PDF (5.1 MB)
Collect
Submit Manuscript
Open Access

Comparative genomic analysis revealed that dietary habits affected the adaptation of Bifidobacterium bifidum to the intestinal tract in different geographic populations

Min Lia,b,c,1Jie Yua,c,d,1Weicheng Lia,c,dQiong Wua,b,cJiaqi Suna,b,cZhihong Suna,b,e()
Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
Center for Applied Mathematics Inner Mongolia, Hohhot 010018, China

1 These authors have contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

B. bifidum had a high diversity.

B. bifidum is a geographically specific species.

B. bifidum’s specificity is either related to adaptability of carbohydrate.

Graphical Abstract

View original image Download original image

Abstract

Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources (intestinal tract niche) recently, but reports on the isolation region are limited. This study analyzed the differences in the genome of B. bifidum isolated from different geographical populations by comparative genomic analysis. Results at the genome level indicated that the GC content of American isolates was significantly higher than that of Chinese and Russian isolates. The phylogenetic tree, based on 919 core genes showed that B. bifidum might be related to the geographical characteristics of isolation region. Furthermore, functional annotation analysis demonstrated that copy numbers of carbohydrate-active enzymes (CAZys) involved in the degradation of polysaccharide from plant and host sources in B. bifidum were high, and 18 CAZys showed significant differences across different geographical populations, indicating that B. bifidum had adapted to the human intestinal environment, especially in the groups with diets rich in fiber. Dietary habits were one of the main reasons for the differences of B. bifidum across different geographical populations. Additionally, B. bifidum exhibited high diversity, evident in glycoside hydrolases, the CRISPR-Cas system, and prophages. This study provides a genetic basis for further research and development of B. bifidum.

Electronic Supplementary Material

Download File(s)
fshw-13-5-3006_ESM.docx (998.2 KB)

References

[1]

M. Ventura, C. Canchaya, A. Tauch, et al., Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum, Microbiol. Mol. Biol. Rev. 71(3) (2007) 495-548. doi: 10.1128/MMBR.00005-07.

[2]

F. Turroni, D. van Sinderen, M. Ventura. Genomics and ecological overview of the genus Bifidobacterium, Int. J. Food Microbiol. 149(1) (2011) 37-44. doi: 10.1016/j.ijfoodmicro.2010.12.010.

[3]

R. Lamendella, J.W.S. Domingo, C. Kelty, et al., Bifidobacteria in feces and environmental waters, Appl. Environ. Microbiol. 74(3) (2008) 575-584. doi: 10.1128/AEM.01221-07.

[4]

F. Turroni, E. Foroni, P. Pizzetti, et al., Exploring the diversity of the bifidobacterial population in the human intestinal tract, Appl. Environ. Microbiol. 75(6) (2009) 1534-1545. doi: 10.1128/AEM.02216-08.

[5]

E. Chenoll, B. Casinos, E. Bataller, et al., Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori, Appl. Environ. Microbiol. 77(4) (2011) 1335-1343. doi: 10.1128/AEM.01820-10.

[6]

Y. Shirasawa, H. Shibahara-Sone, T. Iino, et al., Bifidobacterium bifidum BF-1 suppresses Helicobacter pylori-induced genes in human epithelial cells, J. Dairy Sci. 93(10) (2010) 4526-4534. doi: 10.3168/jds.2010-3274.

[7]

D. Philippe, E. Heupel, S. Blum-Sperisen, et al., Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis, Int. J. Food Microbiol. 149(1) (2011) 45-49. doi: 10.1016/j.ijfoodmicro.2010.12.020.

[8]

Y.R. Fu, Z.J. Yi, J.L. Pei, et al., Effects of Bifidobacterium bifidum on adaptive immune senescence in aging mice, Microbiol. Immunol. 54(10) (2010) 578-583. doi: 10.1111/j.1348-0421.2010.00255.x.

[9]

S. Guglielmetti, D. Mora, M. Gschwender, et al., Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life-a double-blind, placebo-controlled study, Aliment. Pharm. Ther. 33(10) (2011) 1123-1132. doi: 10.1111/j.1365-2036.2011.04633.x.

[10]

F. Mouni, E. Aissi, J. Hernandez, et al., Effect of Bifidobacterium bifidum DSM 20082 cytoplasmic fraction on human immune cells, Immunol. Invest. 38(1) (2009) 104-115. doi: 10.1080/08820130802608303.

[11]

F. Turroni, C. Milani, S. Duranti, et al., Glycan utilization and cross-feeding activities by bifidobacteria, Trends Microbiol. 26(4) (2018) 339-350. doi: 10.1016/j.tim.2017.10.001.

[12]

S.M. Kelly, J. Munoz-Munoz, D. van Sinderen, Plant glycan metabolism by bifidobacteria, Front. Microbiol. 12 (2021) 609418. doi: 10.3389/fmicb.2021.609418.

[13]

H. Chung The, C. Nguyen Ngoc Minh, C. Tran Thi Hong, et al., Exploring the genomic diversity and antimicrobial susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese population, Microbiol. Spectrum. 9(2) (2021) e00526-00521. doi: 10.1128/Spectrum.00526-21.

[14]

C. Milani, F. Turroni, S. Duranti, et al., Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment, Appl. Environ. Microbiol. 82(4) (2016) 980-991. doi: 10.1128/AEM.03500-15.

[15]

S. Duranti, C. Milani, G.A. Lugli, et al., Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis, Sci. Rep. 6(1) (2016) 23971.

[16]

Y. Watanabe, Y. Saito, T. Hara, et al., Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract, ISME Commun. 1(1) (2021) 62.

[17]

A.G. Abdelhamid, N.K. El-Dougdoug, Comparative genomics of the gut commensal Bifidobacterium bifidum reveals adaptation to carbohydrate utilization, Biochem. Biophys. Res. Commun. 547 (2021) 155-161. doi: 10.1016/j.bbrc.2021.02.046.

[18]

F. Turroni, F. Bottacini, E. Foroni, et al., Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging, Proc. Natl. Acad. Sci. 107(45) (2010) 19514-19519. doi: 10.1073/pnas.1011100107.

[19]

R. Kant, J. Blom, A. Palva, et al., Comparative genomics of Lactobacillus, Microbial Biotechnol. 4(3) (2011) 323-332. doi: 10.1111/j.1751-7915.2010.00215.x.

[20]

Z.H. Sun, W.Y. Zhang, C.Y. Guo, et al., Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution, PLoS One 10(2) (2015) e0117912. doi: 10.1371/journal.pone.0117912.

[21]

M.J. Kwak, S.K. Kwon, J.K. Yoon, et al., Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function, Syst. Appl. Microbiol. 39(7) (2016) 429-439. doi: 10.1016/j.syapm.2016.07.004.

[22]

J.G.V. da Silva, A.T. Vieira, T.J. Sousa, et al., Comparative genomics and in silico gene evaluation involved in the probiotic potential of Bifidobacterium longum 51A, Gene 795 (2021) 145781. doi: 10.1016/j.gene.2021.145781

[23]

T. Vatanen, D.R. Plichta, J. Somani, et al., Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life, Nat. Microbiol. 4(3) (2019) 470-479. doi: 10.1038/s41564-018-0321-5.

[24]

W.W. Lu, Z.M. Pei, M.N. Zang, et al., Comparative genomic analysis of Bifidobacterium bifidum strains isolated from different niches, Genes 12(10) (2021) 1504. doi: 10.3390/genes12101504.

[25]

R.B. Luo, B.H. Liu, Y.L. Xie, et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, Gigascience 1(1) (2012) 18. doi: 10.1186/2047-217X-1-18.

[26]

A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics 23(6) (2007) 673-679. doi: 10.1093/bioinformatics/btm009.

[27]

T.M. Lowe, S.R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res. 25(5) (1997) 955-964. doi: 10.1093/nar/25.5.955.

[28]

R.L. Tatusov, N.D. Fedorova, J.D. Jackson, et al., The COG database: an updated version includes eukaryotes, BMC Bioinform. 4(1) (2003) 1-14. doi: 10.1186/1471-2105-4-41.

[29]

S.F. Altschul, W. Gish, W. Miller, et al., Basic local alignment search tool, J. Mol. Biol. 215(3) (1990) 403-410.

[30]

A.J. Vilella, J. Severin, A. Ureta-Vidal, et al., EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates, Genome Res. 19(2) (2009) 327-335. doi: 10.1101/gr.073585.107.

[31]

I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Res. 49 (2021) W293-W296. doi: 10.1093/nar/gkab301.

[32]

M. Richter, R. Rosselló-Móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. 106(45) (2009) 19126-19131.

[33]

T. Seemann. Prokka: rapid prokaryotic genome annotation, Bioinformatics 30(14) (2014) 2068-2069. doi: 10.1093/bioinformatics/btu153.

[34]

A.J. Page, C.A. Cummins, M. Hunt, et al., Roary: rapid large-scale prokaryote pan genome analysis, Bioinformatics 31(22) (2015) 3691-3693. doi: 10.1093/bioinformatics/btv421.

[35]

Y.B. Zhao, X.M. Jia, J.H. Yang, et al., PanGP: a tool for quickly analyzing bacterial pan-genome profile, Bioinformatics 30(9) (2014) 1297-1299. doi: 10.1093/bioinformatics/btu017.

[36]

R.D. Finn, J. Clements, S.R. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Res. 39(suppl_2) (2011) W29-W37. doi: 10.1093/nar/gkr367.

[37]

J. Russel, R. Pinilla-Redondo, D. Mayo-Muñoz, et al., CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas Loci, CRISPR J. 3(6) (2020) 462-469. doi: 10.1089/crispr.2020.0059.

[38]

K.S. Makarova, Y.I. Wolf, O.S. Alkhnbashi, et al., An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol. 13(11) (2015) 722-736. doi: 10.1038/nrmicro3569.

[39]

W. Song, H.X. Sun, C. Zhang, et al., Prophage Hunter: an integrative hunting tool for active prophages, Nucleic Acids Res. 47 (2019) W74-W80. doi: 10.1093/nar/gkz380.

[40]

D.J. Olive, Software for data analysis: programming with R, Technometrics 52(2) (2010) 261. doi: 10.1007/978-0-387-75936-4_14.

[41]

D.S. Guttman, D.E. Dykhuizen, Clonal divergence in Escherichia coli as a result of recombination, not mutation, Science 266(5189) (1994) 1380-1383. doi: 10.1126/science.7973728.

[42]

F. Turroni, M. Ventura, L.F. Buttó, et al., Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective, Cell. Mol. Life Sci. 71(2) (2014) 183-203. doi: 10.1007/s00018-013-1318-0.

[43]

S. Duranti, C. Milani, G.A. Lugli, et al., Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum, Environ. Microbiol. 17(7) (2015) 2515-2531. doi: 10.1111/1462-2920.12743.

[44]

H. Tettelin, V. Masignani, M.J. Cieslewicz, et al., Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”, Proc. Natl. Acad. Sci. 102(39) (2005) 13950-13955. doi: 10.1073/pnas.0506758102.

[45]

A. Mira, A.B. Martín-Cuadrado, G. D’auria, et al., The bacterial pan-genome: a new paradigm in microbiology, Int. Microbiol. 13(2) (2010) 45-57. doi: 10.2436/20.1501.01.110.

[46]

C. Milani, G.A. Lugli, S. Duranti, et al., Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut, Sci. Rep. 5(1) (2015) 1-14. doi: 10.1038/srep15782.

[47]

L.A. Bolte, A.V. Vila, F. Imhann, et al., Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome, Gut 70(7) (2021) 1287-1298.

[48]

F. Asnicar, S.E. Berry, A.M. Valdes, et al., Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals, Nat. Med. 27(2) (2021) 321-332.

[49]

Y.L. Wang, Y. Nie, D.H. Yu, et al., Genome-wide study of saprotrophy-related genes in the basal fungus Conidiobolus heterosporus, Appl. Microbiol. Biotechnol. 104(14) (2020) 6261-6272. doi: 10.1007/s00253-020-10698-6.

[50]

K. Makarova, A. Slesarev, Y. Wolf, et al., Comparative genomics of the lactic acid bacteria, Proc. Natl. Acad. Sci. 103(42) (2006) 15611-15616. doi: 10.1073/pnas.0607117103.

[51]

S. Arboleya, F. Bottacini, M. O’connell-Motherway, et al., Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains, BMC Genomics. 19(1) (2018) 1-16. doi: 10.1186/s12864-017-4388-9.

[52]

P. Pajic, P. Pavlidis, K. Dean, et al., Independent amylase gene copy number bursts correlate with dietary preferences in mammals, Elife 8 (2019) e44628. doi: 10.7554/eLife.44628.

[53]

F.M. Cerqueira, A.L. Photenhauer, R.M. Pollet, et al., Starch digestion by gut bacteria: crowdsourcing for carbs, Trends Microbiol. 28(2) (2020) 95-108. doi: 10.1016/j.tim.2019.09.004.

[54]

F. Backhed, R.E. Ley, J.L. Sonnenburg, et al., Host-bacterial mutualism in the human intestine, Science 307(5717) (2005) 1915-1920.

[55]

S.W. Mintz, C.M. Du Bois, The anthropology of food and eating, Ann. Rev. Anthropol. 31(1) (2002) 99-119. doi: 10.1146/annurev.anthro.32.032702.131011.

[56]

C. Dufresne, E. Farnworth, Tea, Kombucha, and health: a review, Food Res. Int. 33(6) (2000) 409-421. doi: 10.4315/0362-028x-63.7.976.

[57]

P. Rozin, The meaning of food in our lives: a cross-cultural perspective on eating and well-being, J. Nutr. Educ. Behav. 37 (2005) S107-S112. doi: 10.1016/s1499-4046(06)60209-1.

[58]

R. Barrangou, C. Fremaux, H. Deveau, et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science 315(5819) (2007) 1709-1712. doi: 10.1126/science.1138140.

[59]

C. Hidalgo-Cantabrana, S. O’flaherty, R. Barrangou, CRISPR-based engineering of next-generation lactic acid bacteria, Curr. Opin. Microbiol. 37 (2017) 79-87. doi:10.1016/j.mib.2017.05.015.

Food Science and Human Wellness
Pages 3006-3017
Cite this article:
Li M, Yu J, Li W, et al. Comparative genomic analysis revealed that dietary habits affected the adaptation of Bifidobacterium bifidum to the intestinal tract in different geographic populations. Food Science and Human Wellness, 2024, 13(5): 3006-3017. https://doi.org/10.26599/FSHW.2022.9250243
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return