AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Controlled coupling and characterization of oyster (Crassostrea gigas) ferritin with gold nanostars

Han LiaXiaoyu XiaaShuzhen ChengaJiachen ZangbZhenyu WangaXianbing XuaMing Dua( )
School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Ferritin has good thermal stability, resistance to certain acids and bases, and targeting, and has broad application prospects in the synthesis of gold nanostars (AuNS). In this study, we screened monodisperse AuNS with uniform particle size and morphology through a one-step synthesis method and coupled the synthesized AuNS with oyster ferritin (GF1). The results showed that the surface plasmon resonance (SPR) peaks of the coupled GF1@AuNS changed significantly, and the changes in infrared spectra and potential confirmed the success of the synthesis, while the microscopic morphology showed an increase in particle size and surface peak coverage. Furthermore, GF1@AuNS does not induce cell death in the 100 μmol/L range, is highly stable in physiological environments, and exhibits good X-ray attenuation in micro-computed tomography. Due to the unique functional activity of ferritin and AuNS, GF1@AuNS has potential applications in food detection and drug development in the future.

References

[1]

Z.W. Li, S.S. Xie, Large-scale synthesis of aligned carbon nanotubes, Science 274 (1996) 1701-1703. https://doi.org/10.1126/science.274.5293.1701.

[2]

V. Amendola, R. Pilot, M. Frasconi, et al., Surface plasmon resonance in gold nanoparticles: a review, J. Phys. Condens Matter. 29(20) (2017) 203002. https://doi.org/10.1088/1361-648X/aa60f3.

[3]

C.L. Necl, H.W. Liao, J.H. Hafner, Optical properties of star-shaped gold nanoparticles, Nano Lett. 6(4) (2006) 683-688. https://doi.org/10.1021/nl052409y.

[4]

S. Abalde-Cela, P. Aldeanueva-Potel, C. Mateo-Mateo, et al., Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles, J. R. Soc. Interface 7(4) (2010) 29. https://doi.org/10.1098/rsif.2010.0125.focus.

[5]

H.Y. Chen, X. Zhang, S.H. Dai, et al., Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy, Theranostics 3(9) (2013) 633-649. https://doi.org/10.7150/thno.6630.

[6]

L. Wang, D.H. Meng, Y.W. Hao, et al., Gold nanostars mediated combined photothermal and photodynamic therapy and X-ray imaging for cancer theranostic applications, J. Biomate. Appl. 30(5) (2015) 547-557. https://doi.org/10.1177/0885328215594481.

[7]

N.N Zhao, L.S. Li, T. Huang, et al., Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles, Nanoscale 2(11) (2010) 2418-2413. https://doi.org/10.1039/c0nr00385a.

[8]

B. Khlebtsov, E. Panfilova, V. Khanadeev, et al., Improved size-tunable synthesis and SERS properties of Au nanostars, J. Nanopart. Res. 16(10) (2014) 2623. https://doi.org/10.1007/s11051-014-2623-8.

[9]

J. Verma, H.A.V. Veen, S. Lal, et al., Wet chemistry approaches for synthesis of gold nanospheres, nanorods and nanostars, Curr. Nanosci. 10(5) (2014) 660-669. https://doi.org/10.2174/1573413710666140526232421.

[10]

E.C. Hao, R.C. Bailey, G.C. Schatz, et al., Synthesis and optical properties of “branched” gold nanocrystals, Nano Lett. 4(2) (2004) 327-330. https://doi.org/10.1021/nl0351542.

[11]

W. Moukarzel, J. Fitremann, J.D. Marty, Seed-less amino-sugar mediated synthesis of gold nanostars, Nanoscale 3(8) (2011) 3285-3290. https://doi.org/10.1039/C1NR10418G.

[12]

S. Boca, D. Rugina, A. Pintea, et al., Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells, Nanotechnology 22(5) (2011) 055702. https://doi.org/10.1088/0957-4484/22/5/055702.

[13]

J.V. Jokerst, M. Zheng, C. Zavaleta, et al., Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor, Small 7(5) (2015) 625-633. https://doi.org/10.1002/smll.201002291.

[14]

H. Yuan, Y. Liu, A.M. Fales, et al., Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection, Anal. Chem. 85(1) (2013) 208-212. https://doi.org/10.1021/ac302510g.

[15]

J.P. Xie, Q.B. Zhang, J.Y. Lee, et al., The synthesis of SERS-active gold nanoflower tags for in vivo applications, ACS Nano 2(12) (2008) 2473-2480. https://doi.org/10.1021/nn800442q.

[16]

P. Pallavicini, C. Bernhard, G. Chirico, et al., Gold nanostars co-coated with the Cu(Ⅱ) complex of a tetraazamacrocyclic ligand, Dalton Trans. 44(12) (2015) 5652-5661. https://doi.org/10.1039/c4dt03042g.

[17]

J.C. Li, R. Cai, N. Kawazoe, et al., Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells, J. Mater. Chem. B 3(28) (2015) 5806-5814. https://doi.org/10.1039/c5tb00633c.

[18]

S.L. Zhang, J.C. Zang, H. Chen, et al., Nanomaterials: the size flexibility of ferritin nanocage opens a new way to prepare nanomaterials, Small 13(37) (2017) 1701045. https://doi.org/10.1002/smll.201770199.

[19]

S.C. Andrews, P. Arosio, W. Bottke, et al., Structure, function, and evolution of ferritins, J. Inorg. Biochem. 47(3/4) (1992) 161-174. https://doi.org/10.1016/0162-0134(92)84062-R.

[20]

X.Y. Liao, S.J. Yun, G.H. Zhao, Structure, function, and nutrition of phytoferritin: a newly functional factor for iron supplement, Crit. Rev. Food Sci. Nutr. 54(10) (2014) 1342-1352. https://doi.org/10.1080/10408398.2011.635914.

[21]

P.M. Harrison, P. Arosio, The ferritins: molecular properties, iron storage function and cellular regulation, Biochim. Biophys. Acta 1275(3) (1996) 161-203. https://doi.org/10.1016/0005-2728(96)00022-9.

[22]

H. Li, X.Y. Tan, X.Y. Xia, et al., Thermal treatment modified the physicochemical properties of recombinant oyster (Crassostrea gigas) ferritin, Food Chem. 314 (2020) 126210. https://doi.org/10.1016/j.foodchem.2020.126210.

[23]

R.L. Fan, S.W. Chew, V.V. Cheong, et al., Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin, Small 6(14) (2010) 1483-1487. https://doi.org/10.1002/smll.201000457.

[24]

B. Maity, S. Abe, T. Ueno, Observation of gold sub-nanocluster nucleation within a crystalline protein cage, Nat. Commun. 8(1) (2017) 14820. https://doi.org/10.1038/ncomms14820.

[25]

C.L. Lu, B. Maity, X. Peng, et al., Design of a gold clustering site in an engineered apo-ferritin cage, Commun. Chem. 5(1) (2022) 39. https://doi.org/10.1038/s42004-022-00651-1.

[26]

K.W. Pulsipher, S. Honig, S. Deng, et al., Controlling gold nanoparticle seeded growth in thermophilic ferritin protein templates, J. Inorg. Biochem. 174 (2017) 169-176. https://doi.org/10.1016/j.jinorgbio.2017.06.012.

[27]

J.P. Xie, J.Y. Lee, D. Wang, Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution, Chem. Mater. 19(11) (2007) 2823-2830. https://doi.org/10.1021/cm0700100.

[28]

Y.Q. Wang, B. Yan, L.X. Chen, SERS tags: novel opticalnanoprobes for bioanalysis, Chem. Rev. 113(3) (2013) 1391-1428. https://doi.org/10.1021/cr300l120g.

[29]

G. Kawamura, Y. Yang, K. Fukuda, et al., Shape control synthesis of multi-branched gold nanoparticles, Mater. Chem. Phys. 115(1) (2009) 229-234. https://doi.org/10.1016/j.matchemphys.2008.11.064.

[30]

H.A. Day, D. Bartczak, N. Fairbairn, et al., Controlling the three-dimensional morphology of nanocrystals, CrystEngComm 12(12) (2010) 4312-4316. https://doi.org/10.1039/c0ce00264j.

[31]

H. Li, J.C. Zang, X.Y. Tan, et al., Purification and characterizations of a nanocage ferritin GF1 from oyster (Crassostrea gigas), LWT-Food Sci. Technol. 127 (2020) 109416. https://doi.org/10.1016/j.lwt.2020.109416.

[32]

M. Reyes, M. Piotrowski, S.K. Ang, et al., Exploiting the anti-aggregation of gold nanostars for rapid detection of hand, foot, and mouth disease causing enterovirus 71 using surface-enhanced raman spectroscopy, Anal. Chem. 89(10) (2017) 5373-5381. https://doi.org/10.1021/acs.analchem.7b00066.

[33]

S. He, Y.M.E. Kyaw, E.K.M. Tan, et al., Quantitative and label-free detection of protein kinase a activity based on surface-enhanced raman spectroscopy with gold nanostars, Anal. Chem. 90(10) (2018) 6071-6080. https://doi.org/10.1021/acs.analchem.7b05417.

[34]

W. Chao, Y.F. Hua, Y.M. Chen, et al., Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size, Food Hydrocoll. 66 (2017) 389-395. https://doi.org/10.1016/j.foodhyd.2016.12.007.

[35]

J. Navarrete, C. Siefe, S. Alcantar, et al., Merely measuring the UV-visible spectrum of gold nanoparticles can change their charge state, Nano Lett. 18(2) (2018) 669-674. https://doi.org/10.1021/acs.nanolett.7b02592.

[36]

G.B. Sutherland, Infrared analysis of the structure of amino acids, polypeptides and proteins, Adv. Protein Chem. 7 (1952) 291-318. https://doi.org/10.1016/S0065-3233(08)60021-2.

[37]

S. Patil, A. Sandberg, E. Heckert, et al., Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of Zeta potential, Biomaterials 28(31) (2007) 4600-4607. https://doi.org/10.1016/j.biomaterials.2007.07.029.

[38]

Q. Cui, L. Wang, G.R. Wang, et al., Ultrasonication effects on physicochemical and emulsifying properties of Cyperus esculentus seed (tiger nut) proteins, LWT-Food Sci. Technol. 142(3) (2021) 110979. https://doi.org/10.1016/j.lwt.2021.110979.

[39]

Q.Y. Zhao, C. Wu, C.P. Yu, et al., High stability of bilayer nano-emulsions fabricated by Tween 20 and specific interfacial peptides, Food Chem. 340 (2020) 127877. https://doi.org/10.1016/j.foodchem.2020.127877.

[40]

Q.Y. Zhao, H. Li, H. Chen, et al., High throughput analysis and quantitation of α-dicarbonyls in biofluid by plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry, J. Hazard Mater. 403 (2021) 123580. https://doi.org/10.1016/j.jhazmat.2020.123580.

[41]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, et al., High-yield synthesis and optical response of gold nanostars, Nanotechnology 19(1) (2008) 015606. https://doi.org/10.1088/0957-4484/19/01/015606.

[42]

C.G. Khoury, T. Vo-Dinh, Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization, J. Phys. Chem. C 112(48) (2008) 18849-18859. https://doi.org/10.1021/jp8054747.

[43]

Q.Q. Su, X.Y. Ma, J. Dong, et al., A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars, ACS Appl. Mater. Inter. 3(6) (2011) 1873-1879. https://doi.org/10.1021/am200057f.

[44]

M. Schuetz, D. Steinigeweg, M. Salehi, et al., Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy, Chem. Commun. 47(14) (2011) 4216-4218. https://doi.org/10.1039/C0CC05229A.

[45]

H. Yuan, C.G. Khoury, H. Hwang, et al., Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology 23(7) (2012) 075102. https://doi.org/10.1088/0957-4484/23/7/075102.

[46]

H.S. Liang, Q.R. Huang, B. Zhou, et al., Self-assembled zein-sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter, J. Mater. Chem. B 3(16) (2015) 3242-3253. https://doi.org/10.1039/c4tb01920b.

[47]

A.J. Gormley, A. Malugin, A. Ray, et al., Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment, J. Drug. Target 19(10) (2011) 915-924. https://doi.org/10.3109/1061186X.2011.623701.

[48]

J.F. Hainfeld, D.N. Slatkin, T.M. Focella, et al., Gold nanoparticles: a new X-ray contrast agent, Brit. J. Radiol. 79(939) (2007) 248-253. https://doi.org/10.1259/bjr/13169882.

[49]

T. Ling, Q.S. Wei, A. Wei, et al., Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects, Photochem. Photobiol. 85(1) (2010) 21-32. https://doi.org/10.1111/j.1751-1097.2008.00507.x.

Food Science and Human Wellness
Pages 3202-3209
Cite this article:
Li H, Xia X, Cheng S, et al. Controlled coupling and characterization of oyster (Crassostrea gigas) ferritin with gold nanostars. Food Science and Human Wellness, 2024, 13(6): 3202-3209. https://doi.org/10.26599/FSHW.2023.9250007

358

Views

15

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 March 2023
Revised: 18 April 2023
Accepted: 05 June 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return