Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The present study reports the structural characteristics of 3 polysaccharide fractions (SPS-F1, SPS- F2 and SPS-F3) isolated and purified from squash. SPS-F1 (molecular weight (Mw) = 12.30 kDa) and SPS-F2 (Mw = 19.40 kDa) were likely to contain HG and RG-I domain of pectic polysaccharide, respectively. SPS-F2 (Mw = 270.4 kDa) was mainly composed of rhamnose, galactose and arabinose. The treatment with SPS decreased body weight gain, glucose and TG levels in type 2 diabetes rats. Besides, 25 differential metabolites were identified based on urinary metabolomics analysis, which are crucial to the anti-diabetic effect of SPS. The regulation of nicotinamide N-oxide, histamine, cis-aconitate, citrate, L-malic acid, 3-(3-hydroxyphenyl) propanoic acid and N-acetyl-L-aspartic acid were mainly associated with energy metabolism, gut microbiota and inflammation. Study of surface plasmon resonance revealed the binding kinetics with galectin-3 (Gal-3) and fibroblast growth factor 2 (FGF2). The KD values of SPS-F2 and SPS-F3 to Gal-3 were 4.97 × 10-3 and 1.48 × 10-3 mol/L, indicating a weak binding affinity. All 3 fractions showed moderate binding to FGF2 and the affinity was SPS-F3 > SPS-F2 > SPS-F1. Thus, the metabolomics and SPR approach were proved to be a promising tool in exploring the anti-diabetes effects of SPS and provided a deep understanding of the mechanisms.
X. Yang, Y. Zhao, Y. Lv, Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata duchesne ex poiret, J. Agric. Food Chem. 55 (2007) 4684-4690. https://doi.org/10.1021/jf070241r.
Y. Zhang, P. Chen, Y. Zhang, et al., Effects of polysaccharide from pumpkin on biochemical indicator and pancreatic tissue of the diabetic rabbits, Int. J. Biol. Macromol. 62 (2013) 574-581. https://doi.org/10.1016/j.ijbiomac.2013.09.044.
L. Liang, G. Liu, F. Zhang, et al., Digestibility of squash polysaccharide under simulated salivary, gastric and intestinal conditions and its impact on short-chain fatty acid production in type-2 diabetic rats, Carbohydr. Polym. 235 (2020) 115904. https://doi.org/10.1016/j.carbpol.2020.115904.
P.E.H. Schwarz, G. Gallein, D. Ebermann, et al., Global Diabetes Survey-an annual report on quality of diabetes care, Diabetes Res. Clin. Pract. 100 (2013) 11-18. https://doi.org/10.1016/j.diabres.2012.11.008.
J.K. Nicholson, J.C. Lindon, E. Holmes, ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data, Xenobiotica 29 (1999) 1181-1189. https://doi.org/10.1080/004982599238047.
M. Guasch-Ferré, A. Hruby, E. Toledo, et al., Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis, Diabetes Care 39 (2016) 833-846. https://doi.org/10.2337/dc15-2251.
L. Liang, W. Duan, J. Zhang, et al., Characterization and molecular docking study of taste peptides from chicken soup by sensory analysis combined with Nano-LC-Q-TOF-MS/MS, Food Chem. 383 (2022) 132455. https://doi.org/10.1016/j.foodchem.2022.132455.
L. Liang, C. Zhou, J. Zhang, et al., Characteristics of umami peptides identified from porcine bone soup and molecular docking to the taste receptor T1R1/T1R3, Food Chem. 387 (2022) 132870. https://doi.org/10.1016/j.foodchem.2022.132870.
W. Jin, D. Jiang, W. Zhang, et al., Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica, Int. J. Biol. Macromol. 160 (2020) 26-34. https://doi.org/10.1016/j.ijbiomac.2020.05.183.
D.M. Ornitz, N. Itoh, The fibroblast growth factor signaling pathway, Wiley Interdiscip. Rev. Dev. Biol. 4 (2015) 215-266. https://doi.org/10.1002/wdev.176.
G. Pugliese, C. Iacobini, C.M. Pesce, et al., Galectin-3: an emerging all-out player in metabolic disorders and their complications, Glycobiology 25 (2015) 136-150. https://doi.org/10.1093/glycob/cwu111.
G. Liu, L. Liang, G. Yu, et al., Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats, Int. J. Biol. Macromol. 115 (2018) 711-717. https://doi.org/10.1016/j.ijbiomac.2018.04.127.
Y. Li, C. Qin, L. Dong, et al., Whole grain benefit: synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice, Food Funct. 13 (2022) 12686-12696.
Y. Zhang, Y. Li, X. Ren, et al., The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds, Food Chem. 402 (2023) 134231. https://doi.org/10.1016/j.foodchem.2022.134231.
Y. Dong, Y.T. Chen, Y.X. Yang, et al., Urinary metabolomic profiling in Zucker diabetic fatty rats with type 2 diabetes mellitus treated with glimepiride, metformin, and their combination, Molecules 21 (2016). https://doi.org/10.3390/molecules21111446.
K. Xu, M.M. Martinez, B. Yang, et al., Fine structure, physicochemical and antioxidant properties of LM-pectins from okra pods dried under different techniques, Carbohydr. Polym. 241 (2020). https://doi.org/10.1016/j.carbpol.2020.116272.
H. Il Jun, C.H. Lee, G.S. Song, et al., Characterization of the pectic polysaccharides from pumpkin peel, LWT-Food Sci. Technol. 39 (2006) 554-561. https://doi.org/10.1016/j.lwt.2005.03.004.
F.M. Kpodo, J.K. Agbenorhevi, K. Alba, et al., Pectin isolation and characterization from six okra genotypes, Food Hydrocoll. 72 (2017) 323-330. https://doi.org/10.1016/j.foodhyd.2017.06.014.
N. Sengkhamparn, R. Verhoef, H.A. Schols, et al., Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench), Carbohydr. Res. 344 (2009) 1824-1832. https://doi.org/10.1016/j.carres.2008.10.012.
W. Wang, X. Ma, P. Jiang, et al., Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions, Food Hydrocoll. 61 (2016) 730-739. https://doi.org/10.1016/j.foodhyd.2016.06.019.
R. Samuel, M. Foston, N. Jiang, et al., Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis, Polym. Degrad. Stab. 96 (2011) 2002-2009. https://doi.org/10.1016/j.polymdegradstab.2011.08.015.
O.G. De Gutiérrez, M. Martínez, L. Sanabria, et al., 1D- and 2D-NMR spectroscopy studies of the polysaccharide gum from Spondias purpurea var. lutea, Food Hydrocoll. 19 (2005) 37-43. https://doi.org/10.1016/j.foodhyd.2003.09.007.
X. Gao, Y. Zhi, L. Sun, et al., The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng Pectin on galectin-3 and its structure-activity relationship, J. Biol. Chem. 288 (2013) 33953-33965. https://doi.org/10.1074/jbc.M113.482315.
B.C. Panda, S. Mondal, K.S.P. Devi, et al., Pectic polysaccharide from the green fruits of Momordica charantia (Karela): structural characterization and study of immunoenhancing and antioxidant properties, Carbohydr. Res. 401 (2015) 24-31. https://doi.org/10.1016/j.carres.2014.10.015.
O.A. Patova, V. V. Smirnov, V. V. Golovchenko, et al., Structural, rheological and antioxidant properties of pectins from Equisetum arvense L. and Equisetum sylvaticum L., Carbohydr. Polym. 209 (2019) 239-249. https://doi.org/10.1016/j.carbpol.2018.12.098.
H. Wang, G. Wei, F. Liu, et al., Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea, Int. J. Mol. Sci. 15 (2014) 9963-9978. https://doi.org/10.3390/ijms15069963.
A. de Bruyn, M. Anteunis, R. de Gussem, et al., 1H-N.m.r. study of l-rhamnose, methyl α-l-rhamnopyranoside, and 4-O-β-D-galactopyranosyl-l-rhamnose in deuterium oxide, Carbohydr. Res. 47 (1976) 158-163. https://doi.org/10.1016/S0008-6215(00)83559-4.
Y. Habibi, A. Heyraud, M. Mahrouz, et al., Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Res. 339 (2004) 1119-1127. https://doi.org/10.1016/j.carres.2004.02.005.
L. Yu, X. Zhang, S. Li, et al., Rhamnogalacturonan I domains from ginseng pectin, Carbohydr. Polym. 79 (2010) 811-817. https://doi.org/10.1016/j.carbpol.2009.08.028.
J. Zhao, F. Zhang, X. Liu, et al., Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin, Carbohydr. Polym. 163 (2017) 330-336. https://doi.org/10.1016/j.carbpol.2017.01.067.
S. Poovitha, M. Siva Sai, M. Parani, Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats, J. Funct. Foods 33 (2017) 181-187. https://doi.org/10.1016/j.jff.2017.03.042.
S.L. Jones, C.F. Close, M.B. Mattock, et al., Plasma lipid and coagulation factor concentrations in insulin dependent diabetics with microalbuminuria, BMJ 298 (1989) 487-490.
H. Oexle, E. Gnaiger, G. Weiss, Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation, Biochim. Biophys. Acta - Bioenerg. 1413 (1999) 99-107. https://doi.org/10.1016/S0005-2728(99)00088-2.
A.A. Azam, R. Pariyani, I.S. Ismail, et al., Urinary metabolomics study on the protective role of Orthosiphon stamineus in streptozotocin induced diabetes mellitus in rats via 1H NMR spectroscopy, BMC Complement. Altern. Med. 17 (2017) 278. https://doi.org/10.1186/s12906-017-1777-1.
A. Napolitano, S. Miller, A.W. Nicholls, et al., Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus, PLoS One 9 (2014). https://doi.org/10.1371/journal.pone.0100778.
N.R. Shin, J.C. Lee, H.Y. Lee, et al., An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut 63 (2014) 727-735. https://doi.org/10.1136/gutjnl-2012-303839.
G. Liu, L. Liang, G. Yu, et al., Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats, Int. J. Biol. Macromol. 115 (2018) 711-717. https://doi.org/10.1016/j.ijbiomac.2018.04.127.
M. Szafarz, M. Lomnicka, M. Sternak, et al., Simultaneous determination of nicotinic acid and its four metabolites in rat plasma using high performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS), J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878 (2010) 895-902. https://doi.org/10.1016/j.jchromb.2010.02.009.
S.I. Imai, The NAD world: a new systemic regulatory network for metabolism and aaging-Sirt1, systemic NAD biosynthesis, and their importance, Cell Biochem. Biophys. 53 (2009) 65-74. https://doi.org/10.1007/s12013-008-9041-4.
L.H. Zhang, V.S. Kamanna, M.C. Zhang, et al., Niacin inhibits surface expression of ATP synthase b chain in HepG2 cells: implications for raising HDL, J. Lipid Res. 49 (2008) 1195-1201. https://doi.org/10.1194/jlr.M700426-JLR200.
A. Pini, I. Obara, E. Battell, et al., Histamine in diabetes: is it time to reconsider? Pharmacol. Res. 111 (2016) 316-324. https://doi.org/10.1016/j.phrs.2016.06.021.
M.J. Brown, P.W. Ind, R. Causon, et al., A novel double-isotope technique for the enzymatic assay of plasma histamine: application to estimation of mast cell activation assessed by antigen challenge in asthmatics, J. Allergy Clin. Immunol. 69 (1982) 20-24. https://doi.org/10.1016/0091-6749(82)90082-3.
J. Dumic, S. Dabelic, M. Flögel, Galectin-3: an open-ended story, Biochim. Biophys. Acta - Gen. Subj. 1760 (2006) 616-635. https://doi.org/10.1016/j.bbagen.2005.12.020.
M.C. Miller, Y. Zheng, Y. Zhou, et al., Galectin-3 binds selectively to the terminal, non-reducing end of β(1→4)-galactans, with overall affinity increasing with chain length, Glycobiology 29 (2019) 74-84. https://doi.org/10.1093/glycob/cwy085.
H. Yilmaz, M. Cakmak, O. Inan, et al., Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? J. Endocrinol. Invest. 38 (2015) 527-533. https://doi.org/10.1007/s40618-014-0222-2.
T. Zhang, Y. Zheng, D. Zhao, et al., Multiple approaches to assess pectin binding to galectin-3, Int. J. Biol. Macromol. 91 (2016) 994-1001. https://doi.org/10.1016/j.ijbiomac.2016.06.058.
X. Gao, Y. Zhi, T. Zhang, et al., Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3, Glycoconj. J. 29 (2012) 159-165. https://doi.org/10.1007/s10719-012-9382-5.
L. Cui, J. Wang, R. Huang, et al., Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3, Int. J. Biol. Macromol. 128 (2019) 459-467. https://doi.org/10.1016/j.ijbiomac.2019.01.129.
L. Sun, D. Ropartz, L. Cui, et al., Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer, Carbohydr. Polym. 203 (2019) 119-127. https://doi.org/10.1016/j.carbpol.2018.09.045.
Y. Li, X.B. Guo, J.S. Wang, et al., Function of fibroblast growth factor 2 in gastric cancer occurrence and prognosis, Mol. Med. Rep. 21 (2020) 575-582. https://doi.org/10.3892/mmr.2019.10850.
C. Pellieux, A. Foletti, G. Peduto, et al., Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin Ⅱ in mice lacking FGF-2, J. Clin. Invest. 108 (2001) 1843-1851. https://doi.org/10.1172/JCI13627.
Y.L. Bao, H.Y. Jiang, S.X. Ji, et al., Synergistic effects of activin A and fibroblast growth factor 2 in the modulation of insulin expression, Chem. Res. Chinese Univ. 22 (2006) 229-232. https://doi.org/10.1016/S1005-9040(06)60083-4.
1180
Views
78
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).