Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study investigated if the variation in the effect of anti-cholesterol (AC) treatment on individual mice are related to gut microbiome composition. The bile salt hydrolase (BSH) activity of 23 commercial fermented milk products was examined to select a fermented milk product for AC treatment. Mice were fed to different diets for 6 weeks: high- fat (60% of total calories from fat; D1), high-dietary fibre (20% cellulose; D2), and low-fat (17.2% of total calories from fat; D3) diets to change their gut microbiomes. Subsequently, faecal microbiome was transplanted (FMT) into mice treated with high cholesterol diet contained 2% cholesterol, followed by AC or non-AC (sterile tap water, STW) treatments. Control groups with normal (NC) and high-cholesterol diets (PC) were prepared for both AC and STW treatment. All experimental groups were subjected to serum and liver cholesterol, cholesterol metabolism-related (CMR) gene expression, and intestinal microbiome analyses. D3-FMT mice showed the most significant enhancements in cholesterol ratio and decreased hepatic cholesterol levels with AC treatment. Moreover, upregulation of the Cyp7a1 gene expression was observed in this group. Furthermore, the intestinal microbiome analysis indicated higher abundances of BSH-producing Eubacterium, Bifi dobacterium, and Parabacteroides in the D3-FMT + AC group compare to others, potentially contributing to increased bile acid synthesis.
D. Bhatnagar, H. Soran, P.N. Durrington, Hypercholesterolaemia and its management, BMJ 337 (2008) a993. https://doi.org/10.1136/bmj.a993.
Q. Shi, J. Chen, X. Zou, et al., Intracellular cholesterol synthesis and transport, Front. Cell Dev. Biol. 10 (2022) 819281. https://doi.org/10.3389/fcell.2022.819281.
R.D. Andriani, P.P. Rahayu, M.W. Apriliyani, The effect of probiotic in milk fermentation towards decreasing cholesterol levels: in vivo studies, Indones. J. Anim. Sci. 15 (2020) 13-20. https://doi.org/10.21776/ub.jitek.2020.015.01.2.
Y. Kim, S. Yoon, H. Shin, et al., Isolation of the cholesterol-assimilating strain Pediococcus acidilactici LRCC5307 and production of low-cholesterol butter, Food Sci. Anim. Resour. 41 (2021) 300-311. https://doi.org/10.5851/kosfa.2020.e101.
M.Y. Lin, T.W. Chen, Reduction of cholesterol by Lactobacillus acidophilus in culture broth, J. Food Drug Anal. 8 (2000) 97-102. https://doi. org/10.38212/2224-6614.2840.
S.A. Palaniyandi, K. Damodharan, J.W. Suh, et al., Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397, Probiotics Antimicrob. Proteins 12 (2020) 1161-1172. https://doi.org/10.1007/s12602-019-09585-y.
J.Y. Eor, N. Park, Y.J. Son, et al., Therapeutic effects of Gleditsia sinensis thorn extract fermented by Lactobacillus casei 3260 in a type Ⅱ collagen-induced rheumatoid arthritis mouse model, Food Sci. Anim. Resour. 41 (2021) 497-508. https://doi.org/10.5851/kosfa.2021.e13.
J. Lee, H.S. Yun, K.W. Cho, et al., Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity, Int. J. Food Microbiol. 148 (2011) 80-86. https://doi.org/10.1016/j.ijfoodmicro.2011.05.003.
J.K. Oh, Y.R. Kim, B. Lee, et al., Prevention of cholesterol gallstone formation by Lactobacillus acidophilus ATCC 43121 and Lactobacillus fermentum MF27 in lithogenic diet-induced mice, Food Sci. Anim. Resour. 31 (2021) 343-352. https://doi.org/10.5851/kosfa.2020.e93.
W. Ding, C. Shi, M. Chen, et al., Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet, J. Funct. Foods 32 (2017) 324-332. https://doi.org/10.1016/j.jff.2017.03.021.
K. Damodharan, S.A. Palaniyandi, S.H. Yang, et al., Functional probiotic characterization and in vivo cholesterol-lowering activity of Lactobacillus helveticus isolated from fermented cow milk, J. Microbiol. Biotechnol. 26 (2016) 1675-1686. https://doi.org/10.4014/jmb.1603.03005.
Z. Guo, X.M. Liu, Q.X. Zhang, et al., Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials, Nutr. Metab. Cardiovasc. Dis. 21 (2011) 844-850. https://doi.org/10.1016/j.numecd.2011.04.008.
Y.A. Cho, J. Kim, Effect of probiotics on blood lipid concentrations: a meta- analysis of randomized controlled trials, Medicine 94 (2015) e1714. https://doi.org/10.1097/MD.0000000000001714.
F. Miremadi, M. Ayyash, F. Sherkat, et al., Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria, J. Funct. Foods 9 (2014) 295-305. https://doi.org/10.1016/j.jff.2014.05.002.
M. Anandharaj, B. Sivasankari, R.P. Rani, Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review, Chin. J. Biol. 2014 (2017) 1-7. https://doi.org/10.1155/2014/572754.
N. Xie, Y. Cui, Y.N. Yin, et al., Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet, BMC Complem. Altern. M. 11 (2011) 53. https://doi.org/10.1186/1472-6882-11-53.
A.J. Bäumler, V. Sperandio, Interactions between the microbiota and pathogenic bacteria in the gut, Nature 535 (2016) 85-93. https://doi.org/10.1038/nature18849.
M.G. Kim, K. Jo, K. Cho, et al., Prebiotics/Probiotics mixture induced changes in cecal microbiome and intestinal morphology alleviated the loperamide-induced constipation in rat, Food Sci. Anim. Resour. 41 (2021) 527-541. https://doi.org/10.5851/kosfa.2021.e17.
S. Hacioglu, B. Kunduhoglu, Probiotic characteristics of Lactobacillus brevis KT38-3 isolated from an artisanal tulum cheese, Food Sci. Anim. Resour. 41 (2021) 967-982. https://doi.org/10.5851/kosfa.2021.e49.
C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature 489 (2012) 220-230. https://doi.org/10.1038/nature11550.
M.C. Collado, M. Cernada, C. Baüerl, et al., Microbial ecology and host-microbiota interactions during early life stages, Gut Microbes. 3 (2012) 352- 365. https://doi.org/10.4161/gmic.21215.
M. Breban, Gut microbiota and inflammatory joint diseases, Joint Bone Spine. 83 (2016) 645-649. https://doi.org/10.1016/j.jbspin.2016.04.005.
M.C. Dao, A. Everard, J. Aron-Wisnewsky, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut 65 (2016) 426- 436. https://doi.org/10.1136/gutjnl-2014-308778.
E. Le Chatelier, T. Nielsen, J. Qin, et al., Richness of human gut microbiome correlates with metabolic markers, Nature 500 (2013) 541-546. https://doi.org/10.1038/nature12506.
I.M. Proenca, J.R. Allegretti, W.M. Bernardo, et al., Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials, Nutri. Res. 83 (2020) 1-14. https://doi.org/10.1016/j.nutres.2020.06.018.
R.K. Weersma, A. Zhernakova, J. Fu, Inetraction between drugs and the gut microbiome, Gut 69 (2020) 1510-1519. https://doi.org/10.1136/gutjnl-2019-320204.
D.E. Freedberg, N.C. Toussaint, S.P. Chen, et al., Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial, Gastroenterology 149 (2015) 883-885. https://doi.org/10.1053/j.gastro.2015.06.043.
L. Zitvogel, R. Daillere, M.P. Roberti, et al., Anticancer effects of the microbiome and its products, Nat. Rev. Microbiol. 15 (2017) 465-478. https://doi.org/10.1038/nrmicro.2017.44.
M, Vetizou, J.M. Pitt, R. Daillere, et al., Anticancer immunot herapy by CTLA-4 blockade relies on the gut microbiota, Science 350 (2015) 1079-1084. https://doi.org/10.1126/science.aad1329.
A. Sivan, L. Corrales, N. Hubert, et al., Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy, Science 350 (2015) 1084-1089. https://doi.org/10.1126/science.aac4255.
M.P. Dashkevicz, S.D. Feighner, Development of a differential medium for bile salt hydrolase-active Lactobacillus spp, Appl. Environ. Microbiol. 55 (1989) 11-16. https://doi.org/10.1128/aem.55.1.11-16.1989.
G. Reuter, Elective and selective media for lactic acid bacteria, Int. J. Food Microbiol. 2 (1985) 55-68. https://doi.org/10.1016/0168-1605(85)90057-1.
S. Razin, S. Kutner, H. Efrati, et al., Phospholipid and cholesterol uptake by mycoplasma cells and membranes, Biochim. Biophys. Acta. Biomembr. 598 (1980) 628-640. https://doi.org/10.1016/0005-2736(80)90042-5.
S.E. Gilliland, C.R. Nelson, C. Maxwell, Assimilation of cholesterol by Lactobacillus acidophilus, Appl. Environ. Microbiol. 49 (1985) 377-381. https://doi.org/10.1128/aem.49.2.377-381.1985.
L. L. Rudel, M. D. Morris, Determination of cholesterol using o-phthalaldehyde, J. Lipid Res. 14 (1973) 364-366. https://doi.org/10.1016/S0022-2275(20)36896-6.
M. Iranmanesh, H. Ezzatpanah, N. Mojgani, Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products, LWT-Food Sci. Technol. 58 (2014) 355-359. https://doi.org/10.1016/j.lwt.2013.10.005.
J. Suez, T. Korem, D. Zeevi, et al., Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature 514 (2014) 181-186. https://doi.org/10.1038/nature13793.
M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res. 29 (2001) e45. https://doi.org/10.1093/nar/29.9.e45.
P. Gunness, M.J. Gidley, Mechanisms underlying the cholesterol -lowering properties of soluble dietary fibre polysaccharides, Food Funct. 1 (2010) 149-155. https://doi.org/10.1039/C0FO00080A.
S. Stojanov, A. Berlec, B. Strukelj, The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease, Microorganisms 8 (2020) 1715. https://doi.org/10.3390/microorganisms8111715.
L. Abenavoli, E. Scarpellini, C. Colica, et al., Gut microbiota and obesity: a role for probiotics, Nutrients 11 (2019) 2690. https://doi.org/10.3390/nu11112690.
F. Fang, Y. Li, M. Bumann, et al., Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels, J. Bacteriol. Res. 191 (2009) 5743-5757. https://doi.org/10.1128/JB.00506-09.
Y.T. Tsai, P.C. Cheng, T.M. Pan, Anti-obesity effects of gut microbiota are associated with lactic acid bacteria, Appl. Microbiol. Biotechnol. 98 (2014) 1-10. https://doi.org/10.1007/s00253-013-5346-3.
X. Zhang, O.O. Coker, E.S. Chu, et al., Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites, Hepatology 70 (2021) 761-774. https://doi.org/10.1136/gutjnl-2019-319664.
D.H. Chang, M.S. Rhee, S. Ahn, et al., Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse, Antonie Van Leeuwenhoek. 108 (2015) 1309-1318. https://doi.org/10.1007/s10482-015-0583-3.
R. Cancello, S. Turroni, S. Rampelli, et al., Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women, Nutrients 11 (2019) 3011. https://doi.org/10.3390/nu11123011.
T.W. Newman, C.A. Shively, T.C. Register, et al., Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model, Microbiome 9 (2021) 100. https://doi.org/10.1186/s40168-021-01069-y.
E. London, C.A. Wassif, A. Horvath, et al., Cholesterol biosynthesis and trafficking in cortisol-producing lesions of the adrenal cortex, J. Clin. Endocrinol. Metab. 100 (2015) 3660-3667. https://doi.org/10.1210/jc.2015-2212.
L. Li, S.M. Batt, M. Wannemuehler, et al., Effect of feeding of a cholesterol-reducing bacterium, Eubacterium coprostanoligenes, to germ-free mice, Lab. Anim. Sci. 48 (1998) 253-255. https://www.researchgate.net/publication/13201132.
C.Y. Zhong, W.W. Sun, Y. Ma, et al., Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice, Sci. Rep. 5 (2015) 10512. https://doi.org/10.1038/srep10512.
A. Nakamura, Y. Yokoyama, K. Tanaka, et al., Asperuloside improves obesity and type 2 diabetes through modulation of gut microbiota and metabolic signaling, iScience 23 (2020) 101522. https://doi.org/10.1016/j.isci.2020.101522.
K. Wang, M. Liao, N. Zhou, et al., Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids, Cell Rep. 26 (2019) 222-235. https://doi.org/10.1016/j.celrep.2018.12.028.
S. Qiao, C. Liu, L. Sun, et al., Gut Parabacteroides merdae protescts against cardiovascular gamage by enhancing branched-chain amino acid catabolism, Nat. Metab. 4 (2022) 1271-1286. https://doi.org/10.1038/s42255-022-00649-y.
I. Zanotti, F. Turroni, A. Piemontes, et al., Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation, Appl. Microbiol. Biotechnol. 99 (2015) 6813-6829. https://doi.org/10.1007/s00253-015-6564-7.
V. Alvarez-Arrano, S. Martin-Pelaez, Effects of probiotics and synbiotics on weight loss in subjects with overweight or obesity: a systematic review, Nutrients 13 (2021) 3627. https://doi.org/10.3390/nu13103627.
L. Ruiz, B. Sanchez, A. Margolles, Determination of bile salt hydrolase activity in Bifidobacteria, Methods Mol. Biol. 2278 (2021) 149-155. https://doi.org/10.1007/978-1-0716-1274-3_13.
H. Hara, S. Haga, Y. Aoyama, et al., Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine, J. Nutr. 129 (1999) 942-948. https://doi.org/10.1093/jn/129.5.942.
L. Hartley, M.D. May, E. Loveman, et al., Dietary fibre for the primary prevention of cardiovascular disease, Cochrane Database Syst. Rev. 7 (2016) CD011472. https://doi.org/10.1002/14651858.CD011472.pub2.
S. Straniero, A. Laskar, C. Savva, et al., Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism, J. Lipid Res. 61 (2020) 480-491. https://doi.org/10.1194/jlr. RA119000307.
S. Holster, D. Repsilber, D. Geng, et al., Correlations between microbiota and metabolites after faecal microbiota transfer in irritable bowel syndrome, Benef. Microbes 12 (2021) 17-30. https://doi.org/10.3920/BM2020.0010.
T. Li, J.Y.L. Chiang, Regulation of bile acid and cholesterol metabolism by PPARs, PPAR Res. 2009 (2009) 1-15. https://doi.org/10.1155/2009/501739.
M. Begley, C. Hill, C.G. Gahan, Bile salt hydrolase activity in probiotics, Appl. Environ. Microbiol. 72 (2006) 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006.
Z. Song, Y. Cai, X, Lao, et al., Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes on worldwide human gut microbiome, Microbiome 7 (2019) 9. https://doi.org/10.1101/260794
R. Durnik, L. Sindlerova, P. Babica, et al., Bile acids transporters of enterohepatic circulation for targeted drug delivery, Molecules 27 (2022) 2961. https://doi.org/10.3390/molecules27092961.
L.G. Ooi, M.T. Liong, Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings, Int. J. Mol. Sci. 11 (2010) 2499-2522. https://doi.org/10.3390/ijms11062499.
B.N. Kanuri, J.S. Kanshana, S.C. Rebello, et al., Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance, Sci. Rep. 7 (2017) 41009. https://doi.org/10.1038/srep41009.
C. Zhao, K. Dahlman-Wright, Liver X receptor in cholesterol metabolism, J. Endocrinol. 204 (2010) 233-240. https://doi.org/10.1677/JOE-09-0271.
M. Karpale, A.J. Karajamaki, O. Kummu, et al., Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism, Br. J. Pharm. 178 (2021) 2561-2481. https://doi.org/10.1111/bph.15433.
C. Zhou, N. King, K.Y. Chen, et al., Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice, J. Lipid Res. 50 (2009) 2004-2013. https://doi.org/10.1194/jlr.M800608-JLR200.
J. Wang, M.A. Mitsche, D. Lutjohann, et al., Relative roles of ABCG5/ABCG8 in liver and intestine, J. Lipid Res. 56 (2015) 319-330. https://doi.org/10.1194/jlr.M054544.
L. Yu, S. Gupta, F. Xu, et al., Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion, J. Biol. Chem. 280 (2005) 8742-8747. https://doi.org/10.1074/jbc.M411080200.
K.E. Berge, H. Tian, G.A. Graf, et al., Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters, Science 290 (2000) 1771-1775. https://doi.org/10.1126/science.290.5497.1771.
J.J. Repa, K.E. Berge, C. Pomajzl, et al., Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta, J. Biol. Chem. 277 (2002) 18793-18800. https://doi.org/10.1074/jbc.M109927200.
B. Sluis, M. Wijers, J. Herz, News on the molecular regulation and function of hepatic LDLR and LRP1, Curr. Opin. Lipidol. 28 (2017) 241-247. https://doi.org/10.1097/MOL.0000000000000411.
W. Jia, G. Xie, W. Jia, Bile acid–microbiota cross-talk in gastrointestinal inflammation and carcinogenesis, Nat. Rev. Gastroenterol. Hepatol. 15 (2018) 111-128. https://doi.org/10.1038/nrgastro.2017.119.
D. Rizzolo, K. Buckley, B. Kong, et al., Bile acid homeostasis in a Cyp7a1 & Cyp27a1 double knockout mouse model, Hepatology 70 (2019) 389-402. https://doi.org/10.1002/hep.30612.
M. Begley, C. Hill, C.G.M. Gahan, Bile salt hydrolase activity in probiotics, Appl. Environ. Microbiol. 72 (2006) 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006.
J.Y.L. Chiang, J.M. Ferrell, Discovery of farnesoid X receptor and its role in bile acid metabolism, Mol. Cell. Endocrinol. 548 (2022) 111618. https://doi.org/10.1016/j.mce.2022.111618.
Z. Song, Y. Cai, X. Lao, et al., Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome, Microbiome 7 (2019) 9. https://doi.org/10.1186/s40168-019-0628-3.
V. Urdaneta, J. Casadesus, Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts, Front. Med. 4 (2017) 2017. https://doi.org/10.3389/fmed.2017.00163.
J. Jiang, C. Wu, C. Zhang, et al., Strain- specific effects of Bifidobacterium longum on hypercholesterolemic rats and potential mechanisms, Int. J. Mol. Sci. 22 (2021) 1305. https://doi.org/10.3390/ijms22031305.
A. Mukherjee, C. Lordan, R.P. Ross, et al., Gut microbes from the phylogenetically diverse genus Eurobacterium and their various contributions to gut health, Gut Microbes. 12 (2020) 1802866. https://doi.org /10.1080/19490976.2020.1802866.
M. Bourgin, A. Kriaa, H. Mikaouar, et al., Bile salt hydrolases: at the crossroads of microbiota and human health, Microorganisms 9 (2021) 1122. https://doi.org/10.3390/microorganisms9061122.
C. Thomas, R. Pellicciari, M. Pruzanski, et al., Targeting bile-acid signalling for metabolic diseases, Nat. Rev. Drug Discov. 7 (2008) 678-693 https://doi.org/10.1038/nrd2619.
J.Y.L. Chiang, Bile acids: regulation of synthesis, J. Lipid Res. 50 (2009) 1955-1966. https://doi.org/10.1194/jlr.R900010-JLR200.
W. Zhou, J. Lin, H. Chen, et al., Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice, Br. J. Nutr. 114 (2015) 509-518. https://doi.org/10.1017/S0007114515002159.
F.J. Field, E. Born, S.N. Mathur, Stanol esters decrease plasma cholesterol independently of intestinal ABC sterol transporters and Niemann-Pick C1-like 1 protein gene expression, J. Lipid Res. 45 (2004) 2252-2259. https://doi.org/10.1194/jlr.M400208-JLR200.
Y. Miura, M. Hosono, C. Oyamada, at al., Dietary isohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARα activations in C57BL/6 mice, Br. J. Nutr. 93 (2005) 559-567. https://doi.org/10.1079/bjn20041384.
975
Views
70
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).