AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Antiglycating effects of citrus flavonoids and associated mechanisms

Yunli Xiaoa,1Junfeng Shena,1Jianfeng ZhanaLimin GuobChi-Tang HocShiming Lia,c( )
College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Department of Food Science, Rutgers University, New Brunswick 08901, USA

1 Authors contributed equally.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Glycation of proteins and DNA forms advanced glycation end products (AGEs) causing cell and tissue dysfunction and subsequent various chronic diseases, in particular, metabolic and age-related diseases. Targeted AGE inhibition includes scavengers of reactive carbonyl species (RCS) such as methylglyoxal (MG), glyoxalase-1 enhancers, Nrf2/ARE pathway activators, AGE/RAGE formation inhibitors and other antiglycatng agents. Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents. Herein, we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms. Major citrus flavonoids, hesperedin and its aglycone, hesperetin, inhibited glycation by scavenging MG forming mono- or di-flavonoid adducts with MG, enhanced the activity of glyoxase-1, activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway, reduced the formation of Nε-(carboxylmethyl)lysine (CML) and pentosidine, inhibited aldol reductase activity and decreased the levels of fructosamine. The antiglycating activity and mechanisms of other flavonoids was also summarized in this review. In conclusion, citrus flavonoids possess effective antiglycating activity via different mechanisms, yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy, effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases, diabetic complications in particular.

References

[1]

A. Moraru, J. Wiederstein, D. Pfaff, et al., Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes, Cell Metab. 27 (2018) 926-934. https://doi.org/10.1016/j.cmet.2018.02.003.

[2]

R. Ramasamy, S.F. Yan, A.M. Schmidt, Methylglyoxal comes of AGE, Cell 124 (2006) 258-260. https://doi.org/10.1016/j.cell.2006.01.002.

[3]

J.A. Lin, C.H. Wu, G.C. Yen, Perspective of advanced glycation end products on human health, J. Agric. Food Chem. 66 (2018) 2065-2070. https://doi.org/10.1021/acs.jafc.7b05943.

[4]

P.J. Thornalley, Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification–a role in pathogenesis and antiproliferative chemotherapy, Gen. Pharmacol. 27 (1996) 565-573. https://doi.org/10.1016/0306-3623(95)02054-3.

[5]

R.J. Koenig, C.M. Peterson, R.L. Jones, et al., Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus, N. Engl. J. Med. 295 (1976) 417-420. https://doi.org/10.1056/NEJM197608192950804.

[6]

C.G. Schalkwijk, C.D.A. Stehouwer, Methylglyoxal, a highly reactive dicarbonyl compounds, in diabetes, its vascular complications, and other age-related diseases, Physiol. Rev. 100 (2020) 407-461. https://doi: 10.1152/physrev.00001.2019.

[7]

N. Rabbani, M. Xue, P.J. Thornalley, Dicarbonyl stress, protein glycation and the unfolded protein response, Glycoconjugate J. 38 (2021) 331-340. https://doi.org/10.1007/s10719-021-09980-0.

[8]

H. Vlassara, W. Cai, S. Goodman, et al., Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1, J. Clin. Endocrinol. Metab. 94 (2009) 4483-4491. https://doi.org/10.1210/jc.2009-0089.

[9]

H. Vlassara, W. Cai, J. Crandall, et al., Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy, Proc. Natl. Acad. Sci. USA 99 (2002) 15596-15601. https://doi.org/10.1073/pnas.242407999.

[10]

J. Uribarri, W. Cai, M. Ramdas, et al., Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes, Diabetes Care 34 (2011) 1610-1616. https://doi.org/10.2337/dc11-0091.

[11]

X. Fan, D.R. Sell, C. Hao, et al., Vitamin C is a source of oxoaldehyde and glycative stress in age-related cataract and neurodegenerative diseases, Aging Cell. 19 (2020) e13176. https://doi.org/10.1111/acel.13176.

[12]

P.J. Beisswenger, S.K. Howell, G.B. Russell, et al., Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products, Diabetes Care 36 (2013) 3234-3239. https://doi.org/10.2337/dc12-2689.

[13]

S.Y. Kassim, M.A. Alaoui-Jamali, J. Génest J, et al., Advanced glycation end products (AGEs) promote apoptosis via a novel pathway: involvement of CAAT/enhancer-binding protein β (C/EBPβ), JNK, and caspase-3, Diabetes 55 (2006) 216-226. https://doi.org/10.12659/MSM.915806.

[14]

J. Chen, J. Zing, S. Yu, et al., Advanced glycation end products induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis, Am. J. Tranal. Res., 8 (2016) 169-178.

[15]

V.P. Reddy, P. Aryal, P. Soni, RAGE inhibitors in neurodegenerative diseases, Biomedicines 11 (2023) 1131. https://doi.org/10.3390/biomedicines11041131.

[16]

G. Basta, A.M. Schmidt, R. de Caterina, Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes, Cardiovasc. Res. 63 (2004) 582-592. https://doi.org/10.1016/j.cardiores.2004.05.001.

[17]

M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414 (2001) 813-820. https://doi.org/10.1038/414813a.

[18]

S.L. Fishman, H. Sonmez, C. Basman, et al., The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review, Mol. Med. 24 (2018) 59. https://doi.org/10.3390/biomedicines11041131.

[19]

S.W.T. Lai, E.D.J.L. Gonzalez, T. Zoukari, et al., Methylglyoxal and its adducts: induction, repair, and association with disease, Chem. Res. Toxicol. 35 (2022) 1720-1746. https://doi.org/10.1021/acs.chemrestox.2c00160.

[20]

J. Koska, H.C. Gerstein, P.J. Beisswenger, et al., Advanced glycation end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes, Diabetes Care 45 (2022) 684-691. https://doi.org/10.2337/dc21-2196.

[21]

A. Gul, M.A. Rahman, A. Salim, et al., Advanced glycation end products in senile diabetic and nondiabetic patients with cataract, J. Diabetes Complications 23 (2009) 343-348. https://doi.org/10.1016/j.jdiacomp.2008.04.001.

[22]

N.M.J. Hanssen, J. Westerink, J.L.J.M. Scheijen, et al., Higher plasma methylglyoxal levels are associated with incident cardiovascular disease and mortality in individuals with type 2 diabetes, Diabetes Care 41 (2018) 1689-1695. https://doi.org/10.2337/dc18-0159.

[23]

V.N. Bukke, R. Villani, A. Moola, et al., The glucose metabolic pathway as a potential target for therapeutics: crucisl role of glycosylation in Alzheimer’s disease, Int. J. Mol. Sci. 21 (2020) 7739. https://doi.org/10.3390/ijms21207739.

[24]

J. Chen, S.S. Mooldijk, S. Licher, et al., Assessment of advanced glycation end products and receptors and the risk of dementia, JAMA Ntework Open 4 (2021) e2033012. https://doi.org/10.1001/jamanetworkopen.2020.33012.

[25]

A. Puddu, R. Sanguineti, K. Montecucco, et al., Advanced glycation end-products and Alzheimer’s disease, J. Alzheimer’s Dis. 35 (2013) 403-413. https://doi.org/10.1016/S0002-9440(10)65659-3.

[26]

J. Chaudhuri, Y. Bains, S. Guha, et al., The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality, Cell Metab. 28 (2018) 337-352. https://doi.org/10.1016/j.cmet.2018.08.014.

[27]

D. Sergi, H. Boulestin, F.M. Campbell, et al., The role of dietary advanced glycation end products in metabolic dysfunction, Mol. Nutr. Food Res. 65 (2021) 1900934. https://doi.org/10.1002/mnfr.201900934.

[28]

M. Fournet, F. Bonte, A. Desmouliere, Glycation demage: a possible hub for major pathophysiological disorders, Aging Dis. 9 (2018) 880-900. https://doi.org/10.14336/AD.2017.1121.

[29]

C.Y. Lo, S. Li, D. Tan, et al., Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions, Mol. Nutr. Food Res. 50 (2006) 1118-1128. https://doi.org/10.1002/mnfr.200600094.

[30]

N. Ahmed, P.J. Thornalley, J. Dawczynski, et al., Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins, Invest. Ophthalmol. Vis. Sci. 44 (2003) 5287-5292. https://doi.org/10.1167/iovs.03-0573.

[31]

Y. Luo, J. Zhang, CT. Ho, et al., Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols, Food Sci. Hum. Well. 11 (2022) 557-567. https://doi.org/10.1016/j.fshw.2021.12.012.

[32]

N. Rabbani, P.J. Thornalley, Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome, Amino Acids 42 (2012) 1133-1142. https://doi.org/10.1007/s00726-010-0783-0.

[33]

M. Frischmann, C. Bidmon, Identification of DNA adducts of methylglyoxal, Chem. Res. Toxicol. 18 (2005) 1586-1592. https://doi.org/10.1021/tx0501278.

[34]

D. Tamae, P. Lim, G.E. Wuenschell, et al., Mutagenesis and repair induced by the DNA advanced glycation end product N2-1-(carboxyethyl)-2-deoxyguanosine in human cells, Biochemistry 50 (2011) 2321-2329. https://doi.org/10.1021/bi101933p.

[35]

S. Li, L. Zhang, X. Wan, et al., Focusing on the recent progress of tea polyphenol chemistry and perspectives, Food Sci. Hum. Well. 11 (2022) 437-444. https://doi.org/10.1016/j.fshw.2021.12.033.

[36]

D.T.M. Dias, K.R. Palermo, B.P. Motta, et al., Rutin inhibits the in vitro formation of advanced glycation products and protein oxidation more efficiently than quercetin, Rev. Ciênc Farm Básica Apl. 42 (2021) e718. https://doi.org/10.4322/2179-443X.0718.

[37]

S, Zhang, L. Xiao, L. Lv, et al., Trapping methylglyoxal by myricetin and its metabolites in mice, J. Agric. Food Chem. 68 (2020) 9408-9414. https://doi.org/10.1021/acs.jafc.0c03471.

[38]

G. Rabbani, S.N. Ahn, Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: a natural cargo. Int. J. Biol. Macromol. 123 (2019) 979-990. https://doi.org/10.1016/j.ijbiomac.2018.11.053.

[39]

S. Riaz, A. Siddiqui, F.A. Qais, et al., Inhibitory effect of baicalein against glycation in HAS: an in vitro approach, J. Biomol. Sturct. Dyn. (2023) 1-13. https://doi.org/10.1080/07391102.2023.2201856.

[40]

H. Liu, L. Gu, Phlorotannis from Brown Algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbobnyls, J. Agric. Food Chem. 60 (2012) 1326-1334. https://doi.org/10.1021/jf204112f.

[41]

M. Reinisalo, A. Karlund, A. Koskela, et al., Molecular mechanism of defence against oxidative stress and aging-related diseases, Oxid. Med. Cell Longev. 2015 (2015) 340520. https://doi.org/10.1155/2015/340520.

[42]

L. Lv, X. Shao, L. Wang, et al., Stilbene glucoside from Polygonum multiforum thub.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal, J. Agric. Food Chem. 58 (2010) 2239-2245. https://doi.org/10.1021/jf904122q.

[43]

S. Kaur, P.S. Panesar, H.K. Chopr, Citrus processing by-products: an overlooked repository of bioactive compounds, Crit. Rev. Food Sci. Nutr. (2021) 1943647. https://doi.org/10.1080/10408398.2021.1943647.

[44]

M. Wang, H. Zhao, X.Wen, et al., Citrus flavonoids and the intestinal barrier: Interactions and effects, Compr. Rev. Food Sci. Food. Saf. 20 (2021) 225-251. https://doi.org/10.1111/1541-4337.12652.

[45]

S. Li, C.Y. Lo, C.T. Ho, Hydroxylated polymethoxyflavonoids and methylated polyphenols in sweet orange peel, J. Agri. Food Chem. 54 (2006) 4176-4185. https://doi.org/10.1021/jf060234n.

[46]

S.A. Adefegha, R.D.S.P. Saccol, M.H. Jantsch, et al., Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund’s adjuvant-induced arthritic rats, J. Pharm. Pharmacol. 73 (2021) 1547-1561. https://doi.org/10.1093/jpp/rgab100.

[47]

G. Fontana, M. Bruno, F. Sottile, et al., The chemistry and the anti-inflammatory activity of polymethoxyflavonoids from citrus genus, Antioxidants 12 (2023) 23. https://doi.org/10.3390/antiox12010023.

[48]

X. Li, B. Chen, H. Xie, et al., Antioxidant structure–activity relationship analysis of five dihydrochalcones, Molecules 23 (2018) 1162. https://doi.org/10.3390/molecules23051162.

[49]

M. Wang, D. Meng, P. Zhang, et al., Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae, J. Agri. Food Chem. 66 (2018) 3155-3160. https://doi.org/10.1021/acs.jafc.8b00509.

[50]

Y.C. Tung, S. Li, Q. Huang, et al., 5-Demethylnobiletin and 5-acetoxy-6,7,8,3’,4’-pentamethoxyflavone suppress lipid accumulation by activating the LKB1-AMPK pathway in 3T3-L1 preadipocytes and high fat diet-fed C57BL/6 mice, J. Agric. Food Chem. 127 (2016) 5211-5214. https://doi.org/10.1021/acs.jafc.6b00706.

[51]

J.F. Lu, M.Q. Zhu, H. Zhang, et al., Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice, FASB J. 34 (2020) 12053-12071. https://doi.org/10.1096/fj.201903102RR.

[52]

S. Li, S. Sang, M.H. Pan, et al., Anti-inflammatory property of the urinary metabolites of nobiletin in mouse, Bioorg. Medi. Chem. Lett. 17 (2007) 5177-5181. https://doi.org/10.1016/j.bmcl.2007.06.096.

[53]

S.C. Ho, C.T. Kuo, Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium), Food Chem. Toxicol. 71 (2014) 176-182. https://doi.org/10.1016/j.fct.2014.06.014

[54]

N.E. Rawson, C.T Ho, S. Li, Efficacious anti-cancer property of flavonoids from citrus peels, Food Sci. Hum. Well. 3 (2014) 104-109. https://doi.org/10.1016/j.fshw.2014.11.001.

[55]

Y.R. Li, S. Li, C.T. Ho, et al., Tangeretin derivatives, 5-acetyloxy-6,7,8,4’-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo, Cancer Biol. Therapy. 17 (2016) 48-64. https://doi.org/10.1080/15384047.2015.1108491.

[56]

K.T. Tan, S. Li, Y.R. Li, et al., Synergistic anticancer effect of a combination of paclitaxel and 5-demethylnobiletin against lung cancer cell line in vitro and in vivo, Appl. Biochem. Biotechnol. 187 (2019) 1328-1343. https://doi.org/10.1007/s12010-018-2869-1.

[57]

Z. Yue, L. Wang, Y. Miyauchi, et al., Formulated citrus peel extract gold lotion improves cognitive and functional recovery from traumatic brain injury (TBI) in rats, Food Sci. Hum. Well. 9 (2020) 229-236. https://doi.org/10.1016/j.fshw.2020.04.012.

[58]

S. Okuyama, M. Morita, K. Miyoshi, et al., 3,5,6,7,8,3’,4’-Heptamethoxy flavone, a citrus flavonoid, on protection against memory impairment and neuronal cell death in a global cerebral ischemia mouse model, Neurochem. Int. 70 (2014) 30-38. https://doi.org/10.1016/j.neuint.2014.03.008.

[59]

M. Hajialyani, M. H. Farzaei, J. Echeverría, et al., Hesperidin as a neuroprotective agent: a review of animal and clinical evidence, Molecules 24 (2019) 648. https://doi.org/10.3390/molecules24030648.

[60]

H. Fujiwara, J. Kimura, M. Sakamoto, et al., Nobiletin, a flavone from Citrus depressa, induces gene expression and increases the protein level and activity of neprilysin in SK-N-SH cells, Can. J. Physiol. Pharmacol. 92 (2014) 351-355. https://doi.org/10.1139/cjpp-2013-0440.

[61]

M. Varshney, B. Kumar, V.S. Rana, et al., An overview on therapeutic and medicinal potential of poly-hydroxy flavones viz. heptamethoxyflavone, kaempferitrin, vitexin and amentoflavone for management of Alzheimer’s and Parkinson’s diseases: a critical analysis on mechanistic insight, Crit. Rev. Food Sci. Nutr. 63 (2023) 2749-2772. https://doi.org/10.1080/10408398.2021.1980761.

[62]

Y.J. Chen, L. Kong, Z.Z. Tang, et al., Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway, Biomed. Pharmacother. 111 (2019) 1166-1175. https://doi.org/10.1016/j.biopha.2019.01.030.

[63]

R. Dhanya, P. Jayamurthy, In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line, Cell Biochem. Funct. 38 (2020) 419-427. https://doi.org/10.1002/cbf.3478.

[64]

R. Visvanathan, G. Williamson, Citrus polyphenols and risk of type 2 diabetes: evidence from mechanistic studies, Crit. Rev. Food Sci. Nutr. 63 (2023) 2178-2202. https://doi.org/10.1080/10408398.2021.1971945.

[65]

M. Wang, Y. Lu, Q. Wu, et al., Biotransformation and gut microbiota-mediated bioactivity of flavonols, J. Agric. Food Chem. 71 (2023) 8317-8331. https://doi.org/10.1021/acs.jafc.3c01087.

[66]

K. Nohara, V. Mallampalli, T. Nemkov, et al., Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge, Nat. Commun. 10 (2019) 3923. https://doi.org/10.1038/s41467-019-11926-y.

[67]

A. Ouyang, T.B. Garner, B.S. Fleenor, Hesperidin reverses perivascular adipose-mediated aortic stiffness with aging, Exp. Gerontol. 97 (2017) 68-72. https://doi.org/10.1016/j.exger.2017.08.003.

[68]

Y. Doki, Y. Nakazawa, N. Morishita, et al., Hesperetin treatment attenuates glycation of lens proteins and advanced-glycation end products generation, Mol. Med. Rep. 27 (2023) 103. https://doi.org/10.3892/mmr.2023.12990.

[69]

W.J. Yeh, S.M. Hsia, W.H. Lee, et al., Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings, J. Food Drug Anal. 25 (2017) 84-92. https://doi.org/10.1016/j.jfda.2016.10.017.

[70]

H. Parhiz, A. Roohbakhsh, F. Soltani, et al., Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models, Phytother. Res. 29 (2015) 323-331. https://doi.org/10.1002/ptr.5256.

[71]

A. Mas-Capdevila, J. Teichenne, C. Domenech-Coca, et al., Effect of hesperidin on cardiovascular disease risk factors: the role of intestinal microbiota on hesperidin bioavailability, Nutrients 12 (2020) 1488. https://doi.org/10.3390/nu12051488.

[72]

L. Pla-Pag, R.M. Valls, A. Pedret, et al., Effect of the consumption of hesperidin in orange juice on the transcriptomic profile of subjects with elevated blood pressure and stage 1 hypertension: a randomized controlled trial (CITRUS study), Clinic. Nutr. 40 (2021) 5812e5822. https://doi.org/10.1016/j.clnu.2021.10.009.

[73]

P.A. Miguez, S.A. Tuin, A.G. Robinson, et al., Hesperidin promotes osteogenesis and modulates collagen matrix organization and mineralization in vitro and in vivo, Int. J. Mol. Sci. 22 (2021) 3223. https://doi.org/10.3390/ijms22063223.

[74]

P. Ramlagan, P., Rondeau, C. Planesse, et al., Comparative suppressing effects of black and green teas on the formation of advanced glycation end products (AGEs) and AGE-induced oxidative stress, Food Funct. 8 (2017) 4194-4209. https://doi.org/10.1039/c7fo01038a.

[75]

X. Peng, Z. Zheng, K.W. Cheng, et al., Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts, Food Chem. 106 (2008) 475-481. https://doi.org/10.1016/j.foodchem.2007.06.016.

[76]

X. Shao, N. Bai, K. He, et al., Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species, Chem. Res. Toxic. 21 (2008) 2042-2050. https://doi.org/10.1021/tx800227v.

[77]

L. Lv, X. Shao, H. Chen, et al., Genistein inhibits advanced glycation end product formation by trapping methylglyoxal, Chem. Res. Toxicol. 24 (2011) 579-586. https://doi.org/10.1021/tx100457h.

[78]

K. Bednarska, I. Fecka, Potential of vasoprotectives to inhibit non-enzymatic protein glycation, and reactive carbonyl and oxygen species uptake, Int. J. Mol. Sci. 22 (2021) 10026. https://doi.org/10.3390/ijms221810026.

[79]

I. Fecka, K. Bednarska, A. Kowalczyk, In vitro antiglycation and methylglyoxal trapping effect of peppermint leaf (Mentha x piperita L.) and its polyphenols, Molecules 28 (2023) 2865. https://doi.org/10.3390/molecules28062865.

[80]

N. Rabbani, P.J. Thornalley, Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease, Biochem. Biophys. Res. Commun. 458 (2015) 221e226. https://doi.org/10.1016/j.bbrc.2015.01.140.

[81]

O. Brouwers, P.M. Niessen, I. Ferreira, et al., Overexpression of glyoxalase-Ⅰ reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats, J. Biol. Chem. 286 (2011) 1374-1380. https://doi.org/10.1074/jbc.M110.144097.

[82]

Z. Peng, X. Yang, J. Qin, et al., Glyoxalase-1 overexpression reverses defective proangiogenic function of diabetic adipose-derived stem cells in streptozotocin-induced diabetic mice model of critical limb ischemia, Stem Cells Transl. Med. 6 (2017) 261-271. https://doi.org/10.5966/sctm.2015-0380.

[83]

X. Zhu, Y.Q. Cheng, Q. Lu, et al., Enhancement of glyoxalase 1, a polyfunctional defense enzyme, by quercetin in the brain in streptozotocin-induced diabetic rats, Naunyn Schmiedebergs Arch. Pharmacol. 391 (2018) 1237-1245. https://doi.org/10.1007/s00210-018-1543-z.

[84]

R. Ramasamy, S.F. Yan, A.M. Schmidt, Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications, Ann. N.Y. Acad. Sci. 1243 (2011) 88-102. https://doi.org/10.1111/j.1749-6632.2011.06320.x.

[85]

Y. Hong, Z. An, Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling, Arch. Pharm. Res. 41 (2018) 655-663. https://doi.org/10.1007/s12272-015-0662-z.

[86]

M. Xue, M.O. Weickert, S. Qureshi, et al., Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation, Diabetes 65 (2016) 2282-2294. https://doi.org/10.2337/db16-0153.

[87]

X. Zhu, Y. Liu, Y. Liu, et al., The antidepressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway, Front. Pharmacol. 11 (2020) 1325. https://doi.org/10.3389/fphar.2020.01325.

[88]

S. Ahmad, S. Mittal, R. Gulia, et al., Therapeutic role of hesperidin in collagen-induced rheumatoid arthritis through antiglycation and antioxidant activities, Cell Biochem. Funct. 40 (2022) 473-480. https://doi.org/10.1002/cbf.3708.

[89]

J.E. Lee, Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5-anhydroglucitol, Ann. Pediatr. Endocrinol. Metab. 20 (2015) 74-78. https://doi.org/10.6065/apem.2015.20.2.74.

[90]

M.S. Khan, T. Rehman, M.A. Ismae, et al., Bioflavonoid (Hesperidin) restrains protein oxidation and advanced glycation end product formation by targeting AGEs and glycolytic enzymes, Cell Biochem. Biophys. 79 (2021) 833-844. https://doi.org/10.1007/s12013-021-00997-8.

[91]

X. Peng, X. Hu, K. Liu, et al., Exploring inhibitory effect and mechanism of hesperetin-Cu (Ⅱ) complex against protein glycation, Food Chem. 416 (2023) 135801. https://doi.org/10.1016/j.foodchem.2023.135801.

[92]

N. Caengprasath, S. Ngamukote, K. Mäkynen, et al., The protective effects of pomelo extract (Citrus grandis L. Osbeck) against fructose-mediated protein oxidation and glycation, EXCLI J. 12 (2013) 491-502.

[93]

M.Y. Ali, S. Zaib, M.M. Rahman, et al., Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities, Bioorg. Chem. 102 (2020) 104061. https://doi.org/10.1016/j.bioorg.2020.104061.

[94]

G. Yang, X. Xia, H. Zhong, et al., Protective effect of tangeretin and 5-hydroxy-6,7,8,3′,4′-pentamethoxyflavone on collagen-induced arthritis by inhibiting autophagy via activation of the ROS-AKT/mTOR signaling pathway, J. Agric. Food Chem. 69 (2021) 259-266. https://doi.org/10.1021/acs.jafc.0c06801.

[95]

G. Yang, C.C. Lin, Y. Yang, et al., Nobiletin prevents TMAO-induced vascular inflammation via inhibition of the NF-κB/MAPK pathways, J. Agric. Food Chem. 67 (2019) 6169-6176. https://doi.org/10.1021/acs.jafc.9b01270.

[96]

J. Kimura, K. Shimizu, K. Kajima, et al., Nobiletin reduces intracellular and extracellular β-amyloid in iPS cell-derived Alzheimer’s disease model neurons, Biol. Pharm. Bull. 41 (2018) 451-457. https://doi.org/10.1248/bpb.b17-00364.

[97]

A. Nakajima, Y. Ohizumi, K. Yamada, Anti-dementia activity of nobiletin, a citrus flavonoid: a review of animal studies, Clin. Psychopharmacol. Neurosci. 12 (2014) 75-82. https://doi.org/10.9758/cpn.2014.12.2.75.

[98]

A. Upadhyay, E. Tuenter, A. Amin, et al., 5-O-Demethylnobiletin, a polymethoxylated flavonoid, from Citrus depressa Hayata peel prevents protein glycation, J. Funct. Foods 11 (2014) 243-249. https://doi.org/10.1016/j.jff.2014.10.012.

[99]

M.C. Lai, W.Y. Liu, S.S. Liou, et al., The citrus flavonoid hesperetin encounters diabetes-mediated Alzheimer-type neuropathologic changes through relieving advanced glycation end-products inducing endoplasmic reticulum stress, Nutrients 14 (2022) 745. https://doi.org/10.3390/nu14040745.

[100]

M.C. Lai, W.Y. Liu, S.S. Liou, et al., Diosmetin targeted at peroxisome proliferator-activated receptor gamma alleviates advanced glycation end products induced neuronal injury, Nutrients 14 (2022) 2248. https://doi.org/10.3390/nu14112248.

[101]

F. Fang, L.F. Lue, S. Yan, et al., RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 24 (2010) 1043-1055. https://doi.org/10.1096/fj.09-139634.

[102]

Y. Zhang, Z. Luo, L. Ma, et al., Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for age via peroxisome proliferator-activated receptor gamma activation, Int. J. Mol. Med. 25 (2010) 729-734. https://doi.org/10.3892/ijmm_00000398.

[103]

M. Kastle, T. Grune, Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system, Curr. Pharm. Des. 17 (2011) 4007-4022. https://doi.org/10.2174/138161211798764898.

[104]

J. Raupbach, C. Otta, J. Koenig, et al., Proteasomal degradation of glycated proteins depends on substrate unfolding: preferred degradation of moderately modified myoglobin, Free Radic. Biol. Med. 152 (2020) 516-524. https://doi.org/10.1016/j.freeradbiomed.2019.11.024.

[105]

Z. Svikle, B. Peterfelde, N. Sjakste, et al., Ubiquitin-proteasome system in diabetic retinopathy, PeerJ 10 (2022) e13715. https://doi.org/10.7717/peerj.13715.

[106]

A. Taylor, Mechanistically linking age-related diseases and dietary carbohydrate via autophagy and the ubiquitin proteolytic systems, Autophagy 8 (2012) 1404-1406. https://doi.org/10.4161/auto.21150.

[107]

D.J. Eisermann, U. Wenzel, E. Fitzenberger, Inhibition of chaperone-mediated autophagy prevents glucotoxicity in the Caenorhabditis elegans mev-1 mutant by activation of the proteasome, Biochem. Biophys. Res. Commun 484 (2017) 171-175. https://doi.org/10.1016/j.bbrc.2017.01.043.

[108]

A. Takahashi, Y. Takabatake, T. Kimura, et al., Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules, Diabetes 66 (2017) 1359-1372. https://doi.org/10.2337/db16-0397.

[109]

K.M. Choi, K.A. Han, H.J. Ahn, et al., Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial, J. Clin. Endocrinol. Metab. 97 (2012) 3751-3758. https://doi.org/10.1210/jc.2012-1951.

[110]

M.H. Macías-Cervantes, J.M.D. Rodríguez-Soto, J. Uribarri, et al., Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men, Nutr. Burbank Los Angel. City. Calif 31 (2015) 446-451. https://doi.org/10.1016/j.nut.2014.10.004.

[111]

S. Rowan, E. Bejarano, A. Taylor, Mechanistic targeting of advanced glycation end-products in age-related diseases, Biochim. Biophys. Acta Mol. Basis Dis. 1864 (2018) 3631-3643. https://doi.org/10.1016/j.bbadis.2018.08.036.

[112]

C.Y. Chen, J.Q. Zhang, L. Li, et al., Advanced glycation end products in the skin: molecular mechanisms, methods of measurement, and inhibitory pathways, Front. Med. 9 (2022) 837222. https://doi.org/10.3389/fmed.2022.837222.

[113]

S. Sarmah, A. Goswami, V.K. Belwal, et al., Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: an insight into their mechanism of action, Food Res. Int. 157 (2022) 111358. https://doi.org/10.1016/j.foodres.2022.111358.

[114]
K. Kishan Srikanth, J.A. Orrick, Biochemistry, polyol or sorbitol pathways. In: NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK576381.
[115]

M.S. Khan, F.A. Qais, M.T. Rehman, et al., Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: binding, enzyme kinetics and molecular docking analysis. Int. J. Biol. Macromol. 159 (2020) 87-97. https://doi.org/10.1016/j.ijbiomac.2020.04.226.

Food Science and Human Wellness
Pages 2363-2372
Cite this article:
Xiao Y, Shen J, Zhan J, et al. Antiglycating effects of citrus flavonoids and associated mechanisms. Food Science and Human Wellness, 2024, 13(5): 2363-2372. https://doi.org/10.26599/FSHW.2022.9250247

1091

Views

165

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 June 2023
Revised: 20 July 2023
Accepted: 27 August 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return