Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a “disease”. Brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning emerge as a potential strategy of anti-obesity by dissipating energy as heat. However, drugs based on adipose tissue thermogenesis have not been successfully approved yet. In current study, we found that black tea extract (BTE) obtained by patent-authorized manufacturing process prevented body weight gain as novel thermogenic activator with reduction of adiposity, improvement of adipose distribution, and glucose metabolism improvement in diet-induced obesity mice. Mechanismly, anti-obesity effect of BTE depends on promoting BAT thermogenesis and WAT browning with upregulation of uncoupling protein 1 (UCP1), especially visceral adipose tissue (VAT) with browning resistance. Specifically, utilizing in silico approach of network pharmacology and molecular docking, we identified carbonic anhydrase 2 (CA2) in nitrogen metabolism as anti-obesity target of BTE and further elucidated that protein kinase B (AKT) signaling pathway linked CA2 and UCP1. Meanwhile gut microbiota regulation may prompt the CA2-dependent thermogenesis activation. Our findings demonstrated anti-obesity effect of BTE as thermogenic activator through CA2-mediated BAT thermogenesis and WAT browning via CA2-AKT-UCP1 signaling pathway, which could be developed as promising anti-obesity agent with good safety and efficacy.
T.K. Kyle, E.J. Dhurandhar, D.B. Allison, Regarding obesity as a disease: evolving policies and their implications, Endocrinol. Metab. Clin. North Am. 45 (2016) 511-520. https://doi.org/10.1016/j.ecl.2016.04.004.
A. Park, W.K. Kim, K.H. Bae, Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells, World J. Stem Cells 6 (2014) 33-42. https://doi.org/10.4252/wjsc.v6.i1.33.
J. Wu, P. Bostrom, L.M. Sparks, et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human, Cell 150 (2012) 366-376. https://doi.org/10.1016/j.cell.2012.05.016.
A. Galmozzi, S.B. Sonne, S. Altshuler-Keylin, et al., ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue, Cell Rep. 9 (2014) 1584-1593. https://doi.org/10.1016/j.celrep.2014.10.066.
M. Schilperoort, G. Hoeke, S. Kooijman, et al., Relevance of lipid metabolism for brown fat visualization and quantification, Curr. Opin. Lipidol. 27 (2016) 242-248. https://doi.org/10.1097/MOL.0000000000000296.
F.M. Fisher, S. Kleiner, N. Douris, et al., FGF21 regulates PGC -1α and browning of white adipose tissues in adaptive thermogenesis, Genes Dev. 26 (2012) 271-281. https://doi.org/10.1101/gad.177857.111.
L.D. Roberts, P. Bostrom, J.F. O’Sullivan, et al., β-Aminoisobutyric acid induces browning of white fat and hepatic beta- oxidation and is inversely correlated with cardiometabolic risk factors, Cell Metab. 19 (2014) 96-108. https://doi.org/10.1016/j.cmet.2013.12.003.
Z. Zhang, H. Zhang, B. Li, et al., Berberine activates thermogenesis in white and brown adipose tissue, Nat. Commun. 5 (2014) 5493. https://doi.org/10.1038/ncomms6493.
P. Irandoost, N. Lotfi Yagin, N. Namazi, et al., The effect of capsaicinoids or capsinoids in red pepper on thermogenesis in healthy adults: a systematic review and meta-analysis, Phytother. Res. 35 (2021) 1358-1377. https://doi.org/10.1002/ptr.6897.
N.J. Song, S.H. Chang, S. Kim, et al., PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice, Cell Death Dis. 9 (2018) 876. https://doi.org/10.1038/s41419-018-0904-3.
P. Ma, P. He, C.Y. Xu, et al., Recent developments in natural products for white adipose tissue browning, Chin. J. Nat. Med. 18 (2020) 803-817. https://doi.org/10.1016/S1875-5364(20)60021-8.
F.J. Huang, X.J. Zheng, X.H. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10 (2019) 4971. https://doi.org/10.1038/s41467-019-12896-x.
L. Hartley, N. Flowers, J. Holmes, et al., Green and black tea for the primary prevention of cardiovascular disease, Cochrane Database Syst. Rev. (2013) CD009934. https://doi.org/10.1002/14651858.CD009934.pub2.
K. Hayat, H. Iqbal, U. Malik, et al., Tea and its consumption: benefits and risks, Crit. Rev. Food Sci. Nutr. 55 (2015) 939-954. https://doi.org/10.1080/10408398.2012.678949.
L.L. Sun, Y.L. Zhang, W.J. Zhang, et al., Green tea and black tea inhibit proliferation and migration of HepG2 cells via the PI3K/Akt and MMPs signalling pathway, Biomed. Pharmacother. 125 (2020) 109893. https://doi.org/10.1016/j.biopha.2020.109893.
G. Qiang, H.W. Kong, D. Fang, et al., The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation, Nat. Commun. 7 (2016) 11378. https://doi.org/10.1038/ncomms11378.
H. Plovier, A. Everard, C. Druart, et al., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat. Med. 23 (2017) 107-113. https://doi.org/10.1038/nm.4236.
B.B. Kahn, J.S. Flier. Obesity and insulin resistance, J. Clin. Invest. 106 (2000) 473-481. https://doi.org/10.1172/JCI10842.
G. Srivastava, C.M. Apovian. Current pharmacotherapy for obesity, Nat. Rev. Endocrinol. 14 (2018) 12-24. https://doi.org/10.1038/nrendo.2017.122.
H. Jick. Heart valve disorders and appetite-suppressant drugs, JAMA 283 (2000) 1738-1740. https://doi.org/10.1001/jama.283.13.1738.
M. Elashoff, A.V. Matveyenko, B. Gier, et al., Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies, Gastroenterology 141 (2011) 150-156. https://doi.org/10.1053/j.gastro.2011.02.018.
M. Morris, P. Lane, K. Lee, et al., An integrated analysis of liver safety data from orlistat clinical trials, Obes Facts. 5 (2012) 485-494. https://doi.org/10.1159/000341589.
H.Z. Du, X.Y. Hou, Y.H. Miao, et al., Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP), Chin. J. Nat. Med. 18 (2020) 206-210. https://doi.org/10.1016/S1875-5364(20)30022-4.
C. Jiang, M. Zhai, D. Yan, et al., Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity, Oncotarget 8 (2017) 75114-75126. https://doi.org/10.18632/oncotarget.20540.
Y.J. Seo, K.J. Kim, J. Choi, et al., Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice, Nutrients 10 (2018) 712. https://doi.org/10.3390/nu10060712.
P. Bhardwaj, D. Khanna. Green tea catechins: defensive role in cardiovascular disorders, Chin. J. Nat. Med. 11 (2013) 345-353. https://doi.org/10.1016/S1875-5364(13)60051-5.
A. Imran, M.U. Arshad, M.S. Arshad, et al., Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats, Lipids Health Dis. 17 (2018) 157. https://doi.org/10.1186/s12944-018-0808-3.
L. Zhang, J.S. Santos, T.M. Cruz, et al., Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities, Food Res. Int. 125 (2019) 108516. https://doi.org/10.1016/j.foodres.2019.108516.
D. Heber, Y. Zhang, J. Yang, et al., Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets, J. Nutr. 144 (2014) 1385-1393. https://doi.org/10.3945/jn.114.191007.
Y.J. Tak, S.Y. Lee. Long-term efficacy and safety of anti-obesity treatment: where do we stand? Curr. Obes. Rep. 10 (2021) 14-30. https://doi.org/10.1007/s13679-020-00422-w.
W. Gao, D.S. Group. Does the constellation of risk factors with and without abdominal adiposity associate with different cardiovascular mortality risk? Int. J. Obes. 32 (2008) 757-762. https://doi.org/10.1038/sj.ijo.0803797.
P. He, B.Y. Hou, Y.L. Li, et al., Lipid profiling reveals browning heterogeneity of white adipose tissue by β3-adrenergic stimulation, Biomolecules 9 (2019) 444. https://doi.org/10.3390/biom9090444.
P. Bjorntorp. Metabolic difference between visceral fat and subcutaneous abdominal fat, Diabetes Metab. 26(Suppl. 3) (2000) 10-12.
S. Klein, D.B. Allison, S.B. Heymsfield, et al., Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: association for weight management and obesity prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association, Diabetes Care 30 (2007) 1647-1652. https://doi.org/10.2337/dc07-9921.
A. Kurylowicz, M. Puzianowska-Kuznicka, Induction of adipose tissue browning as a strategy to combat obesity, Int. J. Mol. Sci. 21 (2020) 6241. https://doi.org/10.3390/ijms21176241.
S. Wang, X. Wang, Z. Ye, et al., Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way, Biochem. Biophys. Res. Commun. 466 (2015) 247-253. https://doi.org/10.1016/j.bbrc.2015.09.018.
F. Zhang, W. Ai, X. Hu, et al., Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) alpha in mice fed high-fat diet, Food Funct. 9 (2018) 2043-2050. https://doi.org/10.1039/C7FO01817G.
A.L. Hopkins. Network pharmacology, Nat. Biotechnol. 25 (2007) 1110-1111. https://doi.org/10.1038/nbt1007-1110.
Y. Wang, Y.W. Sun, Y.M. Wang, et al., Virtual screening of active compounds from Artemisia argyi and potential targets against gastric ulcer based on Network pharmacology, Bioorg. Chem. 88 (2019) 102924. https://doi.org/10.1016/j.bioorg.2019.102924.
C.V. de Castro Ghizoni, F.R. Gasparin, A.S. Junior, et al., Catabolism of amino acids in livers from cafeteria-fed rats, Mol. Cell. Biochem. 373 (2013) 265-277. https://doi.org/10.1007/s11010-012-1499-0.
C.T. Supuran, A. Di Fiore, G. De Simone. Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity, Expert. Opin. Emerg. Drugs 13 (2008) 383-392. https://doi.org/10.1517/14728214.13.2.383.
C.J. Lynch, H. Fox, S.A. Hazen, et al., Role of hepatic carbonic anhydrase in de novo lipogenesis, Biochem. J. 310(Pt 1) (1995) 197-202. https://doi.org/10.1042/bj3100197.
A. Queen, P. Khan, A. Azam, et al., Understanding the role and mechanism of carbonic anhydrase V in obesity and its therapeutic implications, Curr. Protein Pept. Sci. 19 (2018) 909-923. https://doi.org/10.2174/1389203718666170810145436.
I. Puscas, A. Reznicek, A. Moldovan, et al., Activation of carbonic anhydrase by beta-adrenergic agonists and inhibition by beta-adrenergic blockers, Med. Interne. 23 (1985) 185-189.
C.P. Liu, P.C. Chau, C.T. Chang, et al., KMUP-1, a GPCR modulator, attenuates triglyceride accumulation involved MAPKs/Akt/PPARγ and PKA/PKG/HSL signaling in 3T3-L1 preadipocytes, Molecules 23 (2018) 2433. https://doi.org/10.3390/molecules23102433.
X.J. Huang, G.H. Liu, J. Guo, et al., The PI3K/AKT pathway in obesity and type 2 diabetes, Int. J. Biol. Sci. 14 (2018) 1483-96. https://doi.org/10.7150/ijbs.27173.
Y. Izumiya, T. Hopkins, C. Morris, et al., Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice, Cell Metab. 7 (2008) 159-172. https://doi.org/10.1016/j.cmet.2007.11.003.
J. Sanchez-Gurmaches, C. Martinez Calejman, S.M. Jung, et al., Brown fat organogenesis and maintenance requires AKT1 and AKT2, Mol. Metab. 23 (2019) 60-74. https://doi.org/10.1016/j.molmet.2019.02.004.
A.M. Valverde, M. Arribas, C. Mur, et al., Insulin-induced up- regulated uncoupling protein-1 expression is mediated by insulin receptor substrate 1 through the phosphatidylinositol 3-kinase/Akt signaling pathway in fetal brown adipocytes, J. Biol. Chem. 278 (2003) 10221-10231. https://doi.org/10.1074/jbc.M209363200.
H. Li, Y.B. Liu, S. Tang, et al., Carbonic anhydrase Ⅲ attenuates hypoxia-induced apoptosis and activates PI3K/Akt/mTOR pathway in H9c2 cardiomyocyte cell line, Cardiovasc. Toxicol. 21 (2021) 914-926. https://doi.org/10.1007/s12012-021-09683-w.
S. Genah, A. Angeli, C.T. Supuran, et al., Effect of carbonic anhydrase Ⅸ inhibitors on human endothelial cell survival, Pharmacol. Res. 159 (2020) 104964. https://doi.org/10.1016/j.phrs.2020.104964.
V. Tremaroli, and F. Backhed. Functional interactions between the gut microbiota and host metabolism, Nature 489 (2012) 242-9. https://doi.org/10.1038/nature11552
R.X. Liu, J. Hong, X.Q. Xu, et al., Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention, Nat. Med. 23 (2017) 859-868. https://doi.org/10.1038/nm.4358.
E.L. Johnson, S.L. Heaver, W.A. Walters, et al., Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes, J. Mol. Med. (Berl). 95 (2017) 1-8. https://doi.org/10.1007/s00109-016-1492-2.
T. Behl, A. Sehgal, M. Grover, et al., Uncurtaining the pivotal role of ABC transporters in diabetes mellitus, Environ. Sci. Pollut. Res. Int. 28 (2021) 41533-41551. https://doi.org/10.1007/s11356-021-14675-y.
L. Crovesy, D. Masterson, E.L. Rosado, Profile of the gut microbiota of adults with obesity: a systematic review, Eur. J. Clin. Nutr. 74 (2020) 1251-1262. https://doi.org/10.1038/s41430-020-0607-6.
A.P. Lakshmanan, S. Al Zaidan, D.K. Bangarusamy, et al., Increased relative abundance of ruminoccocus is associated with reduced cardiovascular risk in an obese population, Front. Nutr. 9 (2022) 849005. https://doi.org/10.3389/fnut.2022.849005.
Y. Mineshita, H. Sasaki, H.K. Kim, et al., Relationship between fasting and postprandial glucose levels and the gut microbiota, Metabolites 12 (2022) 669. https://doi.org/10.3390/metabo12070669.
D. Pal, M. Naskar, A. Bera, et al., Chemical synthesis of the pentasaccharide repeating unit of the O-specific polysaccharide from Ruminococcus gnavus, Carbohydr. Res. 507 (2021) 108384. https://doi.org/10.1016/j.carres.2021.108384.
L.L. Barton, N.L. Ritz, G.D. Fauque, et al., Sulfur cycling and the intestinal microbiome, Dig. Dis. Sci. 62 (2017) 2241-2257. https://doi.org/10.1007/s10620-017-4689-5.
A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.
1456
Views
130
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).