PDF (3.4 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Tables (1)
Table 1
Open Access

Research advances on encapsulation of probiotics with nanomaterials and their repair mechanisms on intestinal barriers

Xiaochen Wanga,1Mengxi Yua,1Jianming Yea,1Ting LiuaLijuan JianaXiaoyan ZhengbYuan Wanga,c,dWei Songa,c,dYane Luoa,c()Tianli Yuea,c,d
College of Food Science and Technology, Northwest University, Xi'an 710069, China
College of Chemical Engineering, Northwest University, Xi'an 710069, China
Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, China
Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, China

1 The authors contributed equally.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Probiotics participate in various physiological activities and contribute to body health. However, their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions, such as gastric acid, bile salts and various enzymes. Fortunately, encapsulation based on various nanomaterials shows tremendous potential to protect probiotics. In this review, we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability, selective adhesion, smart release and colonization, and efficacy exertion of encapsulated probiotics. Furthermore, the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed, with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier, chemical barrier, biological barrier and immune barrier. This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.

References

[1]

K.E. Barrett, New ways of thinking about (and teaching about) intestinal epithelial function, Adv. Phy. Edu. 32 (2008) 25-34. http://doi.org/10.1152/advan.00092.2007.

[2]

M. Vancamelbeke, S. Vermeire, The intestinal barrier: a fundamental role in health and disease, Expert Rev. Gastroenterol. Hepatol. 11 (2017) 821-834. http://doi.org/10.1080/17474124.2017.1343143.

[3]

J. Gleeson, Diet, food components and the intestinal barrier, Nutr. Bull. 42 (2017) 123-131. http://doi.org/10.1111/nbu.12260.

[4]

T. Suzuki, Regulation of the intestinal barrier by nutrients: the role of tight junctions, Anim. Sci. J. 91 (2020) e13357. http://doi.org/10.1111/asj.13357.

[5]

C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med. 50 (2018) 1-9. http://doi.org/10.1038/s12276-018-0126-x.

[6]

M. Göke, M. Kanai, D.K. Podolsky, Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor, Amer. J. Phy-Gastro. Liver Phy. 274 (1998) G809-G818. http://doi.org/10.1152/ajpgi.1998.274.5.G809.

[7]

A. Lan, F. Blachier, R. Benamouzig, et al., Mucosal healing in inflammatory bowel diseases: is there a place for nutritional supplementation? Inflamm. Bowel Dis. 21 (2015) 198-207. http://doi.org/10.1097/MIB.0000000000000177.

[8]

P. Paone, P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69 (2020) 2232-2243. http://doi.org/10.1136/gutjnl-2020-322260.

[9]

T. Takiishi, C.I.M. Fenero, N.O.S. Câmara, Intestinal barrier and gut microbiota: Shaping our immune responses throughout life, Tissue Barriers 5 (2017) e1373208. http://doi.org/10.1080/21688370.2017.1373208.

[10]

Y. Goto, H. Kiyono, Epithelial barrier: an interface for the cross-communication between gut flora and immune system, Immunol. Rev. 245 (2012) 147-163. http://doi.org/10.1111/j.1600-065X.2011.01078.x.

[11]

H.Y. Cheng, M.X. Ning, D.K. Chen, et al., Interactions between the gut microbiota and the host innate immune response against pathogens, Front. Immunol. 10 (2019) 607. http://doi.org/10.3389/fimmu.2019.00607.

[12]

Y. Belkaid, T.W. Hand, Role of the microbiota in immunity and inflammation, Cell 157 (2014) 121-141. http://doi.org/10.1016/j.cell.2014.03.011.

[13]

D. Zheng, T. Liwinski, E. Elinav, Interaction between microbiota and immunity in health and disease, Cell Res. 30 (2020) 492-506. http://doi.org/10.1038/s41422-020-0332-7.

[14]

Z. Liu, F. Liu, W. Wang, et al., Study of the alleviation effects of a combination of Lactobacillus rhamnosus and inulin on mice with colitis, Food Funct. 11 (2020) 3823-3837. http://doi.org/10.1039/C9FO02992C.

[15]

P. Toejing, N. Khampithum, S. Sirilun, et al., Influence of Lactobacillus paracasei HII01 supplementation on glycemia and inflammatory biomarkers in type 2 diabetes: a randomized clinical trial, Foods 10 (2021) 1455. http://doi.org/10.3390/foods10071455.

[16]

X. Zhang, G.A. Esmail, A.F. Alzeer, et al., Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens, Saudi J. Biol. Sci. 27 (2020) 3505-3513. http://doi.org/10.1016/j.sjbs.2020.10.022.

[17]

C. Callewaert, N. Knödlseder, A. Karoglan, et al., Skin microbiome transplantation and manipulation: current state of the art, Comput. Struct. Biotechnol. J. 19 (2021) 624-631. http://doi.org/10.1016/j.csbj.2021.01.001.

[18]

H.J. Jang, J.H. Kim, N.K. Lee, et al., Inhibitory effects of Lactobacillus brevis KU15153 against Streptococcus mutans KCTC 5316 causing dental caries, Microb. Pathog. 157 (2021) 104938. http://doi.org/10.1016/j.micpath.2021.104938.

[19]

S.K. Han, Y.J. Shin, D.Y. Lee, et al., Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation, BMC Microbiol. 21 (2021) 1-15. http://doi.org/10.1186/s12866-021-02192-4.

[20]

P. Chandrashekhar, F. Minooei, W. Arreguin, et al., Perspectives on existing and novel alternative intravaginal probiotic delivery methods in the context of bacterial vaginosis infection, AAPS J. 23 (2021) 1-16. http://doi.org/10.1208/s12248-021-00602-z.

[21]

S. Ahadian, J.A. Finbloom, M. Mofidfar, et al., Micro and nanoscale technologies in oral drug delivery, Adv. Drug Delivery Rev. 157 (2020) 37-62. http://doi.org/10.1016/j.addr.2020.07.012.

[22]

S. Li, A. Xie, H. Li, et al., A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease, J. Control. Release 316 (2019) 66-78. http://doi.org/10.1016/j.jconrel.2019.10.054.

[23]

T. Zhang, J. Jiang, J. Liu, et al., MK2 is required for neutrophil-derived ROS production and inflammatory bowel disease, Front. Med. 7 (2020) 207. http://doi.org/10.3389/fmed.2020.00207.

[24]

C.J. Kiely, P. Pavli, C.L. O’Brien, The microbiome of translocated bacterial populations in patients with and without inflammatory bowel disease, Intern. Med. J. 48 (2018) 1346-1354. http://doi.org/10.1111/imj.13998.

[25]

M.M. Luchetti, F. Ciccia, C. Avellini, et al., Gut epithelial impairment, microbial translocation and immune system activation in inflammatory bowel disease-associated spondyloarthritis, Rheumatology 60 (2021) 92-102. http://doi.org/10.1093/rheumatology/keaa164.

[26]

N. Tajik, M. Frech, O. Schulz, et al., Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis, Nat. Commun. 11 (2020) 1-14. http://doi.org/10.1038/s41467-020-15831-7.

[27]

H. Wang, W. Zhang, L. Zuo, et al., Intestinal dysbacteriosis contributes to decreased intestinal mucosal barrier function and increased bacterial translocation, Lett. Appl. Microbiol. 58 (2014) 384-392. http://doi.org/10.1111/lam.12201.

[28]

F. Centurion, A.W. Basit, J. Liu, et al., Nanoencapsulation for probiotic delivery, ACS Nano 15 (2021) 18653-18660. http://doi.org/10.1021/acsnano.1c09951.

[29]

C. Xu, Q. Ban, W. Wang, et al., Novel nano-encapsulated probiotic agents: encapsulate materials, delivery, and encapsulation systems, J. Control. Release 349 (2022) 184-205. http://doi.org/10.1016/j.jconrel.2022.06.061.

[30]

A.J. Garcia-Brand, V. Quezada, C. Gonzalez-Melo, et al., Novel developments on stimuli-responsive probiotic encapsulates: from smart hydrogels to nanostructured platforms, Fermentation 8 (2022) 117. http://doi.org/10.3390/fermentation8030117.

[31]

M.S. Abbas, F. Saeed, M. Afzaal, et al., Recent trends in encapsulation of probiotics in dairy and beverage: a review, J. Food Process. Preserv. 46 (2022) e16689. http://doi.org/10.1111/jfpp.16689.

[32]

S. Razavi, S. Janfaza, N. Tasnim, et al., Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria, Nanoscale Adv. 3 (2021) 2699-2709. http://doi.org/10.1039/D0NA00952K.

[33]

K. Yoha, S. Nida, S. Dutta, et al., Targeted delivery of probiotics: perspectives on research and commercialization, Probiotics Antimicrob. Proteins (2021) 1-34. http://doi.org/10.1007/s12602-021-09791-7.

[34]

Z. Cao, X. Wang, Y. Pang, et al., Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment, Nat. Commun. 10 (2019) 1-11. http://doi.org/10.1038/s41467-019-13727-9.

[35]

J.A. Silva, P.R. De Gregorio, G. Rivero, et al., Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products, Eur. J. Pharm. Sci. 156 (2021) 105563. http://doi.org/10.1016/j.ejps.2020.105563.

[36]

C. Pan, J. Li, W. Hou, et al., Polymerization-mediated multifunctionalization of living cells for enhanced cell-based therapy, Adv. Mater. 33 (2021) 2007379. http://doi.org/10.1002/adma.202007379.

[37]

S.F. Hosseini, B. Ansari, A. Gharsallaoui, Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions, Food Chem. 372 (2022) 131358. http://doi.org/10.1016/j.foodchem.2021.131358.

[38]

F. Ghibaudo, E. Gerbino, G.J. Copello, et al., Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria, Colloids Surf. B 180 (2019) 193-201. http://doi.org/10.1016/j.colsurfb.2019.04.049.

[39]

F. Islam, M. Noman, M. Afzaal, et al., Synthesis and food applications of resistant starch-based nanoparticles, J. Nanomater. 2022 (2022) 8729258. http://doi.org/10.1155/2022/8729258.

[40]

F. Centurion, S. Merhebi, M. Baharfar, et al., Cell-mediated biointerfacial phenolic assembly for probiotic nano encapsulation, Adv. Funct. Mater. (2022) 2200775. http://doi.org/10.1002/adfm.202200775.

[41]

J. Pan, G. Gong, Q. Wang, et al., A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea, Nat. Commun. 13 (2022) 1-11. http://doi.org/10.1038/s41467-022-29672-z.

[42]

W.F. Song, W.Q. Yao, Q.W. Chen, et al., In situ bioorthogonal conjugation of delivered bacteria with gut inhabitants for enhancing probiotics colonization, ACS Cent. Sci. 8 (2022) 1306-1317. http://doi.org/10.1021/acscentsci.2c00533.

[43]

A.M. Vargason, S. Santhosh, A.C. Anselmo, Surface modifications for improved delivery and function of therapeutic bacteria, Small 16 (2020) 2001705. http://doi.org/10.1002/smll.202001705.

[44]
S. Raghuwanshi, R. Agarwal, R. Raval, et al., Chitosan nanoparticles and their applications in drug delivery, hemostasis, and stem cell research, in D. Thangadurai, J. Sangeetha, R. Prasad (Eds.), Functional bionanomaterials from biomolecules to nanoparticles, Spinger, 2020, pp. 129-143. http://doi.org/10.1007/978-3-030-41464-1_6.
[45]

F. Pati, B. Adhikari, S. Dhara, Development of chitosan-tripolyphosphate fibers through pH dependent ionotropic gelation, Carbohydr. Res. 346 (2011) 2582-2588. http://doi.org/10.1016/j.carres.2011.08.028.

[46]

W. Liu, X.L. Yang, W.W. Ho, Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification, J. Pharm. Sci. 100 (2011) 75-93. http://doi.org/10.1002/jps.22272.

[47]

Y.S. Leong, F. Candau, Inverse microemulsion polymerization, J. Phys. Chem. 86 (1982) 2269-2271. http://doi.org/10.1021/j100210a001.

[48]

S. Chen, Y. Cao, L.R. Ferguson, et al., Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria, J. Microencapsul. 30 (2013) 103-115. http://doi.org/10.3109/02652048.2012.700959.

[49]

M.A. Mohammed, J.T. Syeda, K.M. Wasan, et al., An overview of chitosan nanoparticles and its application in non-parenteral drug delivery, Pharmaceutics 9 (2017) 53. http://doi.org/10.3390/pharmaceutics9040053.

[50]

N.A. Peppas, Y. Huang, Nanoscale technology of mucoadhesive interactions, Adv. Drug Delivery Rev. 56 (2004) 1675-1687. http://doi.org/10.1016/j.addr.2004.03.001.

[51]

K.A. Janes, M.P. Fresneau, A. Marazuela, et al., Chitosan nanoparticles as delivery systems for doxorubicin, J. Control. Release 73 (2001) 255-267. http://doi.org/10.1016/S0168-3659(01)00294-2.

[52]

B. Shi, Z. Shen, H. Zhang, et al., Exploring N-imidazolyl-O-carboxymethyl chitosan for high performance gene delivery, Biomacromolecules 13 (2012) 146-153. http://doi.org/10.1021/bm201380e.

[53]

A. Mawad, Y.A. Helmy, A.G. Shalkami, et al., E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro, Appl. Microbiol. Biotechnol. 102 (2018) 10675-10690. http://doi.org/10.1007/s00253-018-9417-3.

[54]

X. Zhou, Q. Guo, M. Guo, et al., Nanoarmour-shielded single-cell factory for bacteriotherapy of Parkinson’s disease, J. Control. Release 338 (2021) 742-753. http://doi.org/10.1016/j.jconrel.2021.09.009.

[55]

H. Zhao, Y. Du, L. Liu, et al., Oral nanozyme-engineered probiotics for the treatment of ulcerative colitis, J. Mater. Chem. B 10 (2022) 4002-4011. http://doi.org/10.1039/D2TB00300G.

[56]

S. Stojanov, A. Berlec, Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications, Front. Bioengi. Biotech 8 (2020) 130. http://doi.org/10.3389/fbioe.2020.00130.

[57]

Z.M. Huang, Y.Z. Zhang, M. Kotaki, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223-2253. http://doi.org/10.1016/S0266-3538(03)00178-7.

[58]

A. López-Rubio, E. Sanchez, Y. Sanz, et al., Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers, Biomacromolecules 10 (2009) 2823-2829. http://doi.org/10.1021/bm900660b.

[59]

E. Hirsch, E. Pantea, P. Vass, et al., Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning, Food Bioprod. Process. 128 (2021) 84-94. http://doi.org/10.1016/j.fbp.2021.04.016.

[60]

J.M.D. Soares, R.E.F. Abreu, M.M.d. Costa, et al., Investigation of Lactobacillus paracasei encapsulation in electrospun fibers of Eudragit® L100, Polímeros 30 (2020) e2020025. http://doi.org/10.1590/0104-1428.03020.

[61]

F. Fareed, F. Saeed, M. Afzaal, et al., Fabrication of electrospun gum Arabic–polyvinyl alcohol blend nanofibers for improved viability of the probiotic, J. Food Sci. Technol. 59 (2022) 4812-4821. http://doi.org/10.1007/s13197-022-05567-1.

[62]

F. Ajalloueian, P.R. Guerra, M.I. Bahl, et al., Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic delivery, Food Hydrocoll. 123 (2022) 107112. http://doi.org/10.1016/j.foodhyd.2021.107112.

[63]

J. Wang, K. Liu, R. Xing, et al., Peptide self-assembly: thermodynamics and kinetics, Chem. Soc. Rev. 45 (2016) 5589-5604. http://doi.org/10.1039/C6CS00176A.

[64]

J. Yang, M.A.C. Stuart, M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms, Chem. Soc. Rev. 43 (2014) 8271-8298. http://doi.org/10.1039/C4CS00185K.

[65]

W. Hou, J. Li, Z. Cao, et al., Decorating bacteria with a therapeutic nanocoating for synergistically enhanced biotherapy, Small 17 (2021) 2101810. http://doi.org/10.1002/smll.202101810.

[66]

D. Payra, M. Naito, Y. Fujii, et al., Hydrophobized plant polyphenols: self-assembly and promising antibacterial, adhesive, and anticorrosion coatings, Chem. Commun. 52 (2016) 312-315. http://doi.org/10.1039/C5CC07090B.

[67]

G. Fan, P. Wasuwanich, M.R. Rodriguez-Otero, et al., Protection of anaerobic microbes from processing stressors using metal-phenolic networks, J. Am. Chem. Soc. 144 (2021) 2438-2443. http://doi.org/10.1021/jacs.1c09018.

[68]

J. Liu, W. Li, Y. Wang, et al., Biomaterials coating for on-demand bacteria delivery: selective release, adhesion, and detachment, Nano Today 41 (2021) 101291. http://doi.org/10.1016/j.nantod.2021.101291.

[69]

M. Tallawi, M. Opitz, O. Lieleg, Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges, Biomater. Sci. 5 (2017) 887-900. http://doi.org/10.1039/C6BM00832A.

[70]

B. Mielich-Süss, D. Lopez, Molecular mechanisms involved in Bacillus subtilis biofilm formation, Environ. Microbiol. 17 (2015) 555-565. http://doi.org/10.1111/1462-2920.12527.

[71]

M. Simões, L.C. Simões, M.J. Vieira, A review of current and emergent biofilm control strategies, LWT-Food Sci. Tech. 43 (2010) 573-583. http://doi.org/10.1016/j.lwt.2009.12.008.

[72]

X. Wang, Z. Cao, M. Zhang, et al., Bioinspired oral delivery of gut microbiota by self-coating with biofilms, Sci. Adv. 6 (2020) eabb1952. http://doi.org/10.1126/sciadv.abb1952.

[73]

S. Yahav, Z. Berkovich, I. Ostrov, et al., Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis, Artif. Cells Nanomed. Biotechnol. 46 (2018) 974-982. http://doi.org/10.1080/21691401.2018.1476373.

[74]

Z. Li, A.M. Behrens, N. Ginat, et al., Biofilm-inspired encapsulation of probiotics for the treatment of complex infections, Adv. Mater. 30 (2018) 1803925. http://doi.org/10.1002/adma.201803925.

[75]

C. Yucel Falco, F. Amadei, S.K. Dhayal, et al., Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics, Biotechnol. Prog. 35 (2019) e2806. http://doi.org/10.1002/btpr.2806.

[76]

T. Tolker-Nielsen, Biofilm development, Microbiol. Spectrum. 3 (2015) MB-0001-2014. http://doi.org/10.1128/microbiolspec.MB-0001-2014.

[77]

Q. Song, H. Zhao, C. Zheng, et al., A bioinspired versatile spore coat nanomaterial for oral probiotics delivery, Adv. Funct. Mater. 31 (2021) 2104994. http://doi.org/10.1002/adfm.202104994.

[78]

H. Ejima, J.J. Richardson, K. Liang, et al., One-step assembly of coordination complexes for versatile film and particle engineering, Science 341 (2013) 154-157. http://doi.org/10.1126/science.1237265.

[79]

X. Yang, J. Yang, Z. Ye, et al., Physiologically inspired mucin coated Escherichia coli Nissle 1917 enhances biotherapy by regulating the pathological microenvironment to improve intestinal colonization, ACS Nano 16 (2022) 4041-4058. http://doi.org/10.1021/acsnano.1c09681.

[80]

J. Yang, G. Zhang, X. Yang, et al., An oral “super probiotics” with versatile self-assembly adventitia for enhanced intestinal colonization by autonomous regulating the pathological microenvironment, Chem. Eng. J. (2022) 137204. http://doi.org/10.1016/j.cej.2022.137204.

[81]

X. Wang, S. Gao, S. Yun, et al., Microencapsulating alginate-based polymers for probiotics delivery systems and their application, Pharmaceuticals 15 (2022) 644. http://doi.org/10.3390/ph15050644.

[82]

I.A. Sogias, A.C. Williams, V.V. Khutoryanskiy, Why is chitosan mucoadhesive? Biomacromolecules 9 (2008) 1837-1842. http://doi.org/10.1021/bm800276d.

[83]

D. Chickering, E. Mathiowitz, Bioadhesive microspheres: I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa, J. Control. Release 34 (1995) 251-262. http://doi.org/10.1016/0168-3659(95)00011-V.

[84]

A.C. Anselmo, K.J. McHugh, J. Webster, et al., Layer-by-layer encapsulation of probiotics for delivery to the microbiome, Adv. Mater. 28 (2016) 9486-9490. http://doi.org/10.1002/adma.201603270.

[85]

P. Ambalam, J. Dave, B.M. Nair, et al., In vitro mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231, Anaerobe 17 (2011) 217-222. http://doi.org/10.1016/j.anaerobe.2011.07.001.

[86]

D. Gorman-Lewis, W. Martens-Habbena, D. Stahl, Thermodynamic characterization of proton-ionizable functional groups on the cell surfaces of ammonia-oxidizing bacteria and archaea, Geobiol. 12 (2014) 157-171. http://doi.org/10.1111/gbi.12075.

[87]

D. Michelon, S. Abraham, B. Ebel, et al., Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis, FEBS J. 277 (2010) 2282-2290. http://doi.org/10.1111/j.1742-4658.2010.07644.x.

[88]

A. Bernkop-Schnürch, A.H. Krauland, V.M. Leitner, et al., Thiomers: potential excipients for non-invasive peptide delivery systems, Eur. J. Pharm. Biopharm. 58 (2004) 253-263. http://doi.org/10.1016/j.ejpb.2004.03.032.

[89]

V.M. Leitner, G.F. Walker, A. Bernkop-Schnürch, Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins, Eur. J. Pharm. Biopharm. 56 (2003) 207-214. http://doi.org/10.1016/S0939-6411(03)00061-4.

[90]

A. Bernkop-Schnürch, M. Hornof, D. Guggi, Thiolated chitosans, Eur. J. Pharm. Biopharm. 57 (2004) 9-17. http://doi.org/10.1016/S0939-6411(03)00147-4.

[91]

Y. Liu, B. Liu, D. Li, et al., Improved gastric acid resistance and adhesive colonization of probiotics by mucoadhesive and intestinal targeted konjac glucomannan microspheres, Adv. Funct. Mater. 30 (2020) 2001157. http://doi.org/10.1002/adfm.202001157.

[92]

L. Yang, J.O. Nyalwidhe, S. Guo, et al., Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer, Mol. Cell. Proteomics 10 (2011). http://doi.org/10.1074/mcp.M110.007294.

[93]

N.K. Surana, D.L. Kasper, The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA, Immunol. Rev. 245 (2012) 13-26. http://doi.org/10.1111/j.1600-065X.2011.01075.x.

[94]

E. Kuru, H.V. Hughes, P.J. Brown, et al., In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids, Angew. Chem. 124 (2012) 12687-12691. http://doi.org/10.1002/ange.201206749.

[95]

L. Lin, J. Song, J. Li, et al., Imaging the in vivo growth patterns of bacteria in human gut microbiota, Gut Microbes 13 (2021) 1960134. http://doi.org/10.1080/19490976.2021.1960134.

[96]

L. Lin, Q. Wu, J. Song, et al., Revealing the in vivo growth and division patterns of mouse gut bacteria, Sci. Adv. 6 (2020) eabb2531. http://doi.org/10.1126/sciadv.abb2531.

[97]

W. Wang, L. Lin, Y. Du, et al., Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes, Nat. Commun. 10 (2019) 1317. http://doi.org/10.1038/s41467-019-09267-x.

[98]

E. Kuru, C. Lambert, J. Rittichier, et al., Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation, Nat. Microbiol. 2 (2017) 1648-1657. http://doi.org/10.1038/s41564-017-0029-y.

[99]

H. Lam, D.C. Oh, F. Cava, et al., D-amino acids govern stationary phase cell wall remodeling in bacteria, Science 325 (2009) 1552-1555. http://doi.org/10.1126/science.1178123.

[100]

H.P. Lesch, M.U. Kaikkonen, J.T. Pikkarainen, et al., Avidin-biotin technology in targeted therapy, Expert Opin. Drug Deliv. 7 (2010) 551-564. http://doi.org/10.1517/17425241003677749.

[101]

H.C. Flemming, J. Wingender, U. Szewzyk, et al., Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol. 14 (2016) 563-575. http://doi.org/10.1038/nrmicro.2016.94.

[102]

J. Yan, B.L. Bassler, Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms, Cell Host Microbe 26 (2019) 15-21. http://doi.org/10.1016/j.chom.2019.06.002.

[103]

S. Lin, S. Mukherjee, J. Li, et al., Mucosal immunity–mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches, Sci. Adv. 7 (2021) eabf0677. http://doi.org/10.1126/sciadv.abf0677.

[104]

P. Kaur, S. Ghosh, A. Bhowmick, et al., Bacterioboat—a novel tool to increase the half-life period of the orally administered drug, Sci. Adv. 8 (2022) eabh1419. http://doi.org/10.1126/sciadv.abh1419.

[105]

Y.J. Zhu, F. Chen, pH-responsive drug-delivery systems, Chem. Asian J. 10 (2015) 284-305. http://doi.org/10.1002/asia.201402715.

[106]

M.T. Cook, G. Tzortzis, V.V. Khutoryanskiy, et al., Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration, J. Mater. Chem. B 1 (2013) 52-60. http://doi.org/10.1039/C2TB00126H.

[107]

R. Ghaffarian, E. Pérez-Herrero, H. Oh, et al., Chitosan-alginate microcapsules provide gastric protection and intestinal release of ICAM-1-targeting nanocarriers, enabling GI targeting in vivo, Adv. Funct. Mater. 26 (2016) 3382-3393. http://doi.org/10.1002/adfm.201600084.

[108]

L. Mei, F. He, R.Q. Zhou, et al., Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria, ACS Appl. Mater. Interfaces 6 (2014) 5962-5970. http://doi.org/10.1021/am501011j.

[109]

M.D.A. Etchepare, J.S. Barin, A.J. Cichoski, et al., Microencapsulation of probiotics using sodium alginate, Cienc. Rural 45 (2015) 1319-1326. http://doi.org/10.1590/0103-8478cr20140938.

[110]

W.R. Gombotz, S. Wee, Protein release from alginate matrices, Adv. Drug Delivery Rev. 31 (1998) 267-285. http://doi.org/10.1016/S0169-409X(97)00124-5.

[111]

S. Nualkaekul, D. Lenton, M.T. Cook, et al., Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice, Carbohydr. Polym. 90 (2012) 1281-1287. http://doi.org/10.1016/j.carbpol.2012.06.073.

[112]

S. Mandal, A. Puniya, K. Singh, Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298, Int. Dairy J. 16 (2006) 1190-1195. http://doi.org/10.1016/j.idairyj.2005.10.005.

[113]

A. El-Salam, H. Mohamed, S. El-Shibiny, Preparation and properties of milk proteins-based encapsulated probiotics: a review, Dairy Sci. Technol. 95 (2015) 393-412. http://doi.org/10.1007/s13594-015-0223-8.

[114]

S.S. Dehkordi, I. Alemzadeh, A.S. Vaziri, et al., Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria, Appl. Biochem. Biotechnol. 190 (2020) 182-196. http://doi.org/10.1007/s12010-019-03071-5.

[115]

H. Englyst, S. Hay, G. Macfarlane, Polysaccharide breakdown by mixed populations of human faecal bacteria, FEMS Microbiol. Ecol. 3 (1987) 163-171. http://doi.org/10.1111/j.1574-6968.1987.tb02352.x.

[116]

L. Yang, Biorelevant dissolution testing of colon-specific delivery systems activated by colonic microflora, J. Control. Release 125 (2008) 77-86. http://doi.org/10.1016/j.jconrel.2007.10.026.

[117]
T. Sonia, C.P. Sharma, Chitosan and its derivatives for drug delivery perspective, in R. Jayakumar, M. Prabaharan, R.A.A. Muzzarelli (Eds.), Chitosan for biomaterials I, Springer, 2011, pp. 23-53. http://doi.org/10.1007/12_2011_117.
[118]

H.M. El-Husseiny, E.A. Mady, L. Hamabe, et al., Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications, Mater. Today Bio 13 (2022) 100186. http://doi.org/10.1016/j.mtbio.2021.100186.

[119]

I. Kwiecień, M. Kwiecień, Application of polysaccharide-based hydrogels as probiotic delivery systems, Gels 4 (2018) 47. http://doi.org/10.3390/gels4020047.

[120]

A. Bepeyeva, J.M. de Barros, H. Albadran, et al., Encapsulation of Lactobacillus casei into calcium pectinate-chitosan beads for enteric delivery, J. Food Sci. 82 (2017) 2954-2959. http://doi.org/10.1111/1750-3841.13974.

[121]

P. Nangia-Makker, V. Hogan, Y. Honjo, et al., Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin, J. Natl. Cancer Inst. 94 (2002) 1854-1862. http://doi.org/10.1093/jnci/94.24.1854.

[122]

J. Zhu, L. Zhong, W. Chen, et al., Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: a novel and simple colon targeted drug delivery system, Food Hydrocoll. 95 (2019) 562-570. http://doi.org/10.1016/j.foodhyd.2018.04.042.

[123]

S.A. Zawko, C.E. Schmidt, Crystal templating dendritic pore networks and fibrillar microstructure into hydrogels, Acta Biomater. 6 (2010) 2415-2421. http://doi.org/10.1016/j.actbio.2010.02.021.

[124]

Y. Zhang, L. Dong, L. Liu, et al., Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: a review, J. Agric. Food Chem. 70 (2022) 6300-6316. http://doi.org/10.1021/acs.jafc.2c01080.

[125]

Y. Xiao, C. Lu, Y. Liu, et al., Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis, ACS Appl. Mater. Interfaces 12 (2020) 36967-36977. http://doi.org/10.1021/acsami.0c11959.

[126]

C. Vanderpool, F. Yan, B.D. Polk, Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases, Inflamm. Bowel Dis. 14 (2008) 1585-1596. http://doi.org/10.1002/ibd.20525.

[127]

J. Wang, H. Ji, S. Wang, et al., Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota, Front. Microbiol. 9 (2018) 1953. http://doi.org/10.3389/fmicb.2018.01953.

[128]

R. di Vito, C. Conte, G. Traina, A multi-strain probiotic formulation improves intestinal barrier function by the modulation of tight and adherent junction proteins, Cells 11 (2022) 2617. http://doi.org/10.3390/cells11162617.

[129]

L. Wang, H. Cao, L. Liu, et al., Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a Lactobacillus rhamnosus GG-derived protein, J. Biol. Chem. 289 (2014) 20234-20244. http://doi.org/10.1074/jbc.M114.553800.

[130]

Y. Tobisawa, Y. Imai, M. Fukuda, et al., Sulfation of colonic mucins by N-acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice, J. Biol. Chem. 285 (2010) 6750-6760. http://doi.org/10.1074/jbc.M109.067082.

[131]

M. Schultz, Clinical use of E. coli Nissle 1917 in inflammatory bowel disease, Inflamm. Bowel Dis. 14 (2008) 1012-1018. http://doi.org/10.1002/ibd.20377.

[132]

M. Schlee, J. Wehkamp, A. Altenhoefer, et al., Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin, Infect. Immun. 75 (2007) 2399-2407. http://doi.org/10.1128/IAI.01563-06.

[133]

L. Mandel, I. Trebichavsky, I. Splichal, et al., Stimulation of intestinal immune cells by E. coli in gnotobiotic piglets, Adv. Mucosal Immunol. 371 (1995) 463-464. http://doi.org/10.1007/978-1-4615-1941-6_96.

[134]

A. Altenhoefer, S. Oswald, U. Sonnenborn, et al., The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens, FEMS Immunol. Med. Microbiol. 40 (2004) 223-229. http://doi.org/10.1016/S0928-8244(03)00368-7.

[135]

J. Boudeau, A.L. Glasser, S. Julien, et al., Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn’s disease, Aliment. Pharmacol. Ther. 18 (2003) 45-56. http://doi.org/10.1046/j.1365-2036.2003.01638.x.

[136]

A.C. Ouwehand, S.J. Salminen, The health effects of cultured milk products with viable and non-viable bacteria, Int. Dairy J. 8 (1998) 749-758. http://doi.org/10.1016/S0958-6946(98)00114-9.

[137]

G. Young, R. Krasner, P. Yudkofsky, Interactions of oral strains of Candida albicans and Lactobacilli, J. Bacteriol. 72 (1956) 525-529. http://doi.org/journals.asm.org/journal/jb.

[138]

P. Midolo, J. Lambert, R. Hull, et al., In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria, J. Appl. Bacteriol. 79 (1995) 475-479. http://doi.org/10.1111/j.1365-2672.1995.tb03164.x.

[139]

C.M. Slover, L. Danziger, Lactobacillus: a review, Clin. Microbiol. Newsl. 30 (2008) 23-27. http://doi.org/10.1016/j.clinmicnews.2008.01.006.

[140]

D. Bujnakova, E. Strakova, V. Kmet, In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves, Anaerobe 29 (2014) 118-27. http://doi.org/10.1016/j.anaerobe.2013.10.009.

[141]

C. Sharma, B.P. Singh, N. Thakur, et al., Antibacterial effects of Lactobacillus isolates of curd and human milk origin against food-borne and human pathogens, 3 Biotech 7 (2017) 1-9. http://doi.org/10.1007/s13205-016-0591-7.

[142]

M. Candela, F. Perna, P. Carnevali, et al., Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production, Int. J. Food Microbiol. 125 (2008) 286-292. http://doi.org/10.1016/j.ijfoodmicro.2008.04.012.

[143]

P.J. Murray, T.A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol. 11 (2011) 723-737. http://doi.org/10.1038/nri3073.

[144]

L. Guo, M. Meng, Y. Wei, et al., Protective effects of live combined B. subtilis and E. faecium in polymicrobial sepsis through modulating activation and transformation of macrophages and mast cells, Front. Pharmacol. 9 (2019) 1506. http://doi.org/10.3389/fphar.2018.01506.

[145]

C. Hee Kim, H. Geun Kim, J. Yun Kim, et al., Probiotic genomic DNA reduces the production of pro-inflammatory cytokine tumor necrosis factor-alpha, FEMS Microbiol. Lett. 328 (2012) 13-19. http://doi.org/10.1111/j.1574-6968.2011.02470.x.

[146]

G. Leccese, A. Bibi, S. Mazza, et al., Probiotic Lactobacillus and Bifidobacterium strains counteract adherent-invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 axis in ulcerative colitis, but not in crohn’s disease, Cells 9 (2020) 1824. http://doi.org/10.3390/cells9081824.

[147]

Y. Nishitani, T. Tanoue, K. Yamada, et al., Lactococcus lactis subsp. cremoris FC alleviates symptoms of colitis induced by dextran sulfate sodium in mice, Int. Immunopharmacol. 9 (2009) 1444-1451. http://doi.org/10.1016/j.intimp.2009.08.018.

[148]

M. Liu, X. Zhang, Y. Hao, et al., Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence, Food Funct. 10 (2019) 1132-1145. http://doi.org/10.1039/C8FO02301H.

[149]

M. Ghebretatios, S. Schaly, S. Prakash, Nanoparticles in the food industry and their impact on human gut microbiome and diseases, Int. J. Mol. Sci. 22 (2021) 1942. http://doi.org/10.3390/ijms22041942.

[150]

D.J. McClements, H. Xiao, Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles, npj Sci. Food 1 (2017) 1-13. http://doi.org/10.1038/s41538-017-0005-1.

[151]

A.d.l.C. Pech-Canul, D. Ortega, A. García-Triana, et al., A brief review of edible coating materials for the microencapsulation of probiotics, Coatings 10 (2020) 197. http://doi.org/10.3390/coatings10030197.

[152]

L. Liu, W. Yao, Y. Rao, et al., pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms, Drug Delivery 24 (2017) 569-581. http://doi.org/10.1080/10717544.2017.1279238.

[153]

G. Christie, P. Setlow, Bacillus spore germination: knowns, unknowns and what we need to learn, Cell. Signal. 74 (2020) 109729. http://doi.org/10.1016/j.cellsig.2020.109729.

[154]

I.L. Wu, K. Narayan, J.-P. Castaing, et al., A versatile nano display platform from bacterial spore coat proteins, Nat. Commun. 6 (2015) 1-8. http://doi.org/10.1038/ncomms7777(2015).

[155]

N. Viratchaiboott, P. Sakunpongpitiporn, S. Niamlang, et al., Release of 5-FU loaded pectin/Fe3O4 from porous PBSA matrix under magnetic and electric fields, J. Alloys Compd. 906 (2022) 164239. http://doi.org/10.1016/j.jallcom.2022.164239.

[156]

W. Wang, X. Qiao, J. Chen, The role of acetic acid in magnesium oxide preparation via chemical precipitation, J. Am. Ceram. Soc. 91 (2008) 1697-1699. http://doi.org/10.1111/j.1551-2916.2008.02326.x.

[157]

M. Yao, B. Li, H. Ye, et al., Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles, Food Hydrocoll. 83 (2018) 246-252. http://doi.org/10.1016/j.foodhyd.2018.05.024.

[158]

Q. Luan, W. Zhou, H. Zhang, et al., Cellulose-based composite macrogels from cellulose fiber and cellulose nanofiber as intestine delivery vehicles for probiotics, J. Agric. Food Chem. 66 (2018) 339-345. http://doi.org/10.1021/acs.jafc.7b04754.

[159]

A. Dafe, H. Etemadi, A. Dilmaghani, et al., Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria, Int. J. Biol. Macromol. 97 (2017) 536-543. http://doi.org/10.1016/j.ijbiomac.2017.01.060.

[160]

D. Lin, Y. Ma, W. Qin, et al., The structure, properties and potential probiotic properties of starch-pectin blend: a review, Food Hydrocoll. 129 (2022) 107644. http://doi.org/10.1016/j.foodhyd.2022.107644.

[161]

Y. Liu, Y. Sun, L. Sun, et al., In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live probiotic delivery, J. Funct. Foods 24 (2016) 429-437. http://doi.org/10.1016/j.jff.2016.03.034.

[162]

X. Ding, Y. Xu, Y. Wang, et al., Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics, Carbohydr. Polym. 289 (2022) 119438. http://doi.org/10.1016/j.carbpol.2022.119438.

[163]

X. Qi, S. Simsek, J.B. Ohm, et al., Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: role of chitosan molecular weight, Soft Matter 16 (2020) 1877-1887. http://doi.org/10.1039/C9SM02387A.

[164]

D. Wu, J. Wan, J. Lu, et al., Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens, Food Control 92 (2018) 276-285. http://doi.org/10.1016/j.foodcont.2018.05.009.

[165]

J. Hirata, N. Kurokawa, M. Okano, et al., Evaluation of crystallinity and hydrogen bond formation in stereocomplex poly (lactic acid) films by terahertz time-domain spectroscopy, Macromolecules 53 (2020) 7171-7177. http://doi.org/10.1021/acs.macromol.0c00237.

[166]

H. Yu, W. Liu, D. Li, et al., Targeting delivery system for Lactobacillus plantarum based on functionalized electrospun nanofibers, Polymers 12 (2020) 1565. http://doi.org/10.3390/polym12071565.

[167]

J. Ma, C. Xu, H. Yu, et al., Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology, Food Hydrocoll. 111 (2021) 106381. http://doi.org/10.1016/j.foodhyd.2020.106381.

[168]

S.J. Mojaveri, S.F. Hosseini, A. Gharsallaoui, Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly (vinyl alcohol) hybrid electrospun fiber mats, Carbohydr. Polym. 241 (2020) 116278. http://doi.org/10.1016/j.carbpol.2020.116278.

[169]

H. Zheng, Y. Du, J. Yu, et al., Preparation and characterization of chitosan/poly (vinyl alcohol) blend fibers, J. Appl. Polym. Sci. 80 (2001) 2558-2565. http://doi.org/10.1002/app.1365.

[170]

R. Atraki, M. Azizkhani, Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model, Innovative Food Sci. Emerg. Technol. 72 (2021) 102750. http://doi.org/10.1016/j.ifset.2021.102750.

[171]

N. Alavi, M.T. Golmakani, S.M.H. Hosseini, Fabrication and characterization of phycocyanin-alginate-pregelatinized corn starch composite gel beads: effects of carriers on kinetic stability of phycocyanin, Int. J. Biol. Macromol. 218 (2022) 665-678. http://doi.org/10.1016/j.ijbiomac.2022.07.111.

[172]

C.Y. Falco, J. Sotres, A. Rascón, et al., Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated β-glucan, J. Colloid Interface Sci. 487 (2017) 97-106. http://doi.org/10.1016/j.jcis.2016.10.019.

[173]

F. Wang, J. Li, X. Tang, et al., Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery, Colloids Surf. B 190 (2020) 110925. http://doi.org/10.1016/j.colsurfb.2020.110925.

[174]

R.J. Mu, Y. Yuan, L. Wang, et al., Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel, Food Hydrocoll. 76 (2018) 42-48. http://doi.org/10.1016/j.foodhyd.2017.07.009.

[175]

L.Y. Zheng, J.M. Shi, Y.H. Chi, Tannic acid physically cross-linked responsive hydrogel, Macromol. Chem. Phys. 219 (2018) 1800234. http://doi.org/10.1002/macp.201800234.

[176]

P.Y. Liu, Z.H. Miao, K. Li, et al., Biocompatible Fe3+-TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells, Colloids Surf. B 167 (2018) 183-190. http://doi.org/10.1016/j.colsurfb.2018.03.030.

[177]

K.L. Meng, X.C. Lv, H.Y. Che, et al., Joint protection strategies for Saccharomyces boulardii: exogenous encapsulation and endogenous biofilm structure, Appl. Microbiol. Biotechnol. 105 (2021) 8469-8479. http://doi.org/10.1007/s00253-021-11601-7.

Food Science and Human Wellness
Pages 3095-3109
Cite this article:
Wang X, Yu M, Ye J, et al. Research advances on encapsulation of probiotics with nanomaterials and their repair mechanisms on intestinal barriers. Food Science and Human Wellness, 2024, 13(6): 3095-3109. https://doi.org/10.26599/FSHW.2022.9250246
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return