Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The global shift towards sustainable food systems has sparked innovations in food sources and production systems, including cell-based meat, plant-based food products, precision fermentation, and 3D food printing. These advancements pose regulatory challenges and opportunities, with China emerging as a critical player in adopting and regulating new food technologies. This review explores the international landscape of new food sources and production systems (NFPS), focusing on China’s role and regulatory approaches compared to global practices. Through this comparative analysis, we aim to contribute to the ongoing dialogue on food safety regulation, offering insights and recommendations for policymakers, industry stakeholders, and researchers engaged in the global food system’s evolution. This comprehensive overview underscores the dynamic nature of regulatory frameworks governing NFPS, highlighting the international efforts to ensure food safety, consumer protection, and the sustainable evolution of the food industry.
M. Crippa, E. Solazzo, D. Guizzardi, et al., Food systems are responsible for a third of global anthropogenic GHG emissions, Nat. Food 2 (2021) 198-209. https://doi.org/10.1038/s43016-021-00225-9.
B. Sherman, R.J. Henry, Access to biodiversity for food production: reconciling open access digital sequence information with access and benefit sharing, Mol. Plant 14 (2021) 701-704. https://doi.org/10.1016/j.molp.2021.03.005.
G. Martínez-Ara, K.S. Stapornwongkul, M. Ebisuya, Scaling up complexity in synthetic developmental biology, Science 378 (2022) 864-868. http://dx.doi.org/10.1126/science.add9666.
E. Mullins, J.L. Bresson, T. Dalmay, et al., Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of genetically modified plants obtained through synthetic biology, EFSA J. 20 (2022) e07410. https://doi.org/10.2903/j.efsa.2022.7410.
D. Ercili-Cura, A. Häkämies, L. Sinisalo, et al., Food out of thin air, Food Sci. Tech. 2 (2020) 44-48. https://doi.org/10.1002/fsat.3402_12.x.
N.R. Rubio, N. Xiang, D.L. Kaplan, Plant-based and cell-based approaches to meat production, Nat. Commun. 11 (2020) 1-11. https://doi.org/10.1038/s41467-020-20061-y.
K. Benke, B. Tomkins, Future food-production systems: vertical farming and controlled-environment agriculture, Sustainability: Sci. Prac. Poli. 13 (2017) 13-26. https://doi.org/10.1080/15487733.2017.1394054.
Z. Liu, M. Zhang, B. Bhandari, et al., 3D printing: printing precision and application in food sector, Trends Food Sci. Tech. 69 (2017) 83-94. https://doi.org/10.1016/j.tifs.2017.08.018.
J. Aschemann-Witzel, R.F. Gantriis, P. Fraga, et al., Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future, Crit. Rev. Food Sci. Nutr. 61 (2021) 3119-3128. https://doi.org/10.1080/10408398.2020.1793730.
A. de Boer, A. Bast. Demanding safe foods–safety testing under the novel food regulation (2015/2283), Trends Food Sci. Tech. 72 (2018) 125-133. https://doi.org/10.1016/j.tifs.2017.12.013.
J.B. Hallagan, R.L. Hall, J. Drake, The GRAS provision-the FEMA GRAS program and the safety and regulation of flavors in the United States, Food Chem. Toxicol. 138 (2020) 111236. https://doi.org/10.1016/j.fct.2020.111236.
E.T. Ng, S. Singh, W.S. Yap, et al., Cultured meat-a patentometric analysis, Crit. Rev. Food Sci. Nutr. 63 (2023) 2738-2748. https://doi.org/10.1080/10408398.2021.1980760.
C. Woern, L. Grossmann, Microbial gas fermentation technology for sustainable food protein production, Biotechno. Adv. 69 (2023) 108240. https://doi.org/10.1016/j.biotechadv.2023.108240.
C. Turrell, From air to your plate: tech startups making food from atmospheric CO2, Nat. Biotechnol. 41 (2023) 1359-1364. https://doi.org/10.1038/s41587-023-01992-5.
M. Li, C. Mao, X. Li, et al., Edible insects: a new sustainable nutritional resource worth promoting, Foods 12 (2023) 4073. https://doi.org/10.3390/foods12224073.
A.C. Nowakowski, A.C. Miller, M.E. Miller, et al., Potential health benefits of edible insects, Crit. Rev. Food Sci. Nutr. 62 (2022) 3499-3508. https://doi.org/10.1080/10408398.2020.1867053.
S. Ranasinghe, I. Wijesekara, P. Perera, et al., Nutritional value and potential applications of jellyfish, J. Aquat. Food Prod. 31 (2022) 1-38. https://doi.org/10.1080/10498850.2022.2060717.
G. Bonaccorsi, G. Garamella, G. Cavallo, et al., A systematic review of risk assessment associated with jellyfish consumption as a potential novel food, Foods 9 (2020) 935. https://doi.org/10.3390/foods9070935.
N.R. Rubio, N. Xiang, D.L. Kaplan, Plant-based and cell-based approaches to meat production, Nat. Commun. 11 (2020) 6276. https://doi.org/10.1038/s41467-020-20061-y.
D.J. McClements, L. Grossmann, Next-generation plant-based foods: challenges and opportunities, Annu. Rev. Food Sci. Technol. 15 (2024) e034414. https://doi.org/10.1146/annurev-food-072023-034414.
B.L. Tagliapietra, M. Clerici, Brown algae and their multiple applications as functional ingredient in food production, Food Res. Int. 167 (2023) 112655. https://doi.org/10.1016/j.foodres.2023.112655.
J.L. Banach, D.H.E. Hoek-Van, H.J. van der Fels-Klerx, Food safety hazards in the European seaweed chain, Compr. Rev. Food Sci. Food Saf. 19 (2020) 332-364. https://doi.org/10.1111/1541-4337.12523.
X. Guo, Q. Wang, Y. Wu, et al., Comprehensive insights into microalgae proteins: nutritional profiles and innovative applications as sustainable alternative proteins in health and food sciences, Food Hydrocolloids 154 (2024) 110112. https://doi.org/10.1016/j.foodhyd.2024.110112.
R. Mazac, J. Meinilä, L. Korkalo, et al., Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%, Nat. Food 3 (2023) 286-293. https://doi.org/10.1038/s43016-022-00489-9.
L.A.J. Letti, S.G. Karp, C.F.M. Molento, et al., Cultivated meat: recent technological developments, current market and future challenges, Biotechnol. Res. Innov. Journal 5 (2021) e2021001. http://dx.doi.org/10.4322/biori.202101.
T.C. Jara, K. Park, P. Vahmani, et al., Stem cell-based strategies and challenges for production of cultivated meat, Nat. Food 4 (2023) 841-853. http://dx.doi.org/10.1038/s43016-023-00857-z.
D.J. McClements, L. Grossmann. The science of plant-based foods: constructing next-generation meat, fish, milk, and egg analogs, Compr. Rev. Food Sci. Food Saf. 20 (2021) 4049-4100. http://dx.doi.org/10.1111/1541-4337.12771.
M.A. Augustin, C.J. Hartley, G. Maloney, et al., Innovation in precision fermentation for food ingredients, Crit. Rev. Food Sci. Nutr. (2023) 1-21. http://dx.doi.org/10.1080/10408398.2023.2166014.
M.B. Nielsen, A.S. Meyer, J. Arnau, The next food revolution is here: recombinant microbial production of milk and egg proteins by precision fermentation, Annu. Rev. Food Sci. Technol. 15 (2023). http://dx.doi.org/10.1146/annurev-food-072023-034256.
L. Hoppenreijs, A. Annibal, G. Vreeke, et al., Food proteins from yeast- based precision fermentation: simple purification of recombinant β-lactoglobulin using polyphosphate, Food Res. Int. 176 (2024) 113801. http://dx.doi.org/10.1016/j.foodres.2023.113801.
S. Shi, Z. Wang, L. Shen, et al., Synthetic biology: a new frontier in food production, Trends Biotechnol. 40 (2022) 781-803. http://dx.doi.org/10.1016/j.tibtech.2022.01.002.
K. Hilgendorf, Y. Wang, M.J. Miller, et al., Precision fermentation for improving the quality, flavor, safety, and sustainability of foods, Curr. Opin. Biotechnol. 86 (2024) 103084. http://dx.doi.org/10.1016/j.copbio.2024.103084.
V. Raja, J.A. Moses, C. Anandharamakrishnan, Effect of 3D printing conditions and post-printing fermentation on pearl millet fortified idli, J. Sci. Food Agric. 103 (2023) 2401-2412. http://dx.doi.org/10.1002/jsfa.12410.
A. Hassoun, A.E. Bekhit, A.R. Jambrak, et al., The fourth industrial revolution in the food industry-part Ⅱ: emerging food trends, Crit. Rev. Food Sci. Nutr. 64 (2024) 407-437. http://dx.doi.org/10.1080/10408398.2022.2034735.
J. Zhang, Y. Li, Y. Cai, et al., Hot extrusion 3D printing technologies based on starchy food: a review, Carbohydr. Polym. 294 (2022) 119763. http://dx.doi.org/10.1016/j.carbpol.2022.119763.
J.Y. Zhang, J.K. Pandya, D.J. McClements, et al., Advancements in 3D food printing: a comprehensive overview of properties and opportunities, Crit. Rev. Food Sci. Nutr. 62 (2022) 4752-4768. http://dx.doi.org/10.1080/10408398.2021.1878103.
K.H. Handral, S. Hua Tay, W. Chan, et al., 3D printing of cultured meat products, Crit. Rev. Food Sci. Nutr. 62 (2022) 272-281. http://dx.doi.org/10.1080/10408398.2020.1815172.
C. Bomkamp, S.C. Skaalure, G.F. Fernando, et al., Scaffolding biomaterials for 3D cultivated meat: prospects and challenges, Adv. Sci. 9 (2022) 2102908. http://dx.doi.org/10.1002/advs.202102908.
Y. Cheng, Y. Fu, L. Ma, et al., Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing, Food Hydrocolloids 132 (2022) 107855. https://doi.org/10.1016/j.foodhyd.2022.107855.
J. Chen, X. Teng, M. Zhang, et al., 5D food printing with color change induced by probiotic growth in a starch-protein-based gel system, Food Bioprocess Technol. 16 (2023) 2304-2314. https://doi.org/10.1007/s11947-023-03064-7.
C. Faustman, D. Hamernik, M. Looper, et al., Cell-based meat: the need to assess holistically, J. Anim. Sci. 98 (2020) 177. https://doi.org/10.1093/jas/skaa177.
K.B. Arun, A.N. Anoopkumar, R. Sindhu, et al., Synthetic biology for sustainable food ingredients production: recent trends, Syst. Microbiol. Biomanuf. 3 (2023) 137-149. https://doi.org/10.1007/s43393-022-00150-3.
K.J. Ong, J. Johnston, I. Datar, et al., Food safety considerations and research priorities for the cultured meat and seafood industry, Compr. Rev. Food Sci. Food Saf. 20 (2021) 5421-5448. http://dx.doi.org/10.1111/1541-4337.12853.
M. Siegrist, C. Hartmann, Consumer acceptance of novel food technologies, Nat. Food 1 (2020) 343-350. http://dx.doi.org/10.1038/s43016-020-0094-x
X. Lin, N. Duan, J. Wu, et al., Potential food safety risk factors in plant-based foods: source, occurrence, and detection methods, Trends Food Sci. Tech. 138 (2023) 511-522. https://doi.org/10.1016/j.tifs.2023.06.032
O.A. Mihalache, L. Dellafiora, C. Dall’Asta, A systematic review of natural toxins occurrence in plant commodities used for plant-based meat alternatives production, Food Res. Inter. 158 (2022) 111490. https://doi.org/10.1016/j.foodres.2022.111490.
Z. Cui, H. Zhang, X. Chen, et al., Pursuing sustainable productivity with millions of smallholder farmers, Nature 555 (2018) 363-366. https://doi.org/10.1038/nature25785.
A.E. Lazou, Food extrusion: an advanced process for innovation and novel product development, Compr. Rev. Food Sci. Food Saf. (2022) 1-29. https://doi.org/10.1111/1541-4337.12912.
Y. Rodríguez-Carrasco, L. Castaldo, A. Gaspari, et al., Development of an UHPLC-Q-orbitrap HRMS method for simultaneous determination of mycotoxins and isoflavones in soy-based burgers, LWT 99 (2019) 34-42. https://doi.org/10.1016/j.lwt.2018.09.046.
M. Mesias, C. Delgado-Andrade, F.J. Morales, An updated view of acrylamide in cereal products, Curr. Opin. Food Sci. 46 (2022) 100847. https://doi.org/10.1016/j.cofs.2022.100847.
G. Squeo, D. de Angelis, A.F. Caputi, et al., Screening of acrylamide content in commercial plant-based protein ingredients from different technologies, Foods 12 (2023) 1331. https://doi.org/10.3390/foods12061331.
C. Kopko, J.A. Garthoff, K. Zhou, et al., Are alternative proteins increasing food allergies? trends, drivers and future perspectives, Trends Food Sci. Tech. 129 (2022) 126-133. https://doi.org/10.1016/j.tifs.2022.09.008.
M. Wiederstein, S. Baumgartner, K. Lauter, Soybean (Glycine max) allergens─a review on an outstanding plant food with allergenic potential, ACS Food Sci. Tech. 3 (2023) 363-378.
W. Petroski, D.M. Minich, Is there such a thing as “anti-nutrients”? a narrative review of perceived problematic plant compounds, Nutrients 12 (2020) 2929. https://doi.org/10.1021/acsfoodscitech.2c00380.
A. Popova, D. Mihaylova, K. Fikiin, Promoting plant-based “Superfoods”— a delicate balance between health benefits and sustainability challenges, Food Bioprocess Techno. (2023) 1-8. https://doi.org/10.1007/s11947-023-03303-x.
A.R. Silva, M.M. Silva, B.D. Ribeiro, Health issues and technological aspects of plant-based alternative milk, Food Res. Inter. 131 (2020) 108972. https://doi.org/10.1016/j.foodres.2019.108972.
S. Sieuwerts, F.A. de Bok, J. Hugenholtz, et al., Unraveling microbial interactions in food fermentations: from classical to genomics approaches, Appl. Environ. Microbiol. 74 (2008) 4997-5007. https://doi.org/10.1128/AEM.00113-08.
M. Fraiture, M. Deckers, N. Papazova, et al., Are antimicrobial resistance genes key targets to detect genetically modified microorganisms in fermentation products? Int. J. Food Microbiol. 331 (2020) 108749. https://doi.org/10.1016/j.ijfoodmicro.2020.108749.
A. Lensch, E. Duwenig, H. Dederer, et al., Recombinant DNA in fermentation products is of no regulatory relevance, Food Control. 141 (2022) 109170. https://doi.org/10.1016/j.foodcont.2022.109170.
K.M. Wilding, J.P. Hunt, J.W. Wilkerson, et al., Endotoxin-free E. coli-based cell-free protein synthesis: pre-expression endotoxin removal approaches for on-demand cancer therapeutic production, Biotechnol. J. 14 (2019) 1800271. https://doi.org/10.1002/biot.201800271.
A. Bhatwa, W. Wang, Y.I. Hassan, et al., Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications, Front. Bioeng. Biotechnol. 9 (2021) 630551. https://doi.org/10.3389/fbioe.2021.630551.
M.B. Egea, L.A. Dantas, T.L.D. Sousa, et al., The potential, strategies, and challenges of Monascus pigment for food application, Front. Sust. Food Syst. 7 (2023) 1141644. https://doi.org/10.3389/fsufs.2023.1141644.
L. Demao, Z. Yan, Z. Ju, et al., Regulation and guidance for marketing of food ingredients from biomanufacturing and policy suggestions for China, B. China Acad. Sci. 35 (2020) 1041-1052. https://doi.org/10.16418/j.issn.1000-3045.20200405001.
Z. Liu, A.N. Mutukumira, H. Chen, Food safety governance in China: from supervision to coregulation, Food Sci. Nutr. 7 (2019) 4127-4139. https://doi.org/10.1002/fsn3.1281.
A. Lähteenmäki-Uutela, M. Rahikainen, A. Lonkila, et al., Alternative proteins and EU food law, Food Control 130 (2023) 108336. https://doi.org/10.1016/j.foodcont.2021.108336.
F. Keiper, A. Atanassova, Regulation of synthetic biology: developments under the convention on biological diversity and its protocols, Front. Bioeng. Biotechnol. 310 (2020) 310. https://doi.org/10.3389/fbioe.2020.00310.
1578
Views
437
Downloads
0
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).