00726-016-2247-7.
X. Gao, S.M. Sanderson, Z. Dai, et al., Dietary methionine influences therapy in mouse cancer models and alters human metabolism, Nature 572 (2019) 397-401. https://doi.org/10.1038/s41586-019-1437-3.
Y. Zhang, J. Jelleschitz, T. Grune, et al., Methionine restriction-association with redox homeostasis and implications on aging and diseases, Redox Biol. 57 (2022) 102464. https://doi.org/10.1016/j.redox.2022.102464.
J. Domic, P. Grootswagers, L.J.C. van Loon, et al., Perspective: vegan diets for older adults? a perspective on the potential impact on muscle mass and strength, Adv. Nutr. 13 (2022) 712-725. https://doi.org/10.1093/advances/nmac009.
V. Tosti, B. Bertozzi, L. Fontana, Health benefits of the mediterranean diet: metabolic and molecular mechanisms, J. Gerontol A Biol. Sci. Med. Sci. 73 (2018) 318-326. https://doi.org/10.1093/gerona/glx227.
C. Davis, J. Bryan, J. Hodgson, et al., Definition of the mediterranean diet; a literature review, Nutrients 7 (2015) 9139-9153. https://doi.org/10.3390/nu7115459.
G.P. Ables, J.E. Johnson, Pleiotropic responses to methionine restriction, Exp. Gerontol. 94 (2017) 83-88. https://doi.org/10.1016/j.exger.2017.01.012.
Y. Yang, Chinese Food Composition Table, Peking University Medical Press, Peking, 2018.
Y. Lyu, S. Ma, J. Liu, et al., A systematic review of highland barley: ingredients, health functions and applications, Gost 5 (2022) 35-43. https://doi.org/10.1016/j.gaost.2021.12.002.
G. Zhang, J. Wang, J. Chen, Analysis of β-glucan content in barley cultivars from different locations of china, Food Chem. 79 (2002) 251-254. https://doi.org/10.1016/S0308-8146(02)00127-9.
G.Šimić, D. Horvat, A. Lalić, et al., Distribution of β-glucan, phenolic acids, and proteins as functional phytonutrients of hull-less barley grain, Foods 8 (2019) 680. https://doi.org/https://doi.org/10.3390/foods8120680.
M. Obadi, J. Sun, B. Xu, Highland barley: chemical composition, bioactive compounds, health effects, and applications, Food Res. Int. 140 (2021) 110065. https://doi.org/10.1016/j.foodres.2020.110065.
K. Zhang, J. Yang, Z. Qiao, et al., Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of china, Food Chem. 293 (2019) 32-40. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.04.053.
N. Deng, R. Guo, B. Zheng, et al., IRS-1/Pi3K/Akt pathway and mirnas are involved in whole grain highland barley (Hordeum vulgare L.) ameliorating hyperglycemia of db/db mice, Food Funct. 11 (2020) 9535-9546. https://doi.org/10.1039/D2FO00021K.
X. Xia, G. Li, J. Song, et al., Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet, Br. J. Nutr. 119 (2018) 1102-1110. https://doi.org/10.1017/S0007114518000831.
X. Xia, G. Li, Y. Ding, et al., Effect of whole grain qingke (Tibetan Hordeum vulgare L. Zangqing 320) on the serum lipid levels and intestinal microbiota of rats under high-fat diet, J. Agric. Food Chem. 65 (2017) 2686-2693. https://doi.org/10.1021/acs.jafc.6b05641.
X. Xia, Y. Xing, G. Li, et al., Antioxidant activity of whole grain qingke (Tibetan Hordeum vulgare L.) toward oxidative stress in D-galactose induced mouse model, J. Funct. Foods 45 (2018) 355-362. https://doi.org/10.1016/j.jff.2018.04.036.
S. Lin, H. Guo, J.D.B. Gong, et al., Phenolic profiles, β-glucan contents, and antioxidant capacities of colored qingke (Tibetan hulless barley) cultivars, J. Cereal Sci. 81 (2018) 69-75. https://doi.org/https://doi.org/10.1016/j.jcs.2018.04.001.
H. Chen, Q. Nie, M. Xie, et al., Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions, Food Res. Int. 122 (2019) 157-166. https://doi.org/10.1016/j.foodres.2019.04.011.
N.E. Aborus, J. Čanadanović-Brunet, G. Ćetković, et al., Powdered barley sprouts: composition, functionality and polyphenol digestibility, Int. J. Food Sci. Technol. 52 (2017) 231-238. https://doi.org/https://doi.org/10.1111/ijfs.13274.
M. Chen, S. Tian, S. Li, et al., β-Glucan extracted from highland barley alleviates dextran sulfate sodium-induced ulcerative colitis in C57BL/6J mice, Molecules 26 (2021) 5812.
T. Guo, C. Horvath, L. Chen, et al., Understanding the nutrient composition and nutritional functions of highland barley (qingke): a review, Trends Food Sci. Technol. 103 (2020) 109-117. https://doi.org/10.1016/j.tifs.2020.07.011.
C. Manach, A. Scalbert, C. Morand, et al., Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr. 79 (2004) 727-747. https://doi.org/10.1093/ajcn/79.5.727.
F. Wu, N. Yang, A. Touré, et al., Germinated brown rice and its role in human health, Crit. Rev. Food Sci. Nutr. 53 (2013) 451-463. https://doi.org/10.1080/10408398.2010.542259.
P. Sharma, G. Goudar, T. Longvah, et al., Fate of polyphenols and antioxidant activity of barley during processing, Food Rev. Int. 38 (2022) 163-198. https://doi.org/10.1080/87559129.2020.1725036.
J.I. Mosele, M.J. Motilva, I.A. Ludwig, β-Glucan and phenolic compounds: their concentration and behavior during in vitro gastrointestinal digestion and colonic fermentation of different barley-based food products, J. Agric. Food Chem. 66 (2018) 8966-8975. https://doi.org/10.1021/acs.jafc.8b02240.
C. Yu, L. Zhu, H. Zhang, et al., Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice, J. Cereal Sci. 97 (2021) 103127. https://doi.org/https://doi.org/10.1016/j.jcs.2020.103127.
I. Juániz, I.A. Ludwig, L. Bresciani, et al., Bioaccessibility of (poly)phenolic compounds of raw and cooked cardoon (Cynara cardunculus L.) after simulated gastrointestinal digestion and fermentation by human colonic microbiota, J. Funct. Foods 32 (2017) 195-207. https://doi.org/https://doi.org/10.1016/j.jff.2017.02.033.
M. Ulmius, S. Adapa, G. Önning, et al., Gastrointestinal conditions influence the solution behaviour of cereal β-glucans in vitro, Food Chem. 130 (2012) 536-540. https://doi.org/10.1016/j.foodchem.2011.07.066.
V. Crespy, C. Morand, C. Besson, et al., The splanchnic metabolism of flavonoids highly differed according to the nature of the compound, Am. J. Physiol-Gastr. L. 284 (2003) G980-G988. https://doi.org/10.1152/ajpgi.00223.2002.
S. Hsiu, T. Huang, Y. Hou, et al., Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits, Life Sci. 70 (2002) 1481-1489. https://doi.org/10.1016/S0024-3205(01)01491-6.
R.S. Bhatty, The potential of hull-less barley, Cereal Chem. (USA) 76 (1999) 589-599. https://doi.org/10.1094/CCHEM.1999.76.5.589.
H. Huang, X. Gao, Y. Li, et al., Content analysis of vitamins, dietary fibers and amino acids in a wide collection of barley (Hordeum vulgare L.) from tibet, china, Bioinformation 16 (2020) 314-322. https://doi.org/10.6026/97320630016314.
H. Liu, X. Qi, K. Yu, et al., Ampk activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice, Food Funct. 10 (2019) 151-162. https://doi.org/10.1039/C8FO01486H.
G.N. Ioannou, C.L. Bryson, E.J. Boyko, Prevalence and trends of insulin resistance, impaired fasting glucose, and diabetes, J. Diabetes Complications 21 (2007) 363-370. https://doi.org/https://doi.org/10.1016/j.jdiacomp.2006.07.005.
Y. Ge, Y. Yang, Y. Jiang, et al., Oxidized pork induces hepatic steatosis by impairing thyroid hormone function in mice, Mol. Nutr. Food Res. 66 (2022) 2100602. https://doi.org/10.1002/mnfr.202100602.
T. Liu, D. Zhang, X. Jiang, et al., Method improvement for extract total RNA from rats’ ribonuclease-rich gland tissue, Genomics Appl. Biol. 40 (2021) 548-555. https://doi.org/10.13417/j.gab.040.000548.
L. Gong, L. Gong, Y. Zhang, Intake of tibetan hull-less barley is associated with a reduced risk of metabolic related syndrome in rats fed high-fat-sucrose diets, Nutrients 6 (2014) 1635-1648. https://doi.org/10.3390/nu6041635.
M. Salazar-Garcia, J.C. Corona, The use of natural compounds as a strategy to counteract oxidative stress in animal models of diabetes mellitus, Int. J. Mol. Sci. 22 (2021) 7009. https://doi.org/10.3390/ijms22137009.
L. Chen, R. Chen, H. Wang, et al., Mechanisms linking inflammation to insulin resistance, Int. J. Endocrinol. 2015 (2015) 508409. https://doi.org/10.1155/2015/508409.
Y. Yang, Y. Wang, J. Sun, et al., Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production, Food Funct. 10 (2019) 61-77. https://doi.org/10.1039/C8FO01629A.
Y. Xu, Y. Yang, J. Sun, et al., Dietary methionine restriction ameliorates the impairment of learning and memory function induced by obesity in mice, Food Funct. 10 (2019) 1411-1425. https://doi.org/10.1039/c8fo01922c.
A.E. Butler, J. Janson, S. Bonner-Weir, et al., Β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes, Diabetes 52 (2003) 102-110. https://doi.org/10.2337/diabetes.52.1.102.
T. Luo, Y. Yang, Y. Xu, et al., Methionine restriction alleviates pancreatic damage in obese mice induced by a high-fat diet, Food Sci. 41 (2020) 111-119.
T. Castaño-Martinez, F. Schumacher, S. Schumacher, et al., Methionine restriction prevents onset of type 2 diabetes in NZO mice, Faseb. J. 33 (2019) 7092-7102. https://doi.org/10.1096/fj.201900150R.
Z.H. Liu, B. Li, Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation, Food Funct. 12 (2021) 10040-10052. https://doi.org/10.1039/d1fo01532j.
H. Kaneto, T. Miyatsuka, D. Kawamori, et al., Pdx-1 and MafA play a crucial role in pancreatic β-cell differentiation and maintenance of mature β-cell function, Endocr. J. 55 (2008) 235-52. https://doi.org/10.1507/endocrj.k07e-041.
L. Zhao, M. Guo, T.A. Matsuoka, et al., The islet β cell-enriched mafa activator is a key regulator of insulin gene transcription, J. Biol. Chem. 280 (2005) 11887-11894. https://doi.org/10.1074/jbc.M409475200.
S. Zhang, F. Huang, W. Tian, et al., Andrographolide promotes pancreatic duct cells differentiation into insulin-producing cells by targeting Pdx-1, Biochem. Pharmacol. 174 (2020) 113785. https://doi.org/10.1016/j.bcp.2019.113785.
C. Feng, Y. Jiang, S. Li, et al., Methionine restriction improves cognitive ability by alleviating hippocampal neuronal apoptosis through H19 in middle-aged insulin-resistant mice, Nutrients 14 (2022) 4503. https://doi.org/10.3390/nu14214503.
B.N. Finck, Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis, Diabetes 67 (2018) 2485-2493. https://doi.org/10.2337/dbi18-0024.
N. Assy, K. Kaita, D. Mymin, et al., Fatty infiltration of liver in hyperlipidemic patients, Dig. Dis. Sci. 45 (2000) 1929-1934. https://doi.org/10.1023/A:1005661516165.
Y. Yang, J. Zhang, G. Wu, et al., Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice, Food Funct. 9 (2018) 3718-3731. https://doi.org/10.1039/C8FO00685G.
X. Huang, G. Liu, J. Guo, et al., The Pi3K/Akt pathway in obesity and type 2 diabetes, Int. J. Biol. Sci. 14 (2018) 1483-1496. https://doi.org/10.7150/ijbs.27173.
S. Wu, G. Wang, Z. Liu, et al., Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin, Acta. Pharmacol. Sin. 30 (2009) 202-208. https://doi.org/10.1038/aps.2008.17.
E.K. Lees, R. Banks, C. Cook, et al., Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice, Sci. Rep.-Uk. 7 (2017) 9977. https://doi.org/10.1038/s41598-017-10381-3.
E.K. Lees, E. Krol, L. Grant, et al., Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21, Aging Cell 13 (2014) 817-827. https://doi.org/10.1111/acel.12238.
C. Nie, T. Li, M. Fan, et al., Polyphenols in highland barley tea inhibit the production of advanced glycosylation end-products and alleviate the skeletal muscle damage, Mol. Nutr. Food Res. 66 (2022) e2200225. https://doi.org/10.1002/mnfr.202200225.
C. Nie, Y. Li, Y. Guan, et al., Highland barley tea represses palmitic acid-induced apoptosis and mitochondrial dysfunction via regulating AMPK/ Sirt3/Foxo3a in myocytes, Food Biosci. 40 (2021) 100893. https://doi.org/10.1016/j.fbio.2021.100893.
L. Wang, J. Li, L.J. Di, Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases, Med. Res. Rev. 42 (2022) 946-982. https://doi.org/10.1002/med.21867.
C. Bao, S. Zhu, K. Song, et al., HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways, Cell Commun. Signal 20 (2022) 132. https://doi.org/10.1186/s12964-022-00943-y.