PDF (2.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (3)
Table 1
Table 2
Table 3
Open Access

Application and prospects of proteomic technology in inflammation: a review

Senye WangaYanhai ChuaJiajia YuanaYiqi LiaZhenhua Liua,b,cXiaoyu Chena,d()Wenyi Kanga,b,c,d()
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Functional Food Engineering Technology Research Center, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
College of Agriculture, Henan University, Kaifeng 475004, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Proteomics is a new technology that has been widely applied in the field of life and health science. It effectively addresses issues related to the impact of dietary structure on organs, tissues, and cells, as well as the changes in proteins in various organs, tissues, and cells under disease conditions. The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation. In this paper, the application of proteomics in the field of inflammation in recent years was summarized, especially in the therapeutic target and mechanism of action, which opens up a new way for more effective prevention, diagnosis, and treatment of inflammation, and provides medical protection for human life and health.

References

[1]

M.R. Wilkins, J.C. Sanchez, A.A. Gooley, et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnol. Genet. Eng. Rev. 13 (1996) 19-50. https://doi.org/10.1080/02648725.1996.10647923.

[2]

P. Kahn, From genome to proteome: looking at a cell’s proteins, Science 270 (1995) 369-370. https://doi.org/10.1126/science.270.5235.369.

[3]

B. Aslam, M. Basit, M.A. Nisar, et al., Proteomics: technologies and their applications, J. Chromatogr. Sci. 55 (2017) 182-196. https://doi.org/10.1093/chromsci/bmw167.

[4]

L.M. Smith, To the editor proteoform: a single term describing protein complexity lloyd, Nat. Methods 10 (2014) 186-187. https://doi.org/10.1038/nmeth.2369.

[5]

Y. Yang, L. Lin, L. Qiao, Deep learning approaches for data-independent acquisition proteomics, Expert Rev. Proteomics. 18 (2021) 1031-1043. https://doi.org/10.1080/14789450.2021.2020654.

[6]

J.A. Dowell, L.J. Wright, E.A. Armstrong, et al., Benchmarking quantitative performance in label-free proteomics, ACS Omega 6 (2021) 2494-2504. https://doi.org/10.1021/acsomega.0c04030.

[7]

R. Savino, S. Paduano, M. Preianò, et al., The proteomics big challenge for biomarkers and new drug-targets discovery, Int. J. Mol. Sci. 13 (2012) 13926-13948. https://doi.org/10.3390/ijms131113926.

[8]

P.R.Graves, T.A.J. Haystead, Molecular biologist’s guide to proteomics, Microbiol. Mol. Biol. Rev. 2018 (2018) 39-63. https://doi.org/10.1128/MMBR.66.1.39-63.2002.

[9]

Y. Zhu, R. Aebersold, M. Mann, et al., SnapShot: clinical proteomics, Cell 184 (2021) 4840-4840. https://doi.org/10.1016/j.cell.2021.08.015.

[10]

J. Shin, W. Lee, W. Lee, Structural proteomics by NMR spectroscopy, Expert Rev. Proteomics. 5 (2008) 589-601. https://doi.org/10.1586/14789450.5.4.589.

[11]

A. Cattaneo, M. Chirichella, Targeting the post-translational proteome with intrabodies, Trends Biotechnol. 37 (2019) 578-591. https://doi.org/10.1016/j.tibtech.2018.11.009.

[12]

K.T. Schjoldager, Y. Narimatsu, H.J. Joshi, et al., Global view of human protein glycosylation pathways and functions, Nat. Rev. Mol. Cell Biol. 21 (2020) 729-749. https://doi.org/10.1038/s41580-020-00294-x.

[13]

I. Faenza, W.L. Blalock, Innate immunity: a balance between disease and adaption to stress, Biomolecules 12 (2022) 737-757. https://doi.org/10.3390/biom12050737.

[14]

B.S. Karam, A. Chavez-Moreno, W. Koh, et al., Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes, Cardiovasc. Diabetol. 16 (2017) 120-129. https://doi.org/10.1186/s12933-017-0604-9.

[15]

M. Bäck, A. Yurdagul, I. Tabas, et al., Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities, Nat. Rev. Cardiol. 16 (2019) 389-406. https://doi.org/10.1038/s41569-019-0169-2.

[16]

A. Sahebnasagh, F. Saghafi, S. Negintaji, et al., Nitric oxide and immune responses in cancer: searching for new therapeutic strategies, Curr. Med. Chem. 29 (2021) 1561-1595. https://doi.org/10.2174/0929867328666210707194543.

[17]

Z. Yin, Z. Liang, C. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hum. Wellness 10 (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[18]

Y. Yu, F. Pei, Z. Li, Orientin and vitexin attenuate lipopolysaccharide-induced inflammatory responses in RAW264.7 cells: a molecular docking study, biochemical characterization, and mechanism analysis, Food Sci. Hum. Wellness 11 (2022) 1273-1281. https://doi.org/10.1016/j.fshw.2022.04.024.

[19]

C.M. Mulvey, L.M. Breckels, O.M. Crook, et al., Spatiotemporal proteomic profiling of the pro-inflammatory response to lipopolysaccharide in the THP-1 human leukaemia cell line, Nat. Commun. 12 (2021) 5773-5792. https://doi.org/10.1038/s41467-021-26000-9.

[20]

H. Iwata, C. Goettsch, A. Sharma, et al., PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation, Nat. Commun. 7 (2016) 12849-12868. https://doi.org/10.1038/ncomms12849.

[21]

T. Bilbrough, E. Piemontese, O. Seitz, Dissecting the role of protein phosphorylation: a chemical biology toolbox, Chem. Soc. Rev. 51 (2022) 5691-5730. https://doi.org/10.1039/d1cs00991e.

[22]

H.Z. Duan, Z.K. Nie, Y. Li, et al., Unremitting progresses for phosphoprotein synthesis, Curr. Opin. Chem. Biol. 58 (2020) 96-111. https://doi.org/10.1016/j.cbpa.2020.07.009.

[23]

J. Song, D. Han, H. Lee, et al., Comprehensive proteomic and phosphoproteomic analysis of retinal pigment epithelium reveals multiple pathway alterations in response to the inflammatory stimuli, Int. J. Mol. Sci. 21 (2020) 3037-3055. https://doi.org/10.3390/ijms21093037.

[24]

B. Welz, R. Bikker, J. Junemann, et al., Proteome and phosphoproteome analysis in TNF long term-exposed primary human monocytes, Int. J. Mol. Sci. 20 (2019) 1241-1261. https://doi.org/10.3390/ijms20051241.

[25]

Y. Luo, Q. Jiang, Z. Zhu, et al., Phosphoproteomics and proteomics reveal metabolism as a key node in LPS-induced acute inflammation in RAW264.7, Inflammation. 43 (2020) 1667-1679. https://doi.org/10.1007/s10753-020-01240-x.

[26]

G. Chinetti-Gbaguidi, S. Colin, B. Staels, Macrophage subsets in atherosclerosis, Nat. Rev. Cardiol. 12 (2015) 10-17. https://doi.org/10.1038/nrcardio.2014.173.

[27]

A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, et al., Macrophage plasticity, polarization, and function in health and disease, J. Cell. Physiol. 233 (2018) 6425-6440. https://doi.org/10.1002/jcp.26429.

[28]

C. Huang, C. Lewis, N.A. Borg, et al., Proteomic identification of interferon-induced proteins with tetratricopeptide repeats as markers of M1 macrophage polarization, J. Proteome. Res. 17 (2018) 1485-1499. https://doi.org/10.1021/acs.jproteome.7b00828.

[29]

Y. Sun, J. Tang, C. Li, et al., Sulforaphane attenuates dextran sodium sulphate induced intestinal inflammation via IL-10/STAT3 signaling mediated macrophage phenotype switching, Food Sci. Hum. Wellness 11 (2022) 129-142. https://doi.org/10.1016/j.fshw.2021.07.014.

[30]

P. Li, Z. Hao, J. Wu, et al., Comparative proteomic analysis of polarized human THP-1 and mouse RAW264.7 macrophages, Front. Immunol. 12 (2021) 1-13. https://doi.org/10.3389/fimmu.2021.700009.

[31]

P. Italiani, D. Boraschi, From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation, Front. Immunol. 5 (2014) 514-536. https://doi.org/10.3389/fimmu.2014.00514.

[32]

J. Aron-Wisnewsky, J. Tordjman, C. Poitou, et al., Human adipose tissue macrophages: M1 and M2 cell surface markers in subcutaneous and omental depots and after weight loss, J. Clin. Endocrinol. Metab. 94 (2009) 4619-4623. https://doi.org/10.1210/jc.2009-0925.

[33]

C.P. Liu, X. Zhang, Q.L. Tan, et al., NF-κB pathways are involved in M1 polarization of RAW 264.7 macrophage by polyporus polysaccharide in the tumor microenvironment, PLoS One 12 (2017) e0188317. https://doi.org/10.1371/journal.pone.0188317.

[34]

Z. Zhong, S. Liang, E. Sanchez-Lopez, et al., New mitochondrial DNA synthesis enables NLRP3 inflammasome activation, Nature 560 (2018) 198-203. https://doi.org/10.1038/s41586-018-0372-z.

[35]

S.M. Pinto, H. Kim, Y. Subbannayya, et al., Comparative proteomic analysis reveals varying impact on immune responses in phorbol 12-myristate-13-acetate-mediated THP-1 monocyte-to-macrophage differentiation, Front. Immunol. 12 (2021) 1-16. https://doi.org/10.3389/fimmu.2021.679458.

[36]

S. Suttapitugsakul, M. Tong, R. Wu, Time-resolved and comprehensive analysis of surface glycoproteins reveals distinct responses of monocytes and macrophages to bacterial infection, Angew. Chemie-Int. Ed. 60 (2021) 11494-11503. https://doi.org/10.1002/anie.202102692.

[37]

Y. Aizawa, M. Mori, T. Suzuki, et al., Shotgun proteomic investigation of methyltransferase and methylation profiles in lipopolysaccharide stimulated RAW264.7 murine macrophages, Biomed. Res. 43 (2022) 73-80. https://doi.org/10.2220/biomedres.43.73.

[38]

Z. Yao, X. Jia, D.A. Megger, et al., Label-free proteomic analysis of exosomes secreted from THP-1-derived macrophages treated with IFN-α identifies antiviral proteins enriched in exosomes, J. Proteome. Res. 18 (2019) 855-864. https://doi.org/10.1021/acs.jproteome.8b00514.

[39]

D.A.B. Rex, Y. Subbannayya, P.K. Modi, et al., Temporal quantitative phosphoproteomics profiling of interleukin-33 signaling network reveals unique modulators of monocyte activation, Cells 11 (2022) 138-153. https://doi.org/10.3390/cells11010138.

[40]

P. Li, C. Ma, J. Li, et al., Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells, J. Zhejiang Univ. Sci. B. 23 (2022) 407-422. https://doi.org/10.1631/jzus.B2100930.

[41]

D.M. Mosser, K. Hamidzadeh, R. Goncalves, Macrophages and the maintenance of homeostasis, Cell. Mol. Immunol. 18 (2021) 579-587. https://doi.org/10.1038/s41423-020-00541-3.

[42]

G. Tang, S. Li, C. Zhang, et al., Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management, Acta Pharm. Sin. B. 11 (2021) 2749-2767. https://doi.org/10.1016/j.apsb.2020.12.020.

[43]

P.B. Gonçalves, N.C. Romeiro, Multi-target natural products as alternatives against oxidative stress in chronic obstructive pulmonary disease (COPD), Eur. J. Med. Chem. 163 (2019) 911-931. https://doi.org/10.1016/j.ejmech.2018.12.020.

[44]

H. Li, X. Huang, X. Chang, et al., S100-A9 protein in exosomes derived from follicular fluid promotes inflammation via activation of NF-κB pathway in polycystic ovary syndrome, J. Cell. Mol. Med. 24 (2020) 114-125. https://doi.org/10.1111/jcmm.14642.

[45]

W.T. Liao, C.H. Hung, S.S. Liang, et al., Anti-inflammatory effects induced by near-infrared light irradiation through M2 macrophage polarization, J. Invest. Dermatol. 141 (2021) 2056-2066. https://doi.org/10.1016/j.jid.2020.11.035.

[46]

N. Zhang, F. Peng, Y. Wang, et al., Shikonin induces colorectal carcinoma cells apoptosis and autophagy by targeting galectin-1/JNK signaling axis, Int. J. Biol. Sci. 16 (2020) 147-161. https://doi.org/10.7150/ijbs.36955.

[47]

A. Ortiz, H. Husi, L. Gonzalez-Lafuente, et al., Mitogen-activated protein kinase 14 promotes AKI, J. Am. Soc. Nephrol. 28 (2017) 823-836. https://doi.org/10.1681/ASN.2015080898.

[48]

P. Curto, C. Santa, L. Cortes, et al., Spotted fever group rickettsia trigger species-specific alterations in macrophage proteome aignatures with different impacts in host innate inflammatory responses, Microbiol. Spectr. 9 (2021) 1-26. https://doi.org/10.1128/spectrum.00814-21.

[49]

C.E. Herkt, B.E. Caffrey, K. Surmann, et al., A microRNA network controls Legionella pneumophila replication in human macrophages via LGALS8 and MX1, mBio 11 (2020) e03155-e03173. https://doi.org/10.1128/mBio.03155-19

[50]

C. Vaz, J.A. Reales-Calderon, A. Pitarch, et al., Enrichment of ATP binding proteins unveils proteomic alterations in human macrophage cell death, inflammatory response, and protein synthesis after interaction with candida albicans, J. Proteome Res. 18 (2019) 2139-2159. https://doi.org/10.1021/acs.jproteome.9b00032.

[51]

A. Bosworth, S.D. Dowall, S. Armstrong, et al., Investigating the cellular transcriptomic response induced by the makona variant of ebola virus in differentiated THP-1 cells, Viruses 11 (2019) 1023-1041. https://doi.org/10.3390/v11111023.

[52]

S. Welkos, I. Blanco, U. Okaro, et al., A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor, Virulence 11 (2020) 1041-1058. https://doi.org/10.1080/21505594.2020.1806675.

[53]

R. Huang, C. Hao, D. Wang, et al., SPP1 derived from silica-exposed macrophage exosomes triggers fibroblast transdifferentiation, Toxicol. Appl. Pharmacol. 422 (2021) 115559-115568. https://doi.org/10.1016/j.taap.2021.115559.

[54]

X. Pei, J. Liu, M. Liu, et al., Quantitative proteomics revealed modulation of macrophages by MetQ gene of Streptococcus suis serotype 2, Amb Express 10 (2020) 195-207. https://doi.org/10.1186/s13568-020-01131-2.

[55]

X. Yan, S. Hu, Y. Yang, et al., Proteomics investigation of the time course responses of RAW264.7 macrophages to infections with the wild-type and twin-arginine translocation mutant strains of brucella melitensis, Front. Cell. Infect. Microbiol. 11 (2021) 1-13. https://doi.org/10.3389/fcimb.2021.679571.

[56]

W. Zhang, Y. Wei, H. Zhang, et al., Structural alternation in heat shock proteins of activated macrophages, Cells 10 (2021) 3507-3518. https://doi.org/10.3390/cells10123507.

[57]

R. Fu, Q. Li, R. Fan, et al., iTRAQ-based secretome reveals that SiO2 induces the polarization of RAW264.7 macrophages by activation of the NOD-RIP2-NF-κB signaling pathway, Environ. Toxicol. Pharmacol. 63 (2018) 92-102. https://doi.org/10.1016/j.etap.2018.08.010.

[58]

X. Yang, Y. Zhang, W. Lai, et al., Proteomic profiling of RAW264.7 macrophage cells exposed to graphene oxide: insights into acute cellular responses, Nanotoxicology 13 (2019) 35-49. https://doi.org/10.1080/17435390.2018.1530389.

[59]

N. Bie, L. Han, M. Meng, et al., The immunomodulatory effect of docosahexaenoic acid (DHA) on the RAW264.7 cells by modification of the membrane structure and function, Food Funct. 11 (2020) 2603-2616. https://doi.org/10.1039/c9fo02618e.

[60]

J. Yuan, Z. Li, F. Li, et al., Proteomics reveals the potential mechanism of Mrps35 controlling Listeria monocytogenes intracellular proliferation in macrophages, Proteomics 21 (2021) 1-11. https://doi.org/10.1002/pmic.202000262.

[61]

X. Li, Y. Zeng, S. Guo, et al., Glycometabolism change during Burkholderia pseudomallei infection in RAW264.7 cells by proteomic analysis, Sci. Rep. (2022) 1-10. https://doi.org/10.1038/s41598-022-16716-z.

[62]

S. Sha, Y. Shi, Y. Tang, et al., Mycobacterium tuberculosis Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway, Immunol. Cell Biol. 99 (2021) 570-585. https://doi.org/10.1111/imcb.12436.

[63]

Y. Wang, D.A. Dattmore, W. Wang, et al., Trans, trans-2,4-decadienal, a lipid peroxidation product, induces inflammatory responses via Hsp90- or 14–3-3ζ-dependent mechanisms, J. Nutr. Biochem. 76 (2020) 108286-108307. https://doi.org/10.1016/j.jnutbio.2019.108286.

[64]

X. Xu, X. Wang, Y. Guo, et al., Inhibition of PTP1B promotes M2 polarization via microRNA-26a/MKP1 signaling pathway in murine macrophages, Front. Immunol. 10 (2019) 1-11. https://doi.org/10.3389/fimmu.2019.01930.

[65]

C.M. Daniels, P.R. Kaplan, I. Bishof, et al., Dynamic ADP-ribosylome, phosphoproteome, and interactome in LPS-activated macrophages, J. Proteome Res. 19 (2020) 3716-3731. https://doi.org/10.1021/acs.jproteome.0c00261.

[66]

M. Guo, A. Härtlova, M. Gierliński, et al., Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages, EMBO J. 38 (2019) 1-15. https://doi.org/10.15252/embj.2018100299.

[67]

S.K. Pandey, A. Shteinfer-Kuzmine, V. Chalifa-Caspi, et al., Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: novel target to disrupt survival, inflammation, and immunosuppression, Front. Oncol. 12 (2022) 1-21. https://doi.org/10.3389/fonc.2022.992260.

[68]

M.J. Saul, A.B. Hegewald, A.C. Emmerich, et al., Mass spectrometry-based proteomics approach characterizes the dual functionality of miR-328 in monocytes, Front. Pharmacol. 10 (2019) 1-10. https://doi.org/10.3389/fphar.2019.00640.

[69]

D. Pamies, C. Sartori, D. Schvartz, et al., Neuroinflammatory response to TNFα and IL1β cytokines is accompanied by an increase in glycolysis in human astrocytes in vitro, Int. J. Mol. Sci. 22 (2021) 1-20. https://doi.org/10.3390/ijms22084065.

[70]

M.S. Saddala, A. Lennikov, H. Huang, Placental growth factor regulates the pentose phosphate pathway and antioxidant defense systems in human retinal endothelial cells, J. Proteomics. 217 (2020) 103682-103705. https://doi.org/10.1016/j.jprot.2020.103682.

[71]

Y. Gao, Q. Ye, X. Bao, et al., Transcriptomic and proteomic profiling reveals the intestinal immunotoxicity induced by aflatoxin M1 and ochratoxin A, Toxicon. 180 (2020) 49-61. https://doi.org/10.1016/j.toxicon.2020.03.008.

[72]

C. Jacqueline, A. Lee, N. Frey, et al., Inflammation-induced abnormal expression of self-molecules on epithelial cells: targets for tumor immunoprevention, Cancer Immunol. Res. 8 (2021) 1027-1038. https://doi.org/10.1158/2326-6066.CIR-19-0870..

[73]

F.J. Velloso, A.R. Campos, M.C. Sogayar, et al., Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation, BMC Genomics. 20 (2019) 1-20. https://doi.org/10.1186/s12864-019-5523-6.

[74]

Y. Sun, L. Li, C. Li, et al., Gene microarray integrated with iTRAQ-based proteomics for the discovery of NLRP3 in LPS-induced inflammatory response of bovine mammary epithelial cells, J. Dairy Res. 86 (2019) 416-424. https://doi.org/10.1017/S0022029919000761.

[75]

Z. Yu, J. Gao, X. Zhang, et al., Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth, Signal Transduct. Target. Ther. 7 (2022) 71-84. https://doi.org/10.1038/s41392-022-00888-1.

[76]

L. Falcone, E. Aruffo, P. Di Carlo, et al., Ozone effect on inflammatory and proteomic profile of human macrophages and airway epithelial cells, Eur. J. Public Health. 30 (2020) 103979-103988. https://doi.org/10.1093/eurpub/ckaa166.102.

[77]

J. Wu, Y. Wang, Z. Jiang, Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages, Expert Rev. Proteomics. 17 (2020) 175-185. https://doi.org/10.1080/14789450.2020.1738223.

[78]

A. Olona, C. Hateley, S. Muralidharan, et al., Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation, Br. J. Pharmacol. 178 (2021) 4575-4587. https://doi.org/10.1111/bph.15642.

[79]

A. Płóciennikowska, A. Hromada-Judycka, K. Borzęcka, et al., Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling, Cell. Mol. Life Sci. 72 (2015) 557-581. https://doi.org/10.1007/s00018-014-1762-5.

[80]

S. Vallabhapurapu, M. Karin, Regulation and function of NF-κB transcription factors in the immune system, Annu. Rev. Immunol. 27 (2009) 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641.

[81]

H.T. Yang, S. Papoutsopoulou, M. Belich, et al., Coordinate regulation of TPL-2 and NF-κB signaling in macrophages by NF-κB1 p105, Mol. Cell. Biol. 32 (2012) 3438-3451. https://doi.org/10.1128/mcb.00564-12.

[82]

S.C. Sun, The noncanonical NF-κB pathway, Immunol. Rev. 246 (2012) 125-140. https://doi.org/10.1111/j.1600-065X.2011.01088.x.

[83]

X.W. Zhang, N. Feng, L.C. Wang, et al., Small-molecule arone protects from neuroinflammation in LPS-activated microglia BV-2 cells by targeting histone-remodeling chaperone ASF1a, Biochem. Pharmacol. 177 (2020) 113932-113940. https://doi.org/10.1016/j.bcp.2020.113932.

[84]

M. Zhao, K. Song, W. Hao, et al., Non-proteolytic ubiquitination of OTULIN regulates NF-κB signaling pathway, J. Mol. Cell Biol. 12 (2020) 163-175. https://doi.org/10.1093/jmcb/mjz081.

[85]

J.S. Krueger, V.G. Keshamouni, N. Atanaskova, et al., Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion, Oncogene 20 (2001) 4209-4218. https://doi.org/10.1038/sj.onc.1204541.

[86]

H. Wang, C. Ma, D. Sun-Waterhouse, et al., Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells, Food Sci. Hum. Wellness 11 (2022) 806-814. https://doi.org/10.1016/j.fshw.2022.03.012.

[87]

R. Gao, W. Shu, Y. Shen, et al., Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways, Food Sci. Hum. Wellness 10 (2021) 103-111. https://doi.org/10.1016/j.fshw.2020.04.014.

[88]

J. Wang, F. He, L. Chen, et al., Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways, Biomed. Pharmacother. 105 (2018) 37-44. https://doi.org/10.1016/j.biopha.2018.05.104.

[89]

L. Zhao, T. Geng, K. Sun, et al., Proteomic analysis reveals the molecular mechanism of Hippophae rhamnoides polysaccharide intervention in LPS-induced inflammation of IPEC-J2 cells in piglets, Int. J. Biol. Macromol. 164 (2020) 3294-3304. https://doi.org/10.1016/j.ijbiomac.2020.08.235.

[90]

H. Ti, Z. Mai, Z. Wang, et al., Bisabolane-type sesquiterpenoids from: Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways, Food Funct. 12 (2021) 6697-6711. https://doi.org/10.1039/d1fo01212f.

[91]

L.C. Wang, W.H. Wei, X.W. Zhang, et al., An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid, Front. Pharmacol. 9 (2018) 1-11. https://doi.org/10.3389/fphar.2018.00370.

[92]

S. Banerjee, A. Biehl, M. Gadina, et al., JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects, Drugs 77 (2017) 521-546. https://doi.org/10.1007/s40265-017-0701-9.

[93]

K. Chen, J. Liu, X. Cao, Regulation of type Ⅰ interferon signaling in immunity and inflammation: a comprehensive review, J. Autoimmun. 83 (2017) 1-11. https://doi.org/10.1016/j.jaut.2017.03.008.

[94]

M.B. Malterer, S.J. Glass, J.P. Newman, Interferon-stimulated genes: a complex web of host defenses, Annu. Rev. Immunol. 44 (2014) 735-745. https://doi.org/10.1038/jid.2014.371.

[95]

G.R. Stark, J.E. Darnell, The JAK-STAT pathway at twenty, Immunity 36 (2012) 503-514. https://doi.org/10.1016/j.immuni.2012.03.013.

[96]

C. Mazewski, R.E. Perez, E.N. Fish, et al., Type Ⅰ interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways, Front. Immunol. 11 (2020) 1-13. https://doi.org/10.3389/fimmu.2020.606456.

[97]

Z. Tao, J. Chen, J. Su, et al., Quantitative proteomics analysis of systemic responses and biological mechanisms of ShuFengJieDu capsule using H1N1-infected RAW264.7 cells, ACS Omega 5 (2020) 15417-15423. https://doi.org/10.1021/acsomega.0c01545.

[98]

Y.M. Loo, M. Gale, Immune signaling by RIG-I-like receptors, Immunity 34 (2011) 680-692. https://doi.org/10.1016/j.immuni.2011.05.003.

[99]

J. Hiscott, R. Lin, P. Nakhaei, et al., MasterCARD: a priceless link to innate immunity, Trends Mol. Med. 12 (2006) 53-56. https://doi.org/10.1016/j.molmed.2005.12.003.

[100]

H. Chen, Z. Jiang, The essential adaptors of innate immune signaling, Protein Cell 4 (2013) 27-39. https://doi.org/10.1007/s13238-012-2063-0.

[101]

K. Eisenächer, A. Krug, Regulation of RLR-mediated innate immune signaling-it is all about keeping the balance, Eur. J. Cell Biol. 91 (2012) 36-47. https://doi.org/10.1016/j.ejcb.2011.01.011.

[102]

M. Zhou, Y. Tang, L. Liao, et al., Phillygenin inhibited LPS-induced RAW 264.7 cell inflammation by NF-κB pathway, Eur. J. Pharmacol. 899 (2021) 174043-174053. https://doi.org/10.1016/j.ejphar.2021.174043.

[103]

T. Horiuchi, H. Mitoma, S. Harashima, et al., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology (Oxford, England) 49 (2021) 1215-1228. https://doi.org/10.1093/rheumatology/keq031.

[104]

G. Chen, D.V. Goeddel, TNF-R1 signaling: a beautiful pathway, Science 296 (2002) 1634-1635. https://doi.org/10.1126/science.1071924.

[105]

R. Ciuffa, E. Caron, A. Leitner, et al., Contribution of mass spectrometry-based proteomics to the understanding of TNF-α signaling, J. Proteome. Res. 16 (2017) 14-33. https://doi.org/10.1021/acs.jproteome.6b00728.

[106]

W. Li, H. Wang, C.Y. Kuang, et al., An essential role for the Id1/PI3K/Akt/NFκB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro, Mol. Cell. Biochem. 363 (2012) 135-145. https://doi.org/10.1007/s11010-011-1166-x.

[107]

L. He, Y. Pan, J. Yu, et al., Decursin alleviates the aggravation of osteoarthritis via inhibiting PI3K-Akt and NF-κB signal pathway, Int. Immunopharmacol. 97 (2021) 107657-107666. https://doi.org/10.1016/j.intimp.2021.107657.

[108]

Y. Wang, Y. Zhou, D.T. Graves, FOXO transcription factors: their clinical significance and regulation, Biomed. Res. Int. 2014 (2014) 1-13. https://doi.org/10.1155/2014/925350.

[109]

D. Su, G.M. Coudriet, H.K. Dae, et al., FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages, Diabetes 58 (2009) 2624-2633. https://doi.org/10.2337/db09-0232.

[110]

R. Jiang, J. Xu, Y. Zhang, et al., Ligustrazine alleviates psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocyte, Biomed. Pharmacother. 150 (2022) 113010-113019. https://doi.org/10.1016/j.biopha.2022.113010.

[111]

G. Wu, B. Cheng, H. Qian, et al., Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity: via quantitative chemical proteomics, Org. Biomol. Chem. 17 (2019) 6854-6859. https://doi.org/10.1039/c9ob01264h.

[112]

L. Chen, H.J. Wang, T.F. Ji, et al., Chemoproteomics-based target profiling of sinomenine reveals multiple protein regulators of inflammation, Chem. Commun. 57 (2021) 5981-5984. https://doi.org/10.1039/d1cc01522b.

[113]

H. Li, X. Zhang, C. Xiang, et al., Identification of phosphodiesterase-4 as the therapeutic target of arctigenin in alleviating psoriatic skin inflammation, J. Adv. Res. 33 (2021) 241-251. https://doi.org/10.1016/j.jare.2021.02.006.

[114]

J. Guo, J. Chen, X. Lu, et al., Proteomic analysis reveals inflammation modulation of κ/ι-carrageenan hexaoses in lipopolysaccharide-induced RAW264.7 macrophages, J. Agric. Food Chem. 66 (2018) 4758-4767. https://doi.org/10.1021/acs.jafc.8b01144.

[115]

N. Chen, X. Zhao, F. Wang, et al., Proteomic study of sulfated polysaccharide from Enterobacter cloacae Z0206 against H2O2-induced oxidative damage in murine macrophages, Carbohydr. Polym. 237 (2020) 116147-116155. https://doi.org/10.1016/j.carbpol.2020.116147.

[116]

R. Jiang, J. Xu, Y. Zhang, et al., Ligustrazine alleviate acute lung injury through suppressing pyroptosis and apoptosis of alveolar macrophages, Front. Pharmacol. 12 (2021) 1-16. https://doi.org/10.3389/fphar.2021.680512.

[117]

F. Duan, X. Wang, H. Wang, et al., GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway, Int. Immunopharmacol. 108 (2022) 108777-108791. https://doi.org/10.1016/j.intimp.2022.108777.

[118]

Q. Zeng, H. Deng, Y. Li, et al., Berberine directly targets the NEK7 protein to block the NEK7-NLRP3 interaction and exert anti-inflammatory activity, J. Med. Chem. 64 (2021) 768-781. https://doi.org/10.1021/acs.jmedchem.0c01743.

[119]

A. Ojha, A. Bhasym, S. Mukherjee, et al., Platelet factor 4 promotes rapid replication and propagation of dengue and Japanese encephalitis viruses, EBioMedicine 39 (2019) 332-347. https://doi.org/10.1016/j.ebiom.2018.11.049.

[120]

T. Barhoumi, B. Alghanem, H. Shaibah, et al., SARS-CoV-2 coronavirus spike protein-induced apoptosis, inflammatory, and oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting enzyme inhibitor (Perindopril), Front. Immunol. 12 (2021) 1-13. https://doi.org/10.3389/fimmu.2021.728896.

[121]

A. Schaffert, J. Arnold, I. Karkossa, et al., The emerging plasticizer alternative dinch and its metabolite minch induce oxidative stress and enhance inflammatory responses in human THP-1 macrophages, Cells 10 (2021) 2367-2386. https://doi.org/10.3390/cells10092367.

[122]

M. Suski, A. Wiśniewska, K. Kuś, et al., Decrease of the proinflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages – quantitative proteomics of the proteome and secretome, Mol. Immunol. 127 (2020) 193-202. https://doi.org/10.1016/j.molimm.2020.09.005.

[123]

M.R. Wang, L.F. Huang, C. Guo, et al., Identification of NLRP3 as a covalent target of 1,6-O,O-diacetylbritannilactone against neuroinflammation by quantitative thiol reactivity profiling (QTRP), Bioorg. Chem. 119 (2022) 105536-105546. https://doi.org/10.1016/j.bioorg.2021.105536.

[124]

P. Mendonca, E. Taka, K.F.A. Soliman, Proteomic analysis of the effect of the polyphenol pentagalloyl glucose on proteins involved in neurodegenerative diseases in activated BV-2 microglial cells, Mol. Med. Rep. 20 (2019) 1736-1746. https://doi.org/10.3892/mmr.2019.10400.

[125]

J. Liu, Z. Zong, W. Zhang, et al., Nicotinamide mononucleotide alleviates LPS-induced inflammation and oxidative stress via decreasing COX-2 expression in macrophages, Front. Mol. Biosci. 8 (2021) 1-12. https://doi.org/10.3389/fmolb.2021.702107.

[126]

Y. Yang, M. chang Liu, H. Li, et al., Proteomics analysis of the protective effect of canola (Brassica campestris L.) bee pollen flavonoids on the tert-butyl hydroperoxide-induced EA.hy926 cell injury model, J. Funct. Foods 75 (2020) 104223-104234. https://doi.org/10.1016/j.jff.2020.104223.

[127]

H. Niu, H. Zhang, F. Wu, et al., Proteomics study on the protective mechanism of soybean isoflavone against inflammation injury of bovine mammary epithelial cells induced by Streptococcus agalactiae, Cell Stress Chaperones. 26 (2021) 91-101. https://doi.org/10.1007/s12192-020-01158-1.

[128]

P. Dandona, A. Aljada, A. Bandyopadhyay, Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol. 25 (2004) 1-7. https://doi.org/10.1016/j.it.2003.10.013.

[129]

I. Tamas, E. Major, D. Horvath, et al., Mechanisms by which smoothelin-like protein 1 reverses insulin resistance in myotubules and mice, Mol. Cell. Endocrinol. 551 (2022) 111663-111675. https://doi.org/10.1016/j.mce.2022.111663.

[130]

N. Yang, L. Yu, Y. Deng, et al., Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics, J. Proteomics. 212 (2020) 103570-103582. https://doi.org/10.1016/j.jprot.2019.103570.

[131]

M.K. Montgomery, J. Bayliss, S. Nie, et al., Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control, Nat. Commun. 13 (2022) 1-18. https://doi.org/10.1038/s41467-022-28889-2.

[132]

H. Liu, G. Pietersz, K. Peter, et al., Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis, J. Nanobiotechnol. 20 (2022) 75-98. https://doi.org/10.1186/s12951-022-01279-y.

[133]

E. Cansby, S. Kumari, M. Caputo, et al., Silencing of STE20-type kinase STK25 in human aortic endothelial and smooth muscle cells is atheroprotective, Commun. Biol. 5 (2022) 1-14. https://doi.org/10.1038/s42003-022-03309-9.

[134]

C.M. Pombo, C. Iglesias, M. Sartages, et al., MST kinases and metabolism, Endocrinology 160 (2019) 1111-1118. https://doi.org/10.1210/en.2018-00898.

[135]

H.C. Chuang, M.H. Chen, Y.M. Chen, et al., BPI overexpression suppresses treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus, Theranostics 11 (2021) 9953-9966. https://doi.org/10.7150/THNO.63743.

[136]

X. Ren, M. Geng, K. Xu, et al., Quantitative proteomic analysis of synovial tissue reveals that upregulated OLFM4 aggravates inflammation in rheumatoid arthritis, J. Proteome Res. 20 (2021) 4746-4757. https://doi.org/10.1021/acs.jproteome.1c00399.

Food Science and Human Wellness
Pages 2373-2385
Cite this article:
Wang S, Chu Y, Yuan J, et al. Application and prospects of proteomic technology in inflammation: a review. Food Science and Human Wellness, 2024, 13(5): 2373-2385. https://doi.org/10.26599/FSHW.2022.9250248
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return