PDF (6.9 MB)
Collect
Submit Manuscript
Open Access

Ganoboninketal C from Ganoderma boninense improves the efficacy of CDDP-based chemotherapy through inhibiting translesion DNA synthesis

Xiaolu Maa,b,c,1Fei Yangb,1Ke Mad,1Hongyan Shenb,1Junjie HandKai WangdYeran YangbJiawei ZhubRuiyuan AnbQilin WangbTie-Shan Tangc,e,fBo Zhoub()Hongwei Liud()Caixia Guob ()
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics /China National Center for Bioinformation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
Institute of Microbiology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China

1 Authors contributes equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Translesion DNA synthesis (TLS) can bypass DNA lesions caused by chemotherapeutic drugs, which usually result in drug resistance. Given its key role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin (CDDP), a widely used anticancer agent. Unfortunately, few suitable natural TLS inhibitors have been reported. Here, we found that a triterpenoid compound Ganoboninketal C (26-3) from Ganoderma boninense, a traditional Chinese medicine, can impair CDDP-induced TLS polymerase eta (Polη) focus formation, PCNA monoubiquitination as well as mutagenesis. Moreover, 26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure. Interestingly, 26-3 can also sensitize tumor cells to Gefitinib therapy. Mechanistically, through RNA-seq analysis, we found that 26-3 could abrogate the CDDP-induced upregulation of Polη and PIDD (p53-induced protein with a death domain), 2 known factors promoting TLS pathway. Furthermore, we found that activating transcription factor 3 is a potential novel TLS modulator. Taken together, we have identified a natural TLS inhibitor 26-3, which can be potentially used as an adjuvant to improve clinical efficacy.

Electronic Supplementary Material

Download File(s)
fshw-13-5-2982_ESM.doc (4.8 MB)

References

[1]

D.W. Shen, L.M. Pouliot, M.D. Hall, et al., Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes, Pharmacol. Rev. 64(3) (2012) 706-721. http://dx.doi.org/10.1124/pr.111.005637.

[2]

X. Ma, T.S. Tang, C. Guo, Regulation of translesion DNA synthesis in mammalian cells, Environ. Mol. Mutagen. 61(7) (2020) 680-692. http://dx.doi.org/10.1002/em.22359.

[3]

M. Kartalou, J.M. Essigmann, Mechanisms of resistance to cisplatin, Mutat. Res. 478(1-2) (2001) 23-43. http://dx.doi.org/10.1016/s0027-5107(01)00141-5.

[4]

Y. Zhao, C. Biertümpfel, M.T. Gregory, et al., Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin, Proc. Natl. Acad. Sci. U.S.A. 109(19) (2012) 7269-7274. http://dx.doi.org/10.1073/pnas.1202681109.

[5]

L. Galluzzi, L. Senovilla, I. Vitale, et al., Molecular mechanisms of cisplatin resistance, Oncogene 31(15) (2012) 1869-1883. http://dx.doi.org/10.1038/onc.2011.384.

[6]

E. Mutter-Rottmayer, Y. Gao, C. Vaziri, Cancer cells activate damage-tolerant and error-prone DNA synthesis, Mol. Cell Oncol. 3(6) (2016) e1225547. http://dx.doi.org/10.1080/23723556.2016.1225547.

[7]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs from 1981 to 2014, J. Nat. Prod. 79(3) (2016) 629-661. http://dx.doi.org/10.1021/acs.jnatprod.5b01055.

[8]

X. Wang, D. Sun, J. Tai, et al., Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells, Mol. Med. Rep. 16(4) (2017) 3894-3900. http://dx.doi.org/10.3892/mmr.2017.7048.

[9]

K. Xu, X. Liang, F. Gao, et al., Antimetastatic effect of ganoderic acid T in vitro through inhibition of cancer cell invasion, Process Biochemistry 45(8) (2010) 1261-1267. https://doi.org/10.1016/j.procbio.2010.04.013.

[10]

G. Liu, K. Wang, S. Kuang, et al., The natural compound GL22, isolated from Ganoderma mushrooms, suppresses tumor growth by altering lipid metabolism and triggering cell death, Cell Death Dis. 9(6) (2018) 689. http://dx.doi.org/10.1038/s41419-018-0731-6.

[11]

J.M. Bryant, M. Bouchard, A. Haque, Anticancer activity of ganoderic acid dm: current status and future perspective, J. Clin. Cell Immunol. 8(6) (2017). http://dx.doi.org/: 10.4172/2155-9899.1000535.

[12]

B.S. Gill, S. Kumar, Navgeet, Triterpenes in cancer: significance and their influence, Mol. Biol. Rep. 43(9) (2016) 881-896. http://dx.doi.org/10.1007/s11033-016-4032-9.

[13]

J.E. Sale, A.R. Lehmann, R. Woodgate, Y-family DNA polymerases and their role in tolerance of cellular DNA damage, Nat. Rev. Mol. Cell Biol. 13(3) (2012) 141-152. http://dx.doi.org/10.1038/nrm3289.

[14]

W. Yang, Y. Gao, Translesion and repair DNA polymerases: diverse structure and mechanism, Annu. Rev. Biochem. 87 (2018) 239-261. http://dx.doi.org/10.1146/annurev-biochem-062917-012405.

[15]

A.K. Srivastava, C. Han, R. Zhao, et al., Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells, Proc. Natl. Acad. Sci. U.S.A. 112(14) (2015) 4411-4416. http://dx.doi.org/10.1073/pnas.1421365112.

[16]

M.R. Albertella, C.M. Green, A.R. Lehmann, et al., A role for polymerase eta in the cellular tolerance to cisplatin-induced damage, Cancer Res. 65(21) (2005) 9799-9806. http://dx.doi.org/10.1158/0008-5472.can-05-1095.

[17]

K. Yamanaka, D. Dorjsuren, R.L. Eoff, et al., A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ, PLoS One 7(10) (2012) e45032. http://dx.doi.org/10.1371/journal.pone.0045032.

[18]

Y. Mizushina, H. Motoshima, Y. Yamaguchi, et al., 3-O-Methylfunicone, a selective inhibitor of mammalian Y-family DNA polymerases from an Australian sea salt fungal strain, Mar. Drugs 7(4) (2009) 624-639. http://dx.doi.org/10.3390/md7040624.

[19]

M.L. Actis, N.D. Ambaye, B.J. Evison, et al., Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction, Bioorg. Med. Chem. 24(18) (2016) 4339-4346. http://dx.doi.org/10.1016/j.bmc.2016.07.026.

[20]

J.L. Wojtaszek, N. Chatterjee, J. Najeeb, et al., A small molecule targeting mutagenic translesion synthesis improves chemotherapy, Cell 178(1) (2019) 152-159. http://dx.doi.org/10.1016/j.cell.2019.05.028.

[21]

A.A. Davies, D. Huttner, Y. Daigaku, et al., Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A, Mol. Cell. 29(5) (2008) 625-636. http://dx.doi.org/10.1016/j.molcel.2007.12.016.

[22]

C. Guo, J.N. Kosarek-Stancel, T.S. Tang, et al., Y-family DNA polymerases in mammalian cells, Cell Mol. Life Sci. 66(14) (2009) 2363-2381. http://dx.doi.org/10.1007/s00018-009-0024-4.

[23]

N. Tsanov, C. Kermi, P. Coulombe, et al., PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage, Nucleic Acids Res. 42(6) (2014) 3692-3706. http://dx.doi.org/10.1093/nar/gkt1400.

[24]

M. Bienko, C.M. Green, N. Crosetto, et al., Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis, Science 310(5755) (2005) 1821-1824. http://dx.doi.org/10.1126/science.1120615.

[25]

K. Ma, J. Ren, J. Han, et al., Ganoboninketals A-C, antiplasmodial 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense Pat, J. Nat. Prod. 77(8) (2014) 1847-1852. http://dx.doi.org/10.1021/np5002863.

[26]

M. Huang, B. Zhou, J. Gong, et al., RNA-splicing factor SART3 regulates translesion DNA synthesis, Nucleic Acids Res. 46(9) (2018) 4560-4574. http://dx.doi.org/10.1093/nar/gky220.

[27]

X. Ma, H. Liu, W.Y. Li, et al., Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis, Nat. Commun. 8(1) (2017) 1941. http://dx.doi.org/10.1038/s41467-017-02164-1.

[28]

C. Zhang, B. Zhou, F. Gu, et al., Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl) ation, Mol. Cell 82(7) (2022) 1297-1312. http://dx.doi.org/10.1016/j.molcel.2022.01.020.

[29]

R. Dreos, G. Ambrosini, R. Groux, et al., The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms, Nucleic Acids Res. 45(D1) (2017) D51-D55.

[30]
K. Yamanaka, N. Chatterjee, Inhibition of mutagenic translesion synthesis: a possible strategy for improving chemotherapy? 13(8) (2017) e1006842. http://dx.doi.org/10.1371/journal.pgen.1006842.
[31]

F. Tian, S. Sharma, J. Zou, et al., BRCA1 promotes the ubiquitination of PCNA and recruitment of translesion polymerases in response to replication blockade, Proc. Natl. Acad. Sci. U.S.A. 110(33) (2013) 13558-13563. http://dx.doi.org/10.1073/pnas.1306534110.

[32]

P.B. Tchounwou, S. Dasari, F.K. Noubissi, et al., Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy, J. Exp. Pharmacol. 13 (2021) 303-328. http://dx.doi.org/10.2147/jep.s267383.

[33]

L. Wang, X. Liu, Y. Ren, et al., Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity, Cell Death Dis. 8(4) (2017) e2746. http://dx.doi.org/10.1038/cddis.2016.409.

[34]

M. Russo, G. Crisafulli, A. Sogari, et al., Adaptive mutability of colorectal cancers in response to targeted therapies, Science 366(6472) (2019) 1473-1480. http://dx.doi.org/10.1126/science.aav4474.

[35]

M. Durando, S. Tateishi, C. Vaziri, A non-catalytic role of DNA polymerase η in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks, Nucleic Acids Res. 41(5) (2013) 3079-3093. http://dx.doi.org/10.1093/nar/gkt016.

[36]

E. Logette, S. Schuepbach-Mallepell, M.J. Eckert, et al., PIDD orchestrates translesion DNA synthesis in response to UV irradiation, Cell Death Differ. 18(6) (2011) 1036-1045. http://dx.doi.org/10.1038/cdd.2011.19.

[37]

H.C. Ku, C.F. Cheng, Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer, Front Endocrinol (Lausanne). 11 (2020) 556. http://dx.doi.org/10.3389/fendo.2020.00556.

[38]

L. Turchi, M. Fareh, E. Aberdam, et al., ATF3 and p15PAF are novel gatekeepers of genomic integrity upon UV stress, Cell Death Differ. 16(5) (2009) 728-737. http://dx.doi.org/10.1038/cdd.2009.2.

[39]

Z. Wang, Y. He, W. Deng, et al., Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice, Oncogene 37(1) (2018) 18-27. http://dx.doi.org/10.1038/onc.2017.310.

[40]

L.K. Povlsen, P. Beli, S.A. Wagner, et al., Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass, Nat. Cell Biol. 14(10) (2012) 1089-1098. http://dx.doi.org/10.1038/ncb2579.

[41]

F. Villafañez, I.A. García, S. Carbajosa, et al., AKT inhibition impairs PCNA ubiquitylation and triggers synthetic lethality in homologous recombination-deficient cells submitted to replication stress, Oncogene 38(22) (2019) 4310-4324. http://dx.doi.org/10.1038/s41388-019-0724-7.

Food Science and Human Wellness
Pages 2982-2992
Cite this article:
Ma X, Yang F, Ma K, et al. Ganoboninketal C from Ganoderma boninense improves the efficacy of CDDP-based chemotherapy through inhibiting translesion DNA synthesis. Food Science and Human Wellness, 2024, 13(5): 2982-2992. https://doi.org/10.26599/FSHW.2022.9250241
Metrics & Citations  
Article History
Copyright
Rights and Permissions