AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Oral administration of egg white ovotransferrin prevents osteoporosis in ovariectomized rats

Nan Shanga,b,cXiaoyu BaoaMichael DoschakdJianping Wua( )
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
College of Engineering, China Agricultural University, Beijing 100083, China
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Healthy, China Agricultural University, Beijing 100193, China
Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2H5, Canada

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

Ovotransferrin, an iron-binding glycoprotein, accounting for approximately 12% of egg white protein, is a member of transferrin fam ily. Our previous studies showed that ovotransferrin stimulates the proliferation and differentiation of osteoblasts, while inhibits osteoclastogenesis and resorption activity. The work aims to study the efficacy of orally administered ovotransferrin on the prevention of osteoporosis using ovariectomized (OVX) Sprague-Dawley rats. Oral administration of ovotransferrin showed no negative effect on body weight, food intake and organ weight. After 12-week treatment, feeding ovotransferrin at a dose of 1% (1 g ovotransferrin/100 g diet) prevented OVX-induced bone loss and maintained relatively high bone mineral density and integrated bone microarchitecture. The serum concentration of biomarkers indicating bone formation was increased in ovotransferrin administration groups, while the bone resorption biomarkers were decreased. Ovotransferrin feeding also decreased the production of serum cytokine TNF-α and IL-6, which are two stimulators for osteoclast differentiation. In addition to its direct regulatory role on bone turnover, ovotransferrin supplementation might benefit osteoporosis prevention by inhibiting adipogenesis, and regulating immune response. Our results suggested the potential application of ovotransferrin as a functional food ingredient on the prevention of osteoporosis.

References

[1]

B. Kim, Y.J. Cho, W.L. Lim, Osteoporosis therapies and their mechanisms of action (review), Exp Ther. Med. 22(2021) 1379. https://doi.org/10.3892/etm.2021.10815.

[2]

M.X. Ji, Q. Yu, Primary osteoporosis in postmenopausal women, Chronic Dis. Transl. Med. 1 (2015) 9-13. https://doi.org/10.1016/j.cdtm.2015.02.006.

[3]

T.J. de Villiers, M.L.S. Gass, C.J. Haines, et al., Global consensus statement on menopausal hormone therapy, Climacteric. 16 (2013) 203-204. https://doi.org/10.3109/13697137.2013.771520.

[4]

M.M. Rahman, A. Bhattacharya, J. Banu, et al., Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis, J. Cell Mol. Med. 13 (2009) 1833-1844. https://doi.org/10.1111/j.1582-4934.2009.00649.x.

[5]

O. Fromigué, D. Modrowski, P.J. Marie, Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta, Curr. Pharm. Des. 10 (2004) 2593-2603. https://doi.org/10.2174/1381612043383773.

[6]

A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton, Endocr. Rev. 29 (2008) 535-559. https://doi.org/10.1210/er.2007-0036.

[7]

E. Smith, R.A. Redman, C.R. Logg, et al., Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle: dissociation of cyclin A-cyclin-dependent kinase 2 from E2F4-p130 complexes, J. Biol. Chem. 275 (2000) 19992-20001. https://doi.org/10.1074/jbc.M001758200.

[8]

J.W. Nieves, Osteoporosis: the role of micronutrients, Am. J. Clin. Nutr. 81 (2005) 1232S-1239S. https://doi.org/10.1093/ajcn/81.5.1232.

[9]

T. Wilsgaard, N. Emaus, L.A. Ahmed, et al., Lifestyle impact on lifetime bone loss in women and men, Am. J. Epidemiol. 169 (2009) 877-886. https://doi.org/10.1093/aje/kwn407.

[10]

M.T. Drake, B.L. Clarke, S. Khosla, Bisphosphonates: mechanism of action and role in clinical practice, Mayo Clin. Proc. 83 (2008) 1032-1045. https://doi.org/10.4065/83.9.1032.

[11]

J. Crockett, J.C. Das, Osteoporosis-a current view of pharmacological prevention and treatment, Drug Des. Dev. Ther. 7 (2013) 435. https://doi.org/10.2147/DDDT.S31504.

[12]

B.H. Arjmandi, E.A. Lucas, D.A. Khalil, et al., One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women, Nutr. J. 4 (2005) 8. https://doi.org/10.1186/1475-2891-4-8.

[13]

A.M. Kenny, K.M. Mangano, R.H. Abourizk, et al., Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial, Am. J. Clin. Nutr. 90 (2009) 234-242. https://doi.org/10.3945/ajcn.2009.27600.

[14]

M. Messina, V. Messina, Soyfoods, soybean isoflavones, and bone health: a brief overview, J. Renal Nutr. 10 (2000) 63-68. https://doi.org/10.1016/s1051-2276(00)90001-3.

[15]

X. Zheng, S. Lee, O.K. Chun, et al., Soy isoflavones and osteoporotic bone loss: a review with an emphsis on modulation of bone remodeling, J. Med. Food 19 (2016) 1-14. https://doi.org/10.1089/jmf.2015.0045.

[16]

X. Zhang, X. Shu, H. Li, et al., Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal woman, Arch. Intern. Med. 165 (2005) 1890-1895. https://doi.org/10.1001/archinte.165.16.1890.

[17]

J. Cornish, K.E. Callon, D. Naot, et al., Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo, Endocrinology 14 (2004) 4366-4374. https://doi.org/10.1210/en.2003-1307.

[18]

A. Grey, Q. Zhu, M. Watson, et al., Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway, Mol. Cell. Endocrinol. 251 (2006) 96-102. https://doi.org/10.1016/j.mce.2006.03.002.

[19]

M. Yagi, N. Suzuki, T. Takayama, et al., Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells, Cell Biol. Int. 33 (2009) 283-289. https://doi.org/10.1016/j.cellbi.2008.11.013.

[20]

O.M. Conneely, Antiinflammatory activities of lactoferrin, J. Am. Coll. Nutr. 20(5 Suppl) (2001) 389S-397S. https://doi.org/10.1080/07315724.2001.10719173.

[21]

J. Legros, S. Jan, S. Bonnassie, et al., The role of ovotransferrin in egg-white antimicrobial activity: a review, Foods 10 (2021) 823. https://doi.org/10.3390/foods10040823.

[22]

J. Wu, A. Acero-Lopez, Ovotransferrin: structure, bioactivities, and preparation, Food Res. Int. 46 (2012) 480-487. https://doi.org/10.1016/J.FOODRES.2011.07.012.

[23]

N. Shang, J. Wu, Egg white ovotransferrin shows osteogenic activity in osteoblast cells, J. Agric. Food Chem. 66 (2018) 2775-2782. https://doi.org/10.1021/acs.jafc.8b00069.

[24]

N. Shang, J. Wu, Egg white ovotransferrin attenuates RANKL-induced osteoclastogenesis and bone resorption, Nutrients 11 (2019) 2254. https://doi.org/10.3390/nu11092254.

[25]

Y. Kobayashi, P. Rupa, J. Kovacs-Nolan, et al., Oral administration of hen egg white ovotransferrin attenuates the development of colitis induced by dextran sodium sulfate in mice, J. Agric. Food Chem. 63 (2015) 1532-1539. http://doi.org/10.1021/jf505248n.

[26]

E.D.N.S. Abeyrathne, H.Y. Lee, D.U. Ahn, Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white, Poult. Sci. 93 (2014) 1001-1009. https://doi.org/10.3382/ps.2013-03403.

[27]

M. Le Gars, C. Seiler, A. Kay, et al., CD38 is a key regulator of enhanced NK cell immune responses during pregnancy through its role in immune synapse formation, BioRxiv (2018) 349084. https://doi.org/10.1101/349084.

[28]

J. Han, W. Wang, Effects of tanshinol on markers of bone turnover in ovariectomized rats and osteoblast cultures, PLoS One 12 (2017) e0181175. https://doi.org/10.1371/journal.pone.0181175.

[29]

B.L. Riggs, The mechanisms of estrogen regulation of bone resorption, J. Clin. Invest. 106 (2000) 1203-1204. https://doi.org/10.1172/JCI11468.

[30]

N.A. Hallquist, K.C. Klasing, Serotransferrin, ovotransferrin, and metallothionein levels during an immune response in chickens, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 108 (1994) 375-384. https://doi.org/10.1016/0305-0491(94)90089-2.

[31]

F. Levy, P. Bulet, L. Ehret-Sabatier, Proteomic analysis of the systemic immune response of Drosophila, Mol. Cell. Proteomics. 3 (2004) 156-166. https://doi.org/10.1074/mcp.M300114-MCP200.

[32]

G. Zhu, J. Luo, H. Du, et al., Ovotransferrin enhances intestinal immune response in cyclophosphamide-induced immunosuppressed mice, Int. J. Biol. Macromol. 120 (2018) 1-9. https://doi.org/10.1016/j.ijbiomac.2018.08.058.

[33]

W. Huang, S. Chakrabarti, K. Majumder, et al., Egg-derived peptide IRW inhibits TNF-α-induced inflammatory response and oxidative stress in endothelial cells, J. Agric. Food Chem. 58 (2010) 10840-10846. https://doi.org/10.1371/journal.pone.0082829.

[34]

W. Liao, S. Chakrabarti, S.T. Davidge, et al., Modulatory effects of egg white ovotransferrin-derived tripeptide IRW (Ile-Arg-Trp) on vascular smooth muscle cells against angiotensin Ⅱ stimulation, J. Agric. Food Chem. 64 (2016) 7342-7347. https://doi.org/10.1021/acs.jafc.6b03513.

[35]

P. Garnero, N. Buchs, J. Zekri, et al., Markers of bone turnover for the management of patients with bone metastases from prostate cancer, Br. J. Cancer. 82 (2000) 858-864. https://doi.org/10.1054/bjoc.1999.1012.

[36]

R. Kiviranta, J. Morko, H. Uusitalo, et al., Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K, J. Bone Miner. Res. 16 (2001) 1444-1452. https://doi.org/10.1359/jbmr.2001.16.8.1444.

[37]

P. Saftig, E. Hunziker, V. Everts, et al., Functions of cathepsin K in bone resorption: lessons from cathepsin K deficient mice, Cellular Peptidases in Immune Functions and Diseases 2 (2002) 293-303. https://doi.org/10.1007/0-306-46826-3_32.

[38]

K. Sundaram, R. Nishimura, J. Senn, et al., RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation, Exp. Cell Res. 313 (2007) 168-178. https://doi.org/10.1016/j.yexcr.2006.10.001.

[39]

P. Reponen, C. Sahlberg, C. Munaut, et al., High expression of 92-kD type Ⅳ collagenase (gelatinase B) in the osteoclast lineage during mouse development, J. Cell Biol. 124 (1994) 1091-1102. https://doi.org/10.1083/jcb.124.6.1091.

[40]

A.L. Wucherpfennig, Y.P. Li, W.G. Stetler-Stevenson, et al., Expression of 92 kD type Ⅳ collagenase/gelatinase B in human osteoclasts, J. Bone Miner. Res. 9 (1994) 549-556. https://doi.org/10.1002/jbmr.5650090415.

[41]

C.H. Tsai, Y.J. Chen, F.M. Huang, et al., The upregulation of matrix metalloproteinase-9 in inflamed human dental pulps, J. Endod. 31 (2005) 860-862. https://doi.org/10.1097/01.don.0000164851.55389.4e.

[42]

M. Zhou, Y. Zhang, J. A. Ardans, et al., Interferon-gamma differentially regulates monocyte matrix metalloproteinase-1 and -9 through tumor necrosis factor-alpha and caspase 8, J. Biol. Chem. 278 (2003) 45406-45413. https://doi.org/10.1074/jbc.M309075200.

[43]

D. Thummuri, V.G.M. Naidu, P. Chaudhari, Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling, J. Mol. Med. 95 (2017) 1065-1076. https://doi.org/10.1007/s00109-017-1553-1.

[44]

B. H. Kim, J. H. Oh, N. K. Lee, The inactivation of ERK1/2, p38 and NF-κB is involved in the down-regulation of osteoclastogenesis and function by A2B adenosine receptor stimulation, Mol. Cell. 4 (2017) 752-760. https://doi.org/10.14348/molcells.2017.0098.

[45]

Y. Saxena, S. Routh, A. Mukhopadhaya, Immunoporosis: role of innate immune cell in osteoporosis, Front. Immunol. 12 (2021) 687037. https://doi.org/10.3389/fimmu.2021.687037.

[46]

M.C. Horowitz, A.L.M. Bothwell, D.G.T. Hesslein, et al., B cells and osteoblast and osteoclast development, Immunol. Rev. 208 (2005) 141-153. https://doi.org/10.1111/j.0105-2896.2005.00328.x.

[47]

M.C. Walsh, N. Kim, Y. Kadono, et al., Osteoimmunology: interplay between the immune system and bone metabolism, Annu. Rev. Immunol. 24 (2006) 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646.

[48]

V. Breuil, M. Ticchioni, J. Testa, et al., Immune changes in post-menopausal osteoporosis: the Immunos study, Osteoporos. Int. 21 (2010) 805-814. https://doi.org/10.1007/s00198-009-1018-7.

[49]

E. Hascoet, F. Blanchard, C. Blin-Wakkach, et al., New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis, Bone Res. 11 (2023) 26. https://doi.org/10.1038/s41413-023-00257-w.

[50]

J.C. Marie, E. Bonnelye, Effect of estrogens on osteoimmunology: a role in bone metastasis, Front. Immunol. 13 (2022) 899104. https://doi.org/10.3389/fimmu.2022.899104.

[51]

Y. Onoe, C. Miyaura, M. Ito, et al., Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice, J. Bone Miner. Res. 15 (2010) 541-549. https://doi.org/10.1359/jbmr.2000.15.3.541.

Food Science and Human Wellness
Pages 2562-2572
Cite this article:
Shang N, Bao X, Doschak M, et al. Oral administration of egg white ovotransferrin prevents osteoporosis in ovariectomized rats. Food Science and Human Wellness, 2024, 13(5): 2562-2572. https://doi.org/10.26599/FSHW.2022.9250249

534

Views

40

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 April 2023
Revised: 05 June 2023
Accepted: 31 July 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return