AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Structural characterization and anti-inflammatory activities of novel polysaccharides obtained from Pleurotus eryngii

Han WangaSai MaaAlfred Mugambi MarigabQiuhui HuaQian XuaAnxiang SuaNing MaaGaoxing Maa( )
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
School of Agriculture and Food Science, Meru University of Science and Technology, Meru 972-60200, Kenya

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Natural polysaccharides from Pleurotus eryngii were obtained.

• Fine structures of these polysaccharides were revealed.

• Anti-inflammatory activity, as well as the related mechanisms were investigated.

Graphical Abstract

Abstract

Natural polysaccharides named PEP-0.1-1, PEP-0-1 and PEP-0-2 from edible mushroom species Pleurotus eryngii were obtained in the present study. Results showed that molecular weights of these polysaccharides were 3235, 2041 and 23933 Da, respectively. Further, structural characterization revealed that PEP-0.1-1 had a →4-α-D-Glcp-1→ backbone and contained →4)-α-D-Glcp and →4)-β-D-Glcp reducing end groups. PEP-0-1 backbone contained→4-α-D-Glcp-1→ and →6-α-3-O-Me-D-Galp-1→, and the side chains contained α-D-Glcp, β-D-Manp-1→ and α-D-Glcp-3→. However, PEP-0-2 backbone consisted of →4-α-DGlcp-1→ and →6-α-3-O-Me-D-Galp-(1→6)-α-D-Galp-1→ while the side chains contained α-D-Glcp and β-D-Manp-1→. Biological activity analysis was then carried out and found that all these polysaccharides could significantly suppress the relative mRNA expression of toll-like receptor 4, nitric oxide (NO), tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in lipopolysaccharide (LPS)-induced inflammation of RAW264.7 cells, as well as the over secretion of the above cell cytokines. Moreover, Western blotting analysis revealed that all these purified fractions displayed significant inhibition effects on the expression of c-Jun N-terminal kinases protein induced by LPS in mitogen activated protein kinase pathway, along with the relieving on the inhibition effect of LPS on IκB-α protein expression. In summary, the information generated by the present study could provide a theoretical basis for the exploration of novel healthy food materials from edible mushroom with antiinflammation activities.

Electronic Supplementary Material

Download File(s)
fshw-13-5-3031_ESM.docx (786.7 KB)

References

[1]

F. Motta, M.E. Gershwin, C. Selmi., Mushrooms and immunity, J. Autoimmun. 117 (2021) 102576. http://dx.doi.org/10.1016/j.jaut.2020.102576.

[2]

X.L. Ji, Y.Q. Cheng, J.Y. Tian, et al., Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit, Chem. Biol. Technol. Agric. 8(1) (2021). http://doi.org/10.1186/s40538-021-00255-2.

[3]

S. Li, N.P. Shah, Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments, Food Chem. 197 (2016) 240-249. http://dx.doi.org/10.1016/j.foodchem.2015.10.113.

[4]

I. Roncero-Ramos, C. Delgado-Andrade, The beneficial role of edible mushrooms in human health, Curr. Opin. Food Sci. 14 (2017) 122-128. http://dx.doi.org/10.1016/j.cofs.2017.04.002.

[5]

P. Maity, I.K. Sen, I. Chakraborty, et al., Biologically active polysaccharide from edible mushrooms: a review, Int. J. Biol. Macromol. 172 (2021) 408-417. http://doi.org/10.1016/j.ijbiomac.2021.01.081.

[6]

S. Teniou, A. Bensegueni, B.M. Hybertson, et al., Biodriven investigation of the wild edible mushroom Pleurotus eryngii revealing unique properties as functional food, J. Funct. Foods 89 (2022) 104965. http://dx.doi.org/10.1016/j.jff.2022.104965.

[7]

C.F. Ellefsen, C.W. Wold, A.L. Wilkins, et al., Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1, Carbohydr. Polym. 264 (2021) 117991. http://dx.doi.org/10.1016/j.carbpol.2021.117991.

[8]

H.L. Liu, T.H. Kao, C.Y. Shiau, et al., Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells, J. Food Drug Anal. 26(1) (2018) 31-40. http://dx.doi.org/10.1016/j.jfda.2016.11.022.

[9]

F. Jiang, Y.Y. Ding, Y. Tian, et al., Hydrolyzed low-molecular-weight polysaccharide from Enteromorpha prolifera exhibits high anti-inflammatory activity and promotes wound healing, Mat Sci Eng C-Mater. (2021) 112637. http://dx.doi.org/10.1016/j.msec.2021.112637.

[10]

C.Y. Hou, L.L. Chen, L.Z. Yang, et al., An insight into anti-inflammatory effects of natural polysaccharides, Int. J. Biol. Macromol. 153 (2020) 248- 255. http://dx.doi.org/10.1016/j.ijbiomac.2020.02.315.

[11]

S.J. Li, Y.L. Wu, H.T. Jiang, et al., Chicory polysaccharides alleviate high-fat diet-induced non-alcoholic fatty liver disease via alteration of lipid metabolism- and inflammation-related gene expression, Food Sci. Hum. Wellness. 11(4) (2022) 954-964. http://dx.doi.org/10.1016/j.fshw.2022.03.025.

[12]

S. Li, N.P. Shah, Anti-inflammatory and anti-proliferative activities of natural and sulphonated polysaccharides from Pleurotus eryngii, J. Funct. Foods 23 (2016) 80-86. http://dx.doi.org/10.1016/j.jff.2016.02.003.

[13]

M.L.L. Silveira, F.R. Smiderle, F. Agostini, et al., Exopolysaccharide produced by Pleurotus sajor-caju: its chemical structure and antiinflammatory activity, Int. J. Biol. Macromol. 75 (2015) 90-96. http://dx.doi. org/10.1016/j.ijbiomac.2015.01.023.

[14]

D. Morales, F.R. Smiderle, M. Villalva, et al., Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes, J. Funct. Foods 60 (2019) 103446. http://dx.doi.org/10.1016/j.jff.2019.103446.

[15]

B.R. Zhang, Y.Y. Li, F.M. Zhang, et al., Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: a review, Int. J. Biol. Macromol. 150 (2020) 1342-1347. http://doi.org10.1016/j.ijbiomac.2019.10.144.

[16]

Y. Song, J. Zhao, Y.Y. Ni, et al., Solution properties of a heteropolysaccharide extracted from pumpkin (Cucurbita pepo, lady godiva), Carbohydr. Polym. 132 (2015) 221-227. http://dx.doi.org/10.1016/j.carbpol.2015.06.061.

[17]

E. Wei, R. Yang, H. Zhao, et al., Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries, Int. J. Biol. Macromol. 123 (2019) 280-290. http://dx.doi.org/10.1016/j.ijbiomac.2018.11.074.

[18]

M. Kim, S.R. Kim, J. Park, et al., Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo, Carbohydr. Polym. 281 (2022) 119057. http://dx.doi.org/10.1016/j.carbpol.2021.119057.

[19]

G. Ma, Q. Xu, H. Du, et al., Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation, Food Chem. 370 (2022) 131303. http://dx.doi.org/10.1016/j.foodchem.2021.131303.

[20]

D. Morales, F.R. Smiderle, M. Villalva, et al., Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes, J. Funct. Foods 60 (2019) 103446. http://.doi.org/10.1016/j.jff.2019.103446.

[21]

X.J. Li, Q. Chen, G.K. Liu, et al., Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities, Int. J. Biol. Macromol. 190 (2021) 730-738. http://dx.doi.org/10.1016/j.ijbiomac.2021.09.038.

[22]

F. Li, Y.L. Wei, L. Liang, et al., A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential, Carbohydr. Polym. 251 (2021) 117090. http://dx.doi.org/10.1016/j.carbpol.2020.117090.

[23]

H. Zhang, P. Zou, H.T. Zhao, et al., Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis, Carbohydr. Polym. 251 (2021) 117078. http://doi.org/10.1016/j.carbpol.2020.117078.

[24]

S.N. Wang, L.L. Zhao, Q.H. Li, et al., Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation, Food Hydrocoll. 91 (2019) 34-39. http://dx.doi.org/10.1016/j.foodhyd.2018.12.054.

[25]

H.M. Saleh, M.S.M. Annuar, K. Simarani, Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation, Ultrason. Sonochem. 39 (2017) 250-261. http://dx.doi.org/10.1016/j.ultsonch.2017.04.038.

[26]

Z.K. Muhidinov, J.T. Bobokalonov, I.B. Ismoilov, et al., Characterization of two types of polysaccharides from Eremurus hissaricus roots growing in Tajikistan, Food Hydrocoll. 105 (2020) 117090. http://doi.org/10.1016/j.foodhyd.2020.105768.

[27]

Y.N. Jia, Z.H. Xue, Y.J. Wang, et al. Chemical structure and inhibition on alpha-glucosidase of polysaccharides from corn silk by fractional precipitation, Carbohydr. Polym. 252 (2021) 117185. http://doi.org/10.1016/j.carbpol.2020.117185.

[28]

Y. Chen, T. Wang, X. Zhang, et al., Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae, Carbohydr. Polym. 254 (2021) 117462. http://dx.doi.org/10.1016/j.carbpol.2020.117462.

[29]

X.D. Shi, O.Y. Li, J.Y. Yin, et al., Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy, Food Chem. 271 (2019) 338-344. http://dx.doi.org/10.1016/j.foodchem.2018.07.160.

[30]

Z. Zhang, L. Guo, A. P. Yan, et al., Fractionation, structure and conformation characterization of polysaccharides from Anoectochilus roxburghii, Carbohydr. Polym. 231 (2020) 115688. http://dx.doi.org/10.1016/j.carbpol.2019.115688.

[31]

J. Wang, S. Nie, S.W. Cui, et al., Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis, Food Hydrocoll. 67 (2017) 139-147. http://dx.doi.org/10.1016/j.foodhyd.2017.01.010.

[32]

J. Liu, F.N. Shang, Z.M. Yang, et al., Structural analysis of a homogeneous polysaccharide from Achatina fulica, Int. J. Biol. Macromol. 98 (2017) 786-792. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.149.

[33]

J. Ganeshapillai, E. Vinogradov, J. Rousseau, et al., Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units, Carbohydr. Res. 343(4) (2008) 703-710.http://dx.doi.org/10.1016/j.carres.2008.01.002.

[34]

X.M. Zheng, H.Q. Sun, L.R. Wu, et al., Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii, Int. J. Biol. Macromol. 156 (2020) 1512-1519. http://dx.doi.org/10.1016/j.ijbiomac.2019.11.199.

[35]

K. Jahanbin, A. Abbasian, M. Ahang, Isolation, purification and structural characterization of a new water-soluble polysaccharide from Eremurus stenophyllus (boiss. & buhse) baker roots, Carbohydr. Polym. 178 (2017) 386-393. http://dx.doi.org/10.1016/j.carbpol.2017.09.058.

[36]

E.N. Makarova, E.G. Shakhmatov, Characterization of pectin-xylanglucan-arabinogalactan proteins complex from Siberian fir Abies sibirica Ledeb, Carbohydr. Polym. 260 (2021) 117825. http://dx.doi.org/10.1016/j.carbpol.2021.117825.

[37]

A.Q. Zhang, Y. Zhang, J.H. Yang, et al., Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii, Carbohydr. Polym. 92(2) (2013). http://dx.doi.org/10.1016/j.carbpol.2012.11.069.

[38]

T. Le Costaouëc, C. Unamunzaga, L. Mantecon, et al., New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum, Algal. Res. 26 (2017) 172-179. http://dx.doi.org/10.1016/j.algal.2017.07.021.

[39]

Y.B. Wang, P.F. He, L. He, et al., Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae (Miquel.) Samson, Carbohydr. Polym. 216 (2019) 270-281. http://dx.doi.org/10.1016/j.carbpol.2019.03.104.

[40]

Y.J. Zhu, X.R. Wang, C.L. Zhang, et al., Characterizations of glucoserich polysaccharides from Amomum longiligulare T.L. Wu fruits and their effects on immunogenicities of infectious bursal disease virus VP2 protein, Int. J. Biol. Macromol. 183 (2021) 157484. http://dx.doi.org/10.1016/j.ijbiomac.2021.05.138.

[41]

G. Dey, R. Bharti, P.K. Ojha, et al., Therapeutic implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion, Cell. Signalling 35 (2017) 24-36. http://dx.doi.org/10.1016/j.cellsig.2017.03.017.

[42]

M. Wang, X.B. Yang, J.W. Zhao, et al., Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb, Carbohydr. Polym. 156 (2017) 390-402. http://dx.doi.org/10.1016/j.carbpol.2016.09.033.

Food Science and Human Wellness
Pages 3031-3042
Cite this article:
Wang H, Ma S, Mariga AM, et al. Structural characterization and anti-inflammatory activities of novel polysaccharides obtained from Pleurotus eryngii. Food Science and Human Wellness, 2024, 13(5): 3031-3042. https://doi.org/10.26599/FSHW.2022.9250245

1882

Views

259

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 May 2023
Revised: 17 May 2023
Accepted: 03 June 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return