PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Tables (3)
Table 1
Table 2
Table 3
Open Access

Food-derived peptides with inhibitory capacity for HMG-CoA reductase activity: a potential nutraceutical for hypercholesterolemia

Guillermo Santos-Sáncheza,b()Ana Isabel Álvarez-Lópeza,bEduardo Ponce-Españaa,bPatricia Judith Lardonea,bAntonio Carrillo-Vicoa,b()Ivan Cruz-Chamorroa,b
Instituto de Biomedicina de Sevilla, Instituto de Biomedicina de Sevilla (IbiS); Hospital Universitario Virgen del Rocío; Consejo Superior de Investigaciones Científicas (CSIC); Universidad de Sevilla, Seville 41013, Spain
Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Several food-derived peptides have been shown to inhibit the HMG-CoAR activity.

• Biopeptides inhibit HMG-CoAR activity by competitive or non-competitive mechanisms.

• Physicochemical characteristics of peptides define the type of enzyme inhibition.

• Food-derived peptides may help to reduce the side effects of statin therapy.

• Biopeptides are potential compounds as future hypocholesterolemic treatments.

Graphical Abstract

View original image Download original image

Abstract

Cardiovascular diseases (CVDs) are the leading global cause of mortality and disease burden. Statins are the most prescribed lipid-lowering drugs to treat hypercholesterolemia and prevent CVDs. The biochemical mechanism of statins consists of competitive inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase enzyme (HMG-CoAR), the limiting enzyme in cholesterol biosynthesis. Due to statin intolerance in some patient groups, the search for new inhibitors is a field of great interest. This review focusses on the studies reporting the inhibitory effect of protein hydrolysates and biopeptides on the HMG-CoAR enzyme activity. The analysis of the action mechanism and physicochemical characteristics of the HMG-CoAR inhibitory peptides revealed that the molecular weight, amino acid composition, charge, and polarity are key aspects of the interaction with the HMG-CoAR enzyme. In conclusion, this review reveals the potential of using food peptides as new cholesterol-lowering agents and opens a new interesting field of research. However, clinical approaches are mandatory to confirm their therapeutic hypercholesterolemic effect.

References

[1]
World Health Organization, Cardiovascular diseases (CVDs), 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[2]

N. Townsend, D. Kazakiewicz, F. Lucy Wright, et al., Epidemiology of cardiovascular disease in Europe, Nat. Rev. Cardiol. 19 (2021) 133-143. https://doi.org/10.1038/s41569-021-00607-3.

[3]

P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533. https://doi.org/10.1038/s41586-021-03392-8.

[4]

C.A. Perry, K.M. Gadde, The role of calorie restriction in the prevention of cardiovascular disease, Curr. Atheroscler. Rep. 24(4) (2022) 1-8. https://doi.org/10.1007/s11883-022-00999-8.

[5]

J. Delgado-Lista, J.F. Alcala-Diaz, J.D. Torres-Peña, et al., Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial, Lancet 399 (2022) 1876-1885. https://doi.org/10.1016/S0140-6736(22)00122-2.

[6]

A.C. Razavi, A. Mehta, L.S. Sperling, Statin therapy for the primary prevention of cardiovascular disease: Pros, Atherosclerosis 356 (2022) 41-45. https://doi.org/10.1016/j.atherosclerosis.2022.07.004.

[7]

P. Joseph, G. Roshandel, P. Gao, et al., Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: an individual participant data meta-analysis, Lancet 398 (2021) 1133-1146. https://doi.org/10.1016/S0140-6736(21)01827-4.

[8]

B.B. Adhyaru, T.A. Jacobson, Safety and efficacy of statin therapy, Nat. Rev. Cardiol. 15 (2018) 757-769. https://doi.org/10.1038/s41569-018-0098-5.

[9]

C. Murphy, E. Deplazes, C.G. Cranfield, et al., The role of structure and biophysical properties in the pleiotropic effects of statins, Int. J. Mol. Sci. 21 (2020) 8745. https://doi.org/10.3390/ijms21228745.

[10]

D.S. Gesto, C. Pereira, N.M. Cerqueira, et al., An atomic-level perspective of HMG-CoA-reductase: the target enzyme to treat hypercholesterolemia, Molecules 25 (2020) 3891. https://doi.org/10.3390/molecules25173891.

[11]

P.R. Hebert, J.M. Gaziano, K.S. Chan, et al., Cholesterol lowering with statin drugs, risk of stroke, and total mortality: an overview of randomized trials, JAMA 278 (1997) 313-321. https://doi.org/10.1001/jama.1997.03550040069040.

[12]

J.A. Friesen, V.W. Rodwell, The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases, Genome Biol. 5 (2004) 1-7. https://doi.org/10.1186/gb-2004-5-11-248.

[13]

G. Lippi, C. Mattiuzzi, G. Cervellin, Statins popularity: a global picture, Br. J. Clin. Pharmacol. 85 (2019) 1614. https://doi.org/10.1111/bcp.13944.

[14]

M. Ruscica, N. Ferri, M. Banach, et al., Side effects of statins: from pathophysiology and epidemiology to diagnostic and therapeutic implications, Cardiovasc. Res. 118 (2022) 3288-3304. https://doi.org/10.1093/cvr/cvac020.

[15]

M. Banach, Statin intolerance—we know everything, we know nothing, J. Clin. Med. 11 (2022) 5250. https://doi.org/10.3390/jcm11175250.

[16]

I. Bytyçi, P.E. Penson, D.P. Mikhailidis, et al., Prevalence of statin intolerance: a meta-analysis, Eur. Heart J. 43 (2022) 3213-3223. https://doi.org/10.1093/eurheartj/ehac015.

[17]

P.E. Penson, E. Bruckert, D. Marais, et al., Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP), J. Cachexia Sarcopenia Muscle 13 (2022) 1596-1622. https://doi.org/10.1002/jcsm.12960.

[18]

M. Ruscica, P.E. Penson, N. Ferri, et al., Impact of nutraceuticals on markers of systemic inflammation: potential relevance to cardiovascular diseases-a position paper from the International Lipid Expert Panel (ILEP), Prog. Cardiovasc. Dis. 67 (2021) 40-52. https://doi.org/10.1016/j.pcad.2021.06.010.

[19]

A. Santini, G.C. Tenore, E. Novellino, Nutraceuticals: a paradigm of proactive medicine, Eur. J. Pharm. Sci. 96 (2017) 53-61. https://doi.org/10.1016/j.ejps.2016.09.003.

[20]

M. AlAli, M. Alqubaisy, M.N. Aljaafari, et al., Nutraceuticals: transformation of conventional foods into health promoters/disease preventers and safety considerations, Molecules 26 (2021) 2540. https://doi.org/10.3390/molecules26092540.

[21]

S. Chakrabarti, S. Guha, K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities, Nutrients 10 (2018) 1738. https://doi.org/10.3390/nu14061188.

[22]

D.E. Cruz-Casas, C.N. Aguilar, J.A. Ascacio-Valdés, et al., Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides, Food Chem. 3 (2021) 100047. https://doi.org/10.1016/j.fochms.2021.100047.

[23]

I. Cruz-Chamorro, N. Álvarez-Sánchez, M. del Carmen Millán-Linares, et al., Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes, Food Res. Int. 126 (2019) 108585. https://doi.org/10.1016/j.foodres.2019.108585.

[24]

I. Cruz-Chamorro, G. Santos-Sánchez, C. Bollati, et al., Hempseed (Cannabis sativa) peptides WVSPLAGRT and IGFLIIWV exert anti-inflammatory activity in the LPS-stimulated human hepatic cell line, J. Agric. Food Chem. 70 (2022) 577-583. https://doi.org/10.1021/acs.jafc.1c07520.

[25]

C. Bollati, I. Cruz-Chamorro, G. Aiello, et al., Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3), Food Res. Int. 152 (2022) 110720. https://doi.org/10.1016/j.foodres.2021.110720.

[26]

G. Santos-Sánchez, I. Cruz-Chamorro, A.I. Álvarez-Ríos, et al., Lupinus angustifolius protein hydrolysates reduce abdominal adiposity and ameliorate metabolic associated fatty liver disease (MAFLD) in Western diet fed-ApoE−/− mice, Antioxidants 10 (2021) 1222. https://doi.org/10.3390/antiox10081222.

[27]

I. Cruz-Chamorro, N. Álvarez-Sánchez, G. Santos-Sánchez, et al., Immunomodulatory and antioxidant properties of wheat gluten protein hydrolysates in human peripheral blood mononuclear cells, Nutrients 12 (2020) 1673. https://doi.org/10.3390/nu12061673.

[28]

I. Cruz-Chamorro, N. Álvarez-Sánchez, A.I. Álvarez-Ríos, et al., Safety and Efficacy of a beverage containing lupine protein hydrolysates on the immune, oxidative and lipid status in healthy subjects: an intervention study (the Lupine-1 Trial), Mol. Nutr. Food Res. 65 (2021) 2100139. https://doi.org/10.1002/mnfr.202100139.

[29]

G. Santos-Sánchez, I. Cruz-Chamorro, C. Bollati, et al., A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effect in western diet-fed-ApoE−/− mice through the modulation of LDLR and PCSK9 pathways, Food Funct. 13 (2022) 4158-4170. https://doi.org/10.1039/D1FO03847H.

[30]

G. Aiello, Y. Li, G. Boschin, et al., Chemical and biological characterization of spirulina protein hydrolysates: focus on ACE and DPP-IV activities modulation, J. Funct. Foods 63 (2019) 103592. https://doi.org/10.1016/j.jff.2019.103592.

[31]

Y. Li, G. Aiello, E.M.A. Fassi, et al., Investigation of Chlorella pyrenoidosa protein as a source of novel angiotensin i-converting enzyme (ACE) and dipeptidyl peptidase-iv (DPP-IV) inhibitory peptides, Nutrients 13 (2021) 1624. https://doi.org/10.3390/nu13051624.

[32]

R. Pugliese, M. Bartolomei, C. Bollati, et al., Gel-forming of self-assembling peptides functionalized with food bioactive motifs modulate DPP-IV and ACE inhibitory activity in human intestinal Caco-2 cells, Biomedicines 10 (2022) 330. https://doi.org/10.3390/biomedicines10020330.

[33]

C. Lammi, C. Bollati, S. Ferruzza, et al., Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum, Nutrients 10 (2018) 1082. https://doi.org/10.3390/nu10081082.

[34]

R.K.D. Bravo, M.R.N. Angelia, L.Y.C. Uy, et al., Isolation, purification and characterization of the antibacterial, antihypertensive and antioxidative properties of the bioactive peptides in the purified and proteolyzed major storage protein of pigeon pea (Cajanus cajan) seeds, Food Chem. 4 (2022) 100062. https://doi.org/10.1016/j.fochms.2021.100062.

[35]

M.S. Coelho, R.A.M. Soares-Freitas, J.A.G. Arêas, et al., Peptides from chia present antibacterial activity and inhibit cholesterol synthesis, Plant Foods Hum. Nutr. 73 (2018) 101-107. https://doi.org/10.1007/s11130-018-0668-z.

[36]

M.U. Khan, M. Pirzadeh, C.Y. Förster, et al., Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives, Biomolecules 8 (2018) 110. https://doi.org/10.3390/biom8040110.

[37]

A. Christopher, J.P. Bartkowski, T. Haverda, Portraits of veganism: a comparative discourse analysis of a second-order subculture, Societies 8 (2018) 55. https://doi.org/10.3390/soc8030055.

[38]

M. García, P. Puchalska, C. Esteve, et al., Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities, Talanta 106 (2013) 328-349. https://doi.org/10.1016/j.talanta.2012.12.041.

[39]

M. Carbonaro, A. Nucara, Legume proteins and peptides as compounds in nutraceuticals: a structural basis for dietary health effects, Nutrients 14 (2022) 1188. https://doi.org/10.3390/nu14061188.

[40]
Y. Maphosa, V.A. Jideani, The role of legumes in human nutrition in M.C. Hucda (Ed.), Functional food-improve health through adequate food, IntechOpen, 2017, pp. 103-121. https://doi.org/10.5772/intechopen.69127.
[41]

I.F. Bolarinwa, M.F.A. Al-Ezzi, I.E. Carew, et al., Nutritional value of legumes in relation to human health: a review, Adv. J. Food Sci. Technol. 17 (2019) 72-85. https://doi.org/10.19026/ajfst.17.6032.

[42]

N.S. Affrifah, R.D. Phillips, F.K. Saalia, Cowpeas: nutritional profile, processing methods and products—a review, Legum Sci. 4 (2021) e131. https://doi.org/10.1002/leg3.131.

[43]

M.R. Marques, R.A.M.S. Freitas, A.C.C. Carlos, et al., Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles, Food Chem. 168 (2015) 288-293. https://doi.org/10.1016/j.foodchem.2014.07.049.

[44]

M. Silva, B. Philadelpho, J. Santos, et al., IAF, QGF, and QDF peptides exhibit cholesterol-lowering activity through a statin-like HMG-CoA reductase regulation mechanism: in silico and in vitro approach, Int. J. Mol. Sci. 22 (2021) 11067. https://doi.org/10.3390/ijms222011067.

[45]

M.B.d.C. e Silva, C.A. da Cruz Souza, B.O. Philadelpho, et al., In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide, Food Chem. 259 (2018) 270-277. https://doi.org/10.1016/j.foodchem.2018.03.132.

[46]

M.R. Marques, G.G. Fontanari, D.C. Pimenta, et al., Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity, Food Res. Int. 77 (2015) 43-48. https://doi.org/10.1016/j.foodres.2015.04.020.

[47]

J.R. da Silva, M.B.d.C. e Silva, B.O. Philadelpho, et al., PyrGF and GSTLN peptides enhance pravastatin’s inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme, Food Biosci. 44 (2021) 101451. https://doi.org/10.1016/j.fbio.2021.101451.

[48]

J. Alsina, F. Albericio, Solid‐phase synthesis of C-terminal modified peptides, Pept. Sci. 71 (2003) 454-477. https://doi.org/10.1002/bip.10492.

[49]

I. Cruz-Chamorro, G. Santos-Sánchez, A.I. Álvarez-López, et al., Pleiotropic biological effects of Lupinus spp. protein hydrolysates, Trends Food Sci. Technol. 133 (2023) 244-266. https://doi.org/10.1016/j.tifs.2023.02.011.

[50]

C. Lammi, C. Zanoni, G.M. Scigliuolo, et al., Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line, J. Agric. Food Chem. 62 (2014) 7151-7159. https://doi.org/10.1021/jf500795b.

[51]

C. Lammi, G. Aiello, G. Vistoli, et al., A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein, J. Funct. Foods 24 (2016) 297-306. https://doi.org/10.1016/j.jff.2016.04.017.

[52]

C. Lammi, C. Bollati, D. Lecca, et al., Lupin peptide T9 (GQEQSHQDEGVIVR) modulates the mutant PCSK9D374Y pathway: in vitro characterization of its dual hypocholesterolemic behavior, Nutrients 11 (2019) 1665. https://doi.org/10.3390/nu11071665.

[53]

C. Lammi, J. Sgrignani, G. Roda, et al., Inhibition of PCSK9D374Y/LDLR protein-protein interaction by computationally designed T9 lupin peptide, ACS Med. Chem. Lett. 10 (2018) 425-430. https://doi.org/10.1021/acsmedchemlett.8b00464.

[54]

C. Lammi, C. Zanoni, A. Arnoldi, et al., YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation, J. Food Biochem. 42 (2018) e12524. https://doi.org/10.1111/jfbc.12524.

[55]

C. Zanoni, G. Aiello, A. Arnoldi, et al., Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: focus on LDLR and PCSK9 pathways, J. Funct. Foods 32 (2017) 1-8. https://doi.org/10.1016/j.jff.2017.02.009.

[56]

C. Lammi, G. Aiello, C. Bollati, et al., Trans-epithelial transport, metabolism and biological activity assessment of the multi-target lupin peptide LILPKHSDAD (P5) and its metabolite LPKHSDAD (P5-Met), Nutrients 13 (2021) 863. https://doi.org/10.3390/nu13030863.

[57]

C. Lammi, G. Aiello, L. Dellafiora, et al., Assessment of the multifunctional behavior of lupin peptide P7 and its metabolite using an integrated strategy, J. Agric. Food Chem. 68 (2020) 13179-13188. https://doi.org/10.1021/acs.jafc.0c00130.

[58]

G. Santos-Sánchez, I. Cruz-Chamorro, A.I. Álvarez-Ríos, et al., Bioactive peptides from Lupin (Lupinus angustifolius) prevent the early stages of atherosclerosis in Western diet-fed ApoE-/- mice, J. Agric. Food Chem. 70 (2022) 8243-8253. https://doi.org/10.1021/acs.jafc.2c00809.

[59]

C. Chatterjee, S. Gleddie, C.W. Xiao, Soybean bioactive peptides and their functional properties, Nutrients 10 (2018) 1211. https://doi.org/10.3390/nu10091211.

[60]

V. Pak, M. Koo, T. Kasymova, et al., Isolation and identification of peptides from soy 11S-globulin with hypocholesterolemic activity, Chem. Nat. Compd. 41 (2005) 710-714. https://doi.org/10.1007/s10600-006-0017-6.

[61]

V. Pak, M. Koo, N. Lee, et al., Structure—activity relationships of the peptide Ile-Ala-Val-Pro and its derivatives revealed using the semi-empirical AM1 method, Chem. Nat. Compd. 41 (2005) 454-460. https://doi.org/10.1007/s10600-005-0176-x.

[62]

V.V. Pak, M. Koo, D.Y. Kwon, et al., Design of a highly potent inhibitory peptide acting as a competitive inhibitor of HMG-CoA reductase, Amino Acids 43 (2012) 2015-2025. https://doi.org/10.1007/s00726-012-1276-0.

[63]

C. Lammi, C. Zanoni, A. Arnoldi, IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway, J. Funct. Foods 14 (2015) 469-478. https://doi.org/10.1016/j.jff.2015.02.021.

[64]

V. Pak, M. Koo, D. Kwon, et al., Conformation analysis of Ile-Ala-Val-Pro peptide and its derivatives by circular dichroism, Chem. Nat. Compd. 40 (2004) 398-404. https://doi.org/10.1023/B:CONC.0000048257.95951.88

[65]

V.V. Pak, M.S. Koo, N.R. Lee, et al., Hypocholesterolemic soybean peptide (IAVP) inhibits HMG-CoA reductase in a competitive manner, Food Sci. Biotechnol. 14 (2005) 727-731.

[66]

V.V. Pak, M. Koo, M.J. Kim, et al., Modeling an active conformation for linear peptides and design of a competitive inhibitor for HMG-CoA reductase, J. Mol. Recognit. 21 (2008) 224-232. https://doi.org/10.1002/jmr.889.

[67]

C. Lammi, C. Zanoni, A. Arnoldi, et al., Two peptides from soy β-conglycinin induce a hypocholesterolemic effect in HepG2 Cells by a statin-like mechanism: comparative in vitro and in silico modeling studies, J. Agric. Food Chem. 63 (2015) 7945-7951. https://doi.org/10.1021/acs.jafc.5b03497.

[68]

M. Yoshikawa, H. Fujita, N. Matoba, et al., Bioactive peptides derived from food proteins preventing lifestyle-related diseases, Biofactors 12 (2000) 143-146. https://doi.org/10.1002/biof.5520120122.

[69]

A.K. Jukanti, P.M. Gaur, C. Gowda, et al., Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review, Br. J. Nutr. 108 (2012) S11-S26. https://doi.org/10.1017/S0007114512000797.

[70]

L.M. Real Hernandez, E. Gonzalez de Mejia, Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1913-1946. https://doi.org/10.1111/1541-4337.12504.

[71]

W. Shi, T. Hou, D. Guo, et al., Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat, J. Funct. Foods 54 (2019) 136-145. https://doi.org/10.1016/j.jff.2019.01.001.

[72]

J. Jiao, Q.Y. Gai, X. Wang, et al., Effective production of phenolic compounds with health benefits in pigeon pea[Cajanus cajan (L.) Millsp.] hairy root cultures, J. Agric. Food Chem. 68 (2020) 8350-8361. https://doi.org/10.1021/acs.jafc.0c02600.

[73]

M.K. Adenekan, G.J. Fadimu, L.A. Odunmbaku, et al., Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates, Food Sci. Nutr. 6 (2018) 146-152. https://doi.org/10.1002/fsn3.539.

[74]

V. Kumar, P. Sharma, H. Bairagya, et al., Inhibition of human 3-hydroxy-3-methylglutaryl CoA reductase by peptides leading to cholesterol homeostasis through SREBP2 pathway in HepG2 cells, Biochim. Biophys. Acta-Proteins Proteomics. 1867 (2019) 604-615. https://doi.org/10.1016/j.bbapap.2019.04.002.

[75]

C. Alasalvar, S.K. Chang, B. Bolling, et al., Specialty seeds: nutrients, bioactives, bioavailability, and health benefits: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 20 (2021) 2382-2427. https://doi.org/10.1111/1541-4337.12730.

[76]

J.C. Callaway, Hempseed as a nutritional resource: an overview, Euphytica 140 (2004) 65-72. https://doi.org/10.1007/s10681-004-4811-6.

[77]

G. Santos-Sánchez, A.I. Álvarez-López, E. Ponce-España, et al., Hempseed (Cannabis sativa) protein hydrolysates: a valuable source of bioactive peptides with pleiotropic health-promoting effects, Trends Food Sci. Technol. 127 (2022) 303-318. https://doi.org/10.1016/j.tifs.2022.06.005.

[78]

G. Aiello, C. Lammi, G. Boschin, et al., Exploration of potentially bioactive peptides generated from the enzymatic hydrolysis of hempseed proteins, J. Agric. Food Chem. 65 (2017) 10174-10184. https://doi.org/10.1021/acs.jafc.7b03590.

[79]

C. Zanoni, G. Aiello, A. Arnoldi, et al., Hempseed peptides exert hypocholesterolemic effects with a statin-like mechanism, J. Agric. Food Chem. 65 (2017) 8829-8838. https://doi.org/10.1021/acs.jafc.7b02742.

[80]

S.V. Palombini, T. Claus, S.A. Maruyama, et al., Evaluation of nutritional compounds in new amaranth and quinoa cultivars, Food Sci. Technol. 33 (2013) 339-344. https://doi.org/10.1590/S0101-20612013005000051.

[81]
N. Singh, P. Singh, K. Shevkani, et al. Amaranth: potential source for flour enrichment. In: R. Victor, R.R. Watson, Flour and breads and their fortification in health and disease prevention, Elsevier, 2019, pp. 123-135. https://doi.org/10.1016/B978-0-12-814639-2.00010-1.
[82]

R.A.M. Soares, S. Mendonça, L.Í.A. De Castro, et al., Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity, Int. J. Mol. Sci. 16 (2015) 4150-4160. https://doi.org/10.3390/ijms16024150.

[83]

B. Kulczyński, J. Kobus-Cisowska, M. Taczanowski, et al., The chemical composition and nutritional value of chia seeds—current state of knowledge, Nutrients 11 (2019) 1242. https://doi.org/10.3390/nu11061242.

[84]

I.M. Prados, J. Orellana, M.L. Marina, et al., Identification of peptides potentially responsible for in vivo hypolipidemic activity of a hydrolysate from olive seeds, J. Agric. Food Chem. 68 (2020) 4237-4244. https://doi.org/10.1021/acs.jafc.0c01280.

[85]

A. Heres, L. Mora, F. Toldrá, Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham, Food Production, Processing and Nutrition 3 (2021) 1-14. https://doi.org/10.1186/s43014-021-00058-w.

[86]

V.V. Pak, S.H. Kim, M. Koo, et al., Peptide design of a competitive inhibitor for HMG-CoA reductase based on statin structure, J. Pept. Sci. 84 (2006) 586-594. https://doi.org/10.1002/bip.20580.

[87]

A. Virginia, H. Rachmawati, C. Riani, et al., Study of HMG-CoA reductase inhibition activity of the hydrolyzed product of snakehead fish (Channa striata) skin collagen with 50 kDa collagenase from Bacillus licheniformis F11.4, Sci. Pharm. 84 (2016) 81-88. https://doi.org/10.3797/scipharm.ISP.2015.01.

[88]

D.R. Rinto, S. Yasni, M.T. Suhartono, Novel HMG-CoA reductase inhibitor peptide from Lactobacillus acidophilus isolated from Indonesian fermented food bekasam, J. Pharm. Chem. Biol. Sci. 5 (2017) 195-204.

[89]

S. Sun, W. Wang, N. Wang, et al., HPP and SGQR peptides from silkworm pupae protein hydrolysates regulated biosynthesis of cholesterol in HepG2 cell line, J. Funct Foods 77 (2021) 104328. https://doi.org/10.1016/j.jff.2020.104328.

[90]

F. Fatchiyah, S.C. Natasia, Inhibition potency of HMGR enzyme against hypercholesterolemia by bioactive peptides of CSN1S2 protein from caprine milk, AIP Conf. 2021 (2018) 070014. https://doi.org/10.1063/1.5062812.

[91]

M. Amigo-Benavent, A. Clemente, S. Caira, et al., Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean conglycinin, Electrophoresis 35 (2014) 1582-1589. https://doi.org/10.1002/elps.201300527.

[92]

G. Aiello, S. Ferruzza, G. Ranaldi, et al., Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell, J. Funct. Foods 45 (2018) 363-370. https://doi.org/10.1016/j.jff.2018.04.023.

[93]

A.L. Amaral, E.S. Ferreira, M.A. Silva, et al., The vicilin protein (Vigna radiata L.) of mung bean as a functional food: evidence of “in vitro” hypocholesterolemic activity, Nutr. Food Sci. 47 (2017) 907-916. https://doi.org/10.1108/NFS-05-2017-0089.

Food Science and Human Wellness
Pages 3083-3094
Cite this article:
Santos-Sánchez G, Álvarez-López AI, Ponce-España E, et al. Food-derived peptides with inhibitory capacity for HMG-CoA reductase activity: a potential nutraceutical for hypercholesterolemia. Food Science and Human Wellness, 2024, 13(6): 3083-3094. https://doi.org/10.26599/FSHW.2023.9250001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return