It has been widely accepted that resistant starch (RS) provides numerous health benefits for human. In this research, we aimed at evaluating the performance of novel starch-lipid complexes, RS5, in comparison with RS2 on physical features, glucolipids metabolism, inflammation, and gut microbiota profiles of type 2 diabetes mellitus (T2DM) rats. The T2DM model was established by streptozotocin injection to the high-fat-sugar fed rats. According to a serial of biochemical analyses, we found that RS5 diets were strongly correlated with enhanced homeostatic model assessment for insulin secretion (HOMA-IS), high-density lipoprotein cholesterol (HDL-C), adiponectin (ADP), insulin action index (IAI), glucagon-like peptide-1 (GLP1), and short-chain fatty acids (SCFAs) in T2DM rats whilst negatively associated with the low-density lipoprotein (LDL-C) and inflammatory cytokines, showing the capabilities to ameliorate T2DM symptoms by regulation of glucolipid metabolism, gut metabolites, and inflammation. On the other hand, RS2-enriched supplementations were influential in the mediation of insulin secretion to improve glucose metabolism. The increasing evidence collected herein suggested that intestinal microbiota could mediate glucolipids metabolism and alleviate inflammation after certain microflora nourished by RS. In addition, RS intake made an impact on phosphoinositide 3-kinase/protein kinase B signaling pathway that might contribute to the improvement of glucose metabolism, insulin resistance, and inflammatory responses.
H. Wang, M. Naghavi, C. Allen, et al., Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet 388 (2016) 1459-1544. https://doi.org/10.1016/S0140-6736(16)31678-6.
K.Y. Thong, P. sen Gupta, A.D. Blann, et al., The influence of age and metformin treatment status on reported gastrointestinal side effects with liraglutide treatment in type 2 diabetes, Diabetes Res. Clin. Pract. 109 (2015) 124-129. https://doi.org/10.1016/j.diabres.2015.04.009.
K. Zhou, H.K. Pedersen, A.Y. Dawed, et al., Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery, Nat. Rev. Endocrinol. 12 (2016) 337-346. https://doi.org/10.1038/nrendo.2016.51.
H. Englyst, H.S. Wiggins, J.H. Cummings, Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst 107 (1982) 307-318. https://doi.org/10.1039/an9820700307.
H.N. Englyst, S.M. Kingman, G.J. Hudson, et al., Measurement of resistant starch in vitro and in vivo, Br. J. Nutr. 75 (1996) 749-755. https://doi.org/10.1079/bjn19960178.
G. Giuberti, A. Gallo, M. Moschini, et al., In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum, Animal 7 (2013) 1446-1453. https://doi.org/10.1017/S1751731113001092.
B. Lee, L.A. Bello-Pérez, A.H. Lin, et al., Importance of location of digestion and colonic fermentation of starch related to its quality, Cereal Chem. 90 (2013) 335-343. https://doi.org/10.1094/CCHEM-05-13-0095-FI.
S.D. Navarro, M.O. Mauro, J.R. Pesarini, et al., Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis, Genet. Mol. Res. 14 (2015) 1679-1691. https://doi.org/10.4238/2015.March.6.14.
M.M. Murphy, J.S. Douglass, A. Birkett, Resistant starch intakes in the United States, J. Am. Diet. Assoc. 108 (2008) 67-78. https://doi.org/10.1016/j.jada.2007.10.012.
D.C. Miketinas, K. Shankar, M. Maiya, et al., Usual dietary intake of resistant starch in US adults from NHANES 2015–2016, J. Nutr. 150 (2020) 2738-2747. https://doi.org/10.1093/jn/nxaa232.
D.P. Belobrajdic, A.R. Bird, Evaluation of an ileorectostomised rat model for resistant starch determination, Nutrients 13 (2020) 91. https://doi.org/10.3390/nu13010091.
E.A.M. de Deckere, W.J. Kloots, J.M.M. van Amelsvoort, Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats, J. Nutr. 123 (1993) 2142-2151. https://doi.org/10.1093/jn/123.12.2142.
K.M. Behall, D.J. Scholfield, J.G. Hallfrisch, Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men, Nutr. Res. 26 (2006) 644-650. https://doi.org/10.1016/j.nutres.2006.10.001.
L.B. Bindels, R.R. Segura Munoz, J.C. Gomes-Neto, et al., Resistant starch can improve insulin sensitivity independently of the gut microbiota, Microbiome 5 (2017) 1-16. https://doi.org/10.1186/s40168-017-0230-5.
J.C. Sandberg, I.M.E. Björck, A.C. Nilsson, Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects, Nutr. J. 16 (2017) 1-11. https://doi.org/10.1186/s12937-017-0246-5.
A. Bojarczuk, S. Skąpska, A. Mousavi Khaneghah, et al., Health benefits of resistant starch: a review of the literature, J. Funct. Foods 93 (2022) 105094. https://doi.org/10.1016/j.jff.2022.105094.
M. Chandalia, A. Garg, D. Lutjohann, et al., Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus, N. Engl. J. Med. 342 (2000) 1392-1398. https://doi.org/10.1056/NEJM200005113421903.
T. Mao, F. Huang, X. Zhu, et al., Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: a systematic review and meta-analysis, J. Funct. Foods 82 (2021) 104500. https://doi.org/10.1016/j.jff.2021.104500.
M.J. Keenan, J. Zhou, M. Hegsted, et al., Role of resistant starch in improving gut health, adiposity, and insulin resistance, Adv. Nutr. 6 (2015) 198-205. https://doi.org/10.3945/an.114.007419.
M. Snelson, J. Jong, D. Manolas, et al., Metabolic effects of resistant starch type 2: a systematic literature review and meta-analysis of randomized controlled trials, Nutrients 11 (2019) 1833. https://doi.org/10.3390/nu11081833.
J. Hasjim, S. Lee, S. Hendrich, et al., Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses, Cereal Chem. 87 (2010) 257-262. https://doi.org/10.1094/CCHEM-87-4-0257.
B.N. Okumus, Z. Tacer-Caba, K. Kahraman, et al., Resistant starch type Ⅴ formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids, Food Chem. 240 (2018) 550-558. https://doi.org/10.1016/j.foodchem.2017.07.157.
R. Qin, J. Wang, C. Chao, et al., RS5 produced more butyric acid through regulating the microbial community of human gut microbiota, J. Agric. Food Chem. 69 (2021) 3209-3218. https://doi.org/10.1021/acs.jafc.0c08187.
R. Qin, J. Yu, Y. Li, et al., Structural changes of starch-lipid complexes during postprocessing and their effect on in vitro enzymatic digestibility, J. Agric. Food Chem. 67 (2019) 1530-1536. https://doi.org/10.1021/acs.jafc.8b06371.
T.P. Degenhardt, N.L. Alderson, D.D. Arrington, et al., Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat, Kidney Int. 61 (2002) 939-950. https://doi.org/10.1046/j.1523-1755.2002.00207.x.
S.N. Goyal, N.M. Reddy, K.R. Patil, et al., Challenges and issues with streptozotocin-induced diabetes–a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics, Chem. Biol. Interact. 244 (2016) 49-63. https://doi.org/10.1016/j.cbi.2015.11.032.
R.S. Danda, N.M. Habiba, H. Rincon-Choles, et al., Kidney involvement in a nongenetic rat model of type 2 diabetes, Kidney Int. 68 (2005) 2562-2571. https://doi.org/10.1111/j.1523-1755.2005.00727.x.
Z. Guo, Z. Qin, R. Zhang, et al., Effect of rosiglitazone on the expression of cardiac adiponectin receptors and NADPH oxidase in type 2 diabetic rats, Eur. J. Pharmacol. 685 (2012) 116-125. https://doi.org/10.1016/j.ejphar.2012.04.010.
H. Sun, X. Ma, S. Zhang, et al., Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats, Int. J. Biol. Macromol. 110 (2018) 276-284. https://doi.org/10.1016/j.ijbiomac.2017.11.162.
D.R. Matthews, J.P. Hosker, A.S. Rudenski, et al., Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia 28 (1985) 412-419. https://doi.org/10.1007/BF00280883.
M. Matsuda, R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp, Diabetes Care 22 (1999) 1462-1470. https://doi.org/10.2337/diacare.22.9.1462.
K.J. Koecher, J.A. Noack, D.A. Timm, et al., Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber, J. Agric. Food Chem. 62 (2014) 1332-1337. https://doi.org/10.1021/jf404688n.
D.E. Moller, Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes, Trends Endocrin. Met. 11 (2000) 212-217. https://doi.org/10.1016/s1043-2760(00)00272-1.
L.L. Lehrskov, M.P. Lyngbaek, L. Soederlund, et al., Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control, Cell Metab. 27 (2018) 1201-1211. https://doi.org/10.1016/j.cmet.2018.04.008.
E. le Chatelier, T. Nielsen, J. Qin, et al., Richness of human gut microbiome correlates with metabolic markers, Nature 500 (2013) 541-546. https://doi.org/10.1038/nature12506.
H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature 535 (2016) 376-381. https://doi.org/10.1038/nature18646.
Y. Zhao, J. Hasjim, L. Li, et al., Inhibition of azoxymethane-induced preneoplastic lesions in the rat colon by a cooked stearic acid complexed high-amylose cornstarch, J. Agric. Food Chem. 59 (2011) 9700-9708. https://doi.org/10.1021/jf202002c.
M.E. Cooper, Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy, Diabetologia 44 (2001) 1957-1972. https://doi.org/10.1007/s001250100000.
D.A. Brockman, X. Chen, D.D. Gallaher, Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats, Nutr. Metab. 9 (2012) 1-12. https://doi.org/10.1186/1743-7075-9-100.
G.S. Ranhotra, J.A. Gelroth, B.K. Glaser, Effect of resistant starch on blood and liver lipids in hamsters, Cereal Chem. 73 (1996) 176-178.
Y. Sun, K. Yu, L. Zhou, et al., Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch, J. Anim. Sci. 94 (2016) 1083-1094. https://doi.org/10.2527/jas.2015-9715.
B.U. Metzler-Zebeli, E. Eberspächer, D. Grüll, et al., Enzymatically modified starch ameliorates postprandial serum triglycerides and lipid metabolome in growing pigs, PLoS ONE 10 (2015) e0130553. https://doi.org/10.1371/journal.pone.0130553.
H.C. Yuan, Y. Meng, H. Bai, et al., Meta-analysis indicates that resistant starch lowers serum total cholesterol and low-density cholesterol, Nutr. Res. 54 (2018) 1-11. https://doi.org/10.1016/j.nutres.2018.02.008.
T.C. Rideout, S.V. Harding, A. Raslawsky, et al., Dietary resistant starch supplementation increases high-density lipoprotein particle number in pigs fed a western diet, J. Diet Suppl. 14 (2017) 334-345. https://doi.org/10.1080/19390211.2016.1229371.
C. Heidemann, Q. Sun, R.M. van Dam, et al., Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women, Ann. Intern. Med. 149 (2008) 307-316. https://doi.org/10.7326/0003-4819-149-5-200809020-00005.
R. Assessment, Major lipids, apolipoproteins, and risk of vascular disease, JAMA 302 (2009) 1993-2000. https://doi.org/10.1001/jama.2009.1619.
Y. Zhang, Y. Li, Q. Xia, et al., Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application, Crit. Rev. Food Sci. Nutr. (2021) 1-17. https://doi.org/10.1080/10408398.2021.1995842.
Y. Li, C. Qin, L. Dong, et al., Whole grain benefit: synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice, Food Funct. 13 (2022) 12686-12696. https://doi.org/10.1039/D2FO01746F.
C.Y. Chiu, I.L. Chan, T.H. Yang, et al., Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes, J. Agric. Food Chem. 63 (2015) 2979-2988. https://doi.org/10.1021/acs.jafc.5b00198.
J.T. Haas, J. Miao, D. Chanda, et al., Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression, Cell Metab. 15 (2012) 873-884. https://doi.org/10.1016/j.cmet.2012.05.002.
H. Wang, F. Liu, C.F. Millette, et al., Expression of a novel, sterol-insensitive form of sterol regulatory element binding protein 2 (SREBP2) in male germ cells suggests important cell-and stage-specific functions for SREBP targets during spermatogenesis, Mol. Cell Biol. 22 (2002) 8478-8490. https://doi.org/10.1128/MCB.22.24.8478-8490.2002.
M.D. Robertson, J.M. Currie, L.M. Morgan, et al., Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects, Diabetologia 46 (2003) 659-665. https://doi.org/10.1007/s00125-003-1081-0.
Y. Yamada, S. Hosoya, S. Nishimura, et al., Effect of bread containing resistant starch on postprandial blood glucose levels in humans, Biosci. Biotechnol. Biochem. 69 (2005) 559-566. https://doi.org/10.1271/bbb.69.559.
L.L. Kjems, J.J. Holst, A. Vølund, et al., The influence of GLP-1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects, Diabetes 52 (2003) 380-386. https://doi.org/10.2337/diabetes.52.2.380.
J. Zhou, R.J. Martin, R.T. Tulley, et al., Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents, Am. J. Physiol-Endoc. 295 (2008) E1160-E1166. https://doi.org/10.1152/ajpendo.90637.2008.
P.D. Cani, J. Amar, M.A. Iglesias, et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes 56 (2007) 1761-1772. https://doi.org/10.2337/db06-1491.
B. Jayashree, Y.S. Bibin, D. Prabhu, et al., Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes, Mol. Cell Biochem. 388 (2014) 203-210. https://doi.org/10.1007/s11010-013-1911-4.
I. Jialal, A. Chaudhuri, Targeting inflammation to reduce ASCVD in type 2 diabetes, J. Diabetes Complications 33 (2019) 1-3. https://doi.org/10.1016/j.jdiacomp.2018.11.001.
T. Morita, H. Tanabe, K. Sugiyama, et al., Dietary resistant starch alters the characteristics of colonic mucosa and exerts a protective effect on trinitrobenzene sulfonic acid-induced colitis in rats, Biosci. Biotechnol. Biochem. 68 (2004) 2155-2164. https://doi.org/10.1271/bbb.68.2155.
U.N. Das, Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front. Endocrinol. 8 (2017) 182. https://doi.org/10.3389/fendo.2017.00182.
H. Tayebi Khosroshahi, N.D. Vaziri, B. Abedi, et al., Effect of high amylose resistant starch (HAM-RS2) supplementation on biomarkers of inflammation and oxidative stress in hemodialysis patients: a randomized clinical trial, Hemodial. Int. 22 (2018) 492-500. https://doi.org/10.1111/hdi.12653.
D.M. Hall, G.R. Buettner, L.W. Oberley, et al., Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia, Am. J. Physiol-Heart C. 280 (2001) H509-H521. https://doi.org/10.1152/ajpheart.2001.280.2.H509.
Q. Shang, X. Shan, C. Cai, et al., Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae, Food Funct. 7 (2016) 3224-3232. https://doi.org/10.1039/c7fo90052j.
D. Ríos-Covián, P. Ruas-Madiedo, A. Margolles, et al., Intestinal short chain fatty acids and their link with diet and human health, Front. Microbiol. 7 (2016) 185. https://doi.org/10.3389/fmicb.2016.00185.
A. Pingitore, E.S. Chambers, T. Hill, et al., The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro, Diabetes Obes. Metab. 19 (2017) 257-265. https://doi.org/10.1111/dom.12811.
Z. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58 (2009) 1509-1517. https://doi.org/10.2337/db08-1637.
C. Chen, X. Cao, L. Tian, Partial least squares regression performs well in MRI-based individualized estimations, Front. Neurosci. 13 (2019) 1282. https://doi.org/10.3389/fnins.2019.01282.
A. Adak, M.R. Khan, An insight into gut microbiota and its functionalities, Cell. Mol. Life Sci. 76 (2019) 473-493. https://doi.org/10.1007/s00018-018-2943-4.
M.K. Liu, Y.M. Tang, X.J. Guo, et al., Deep sequencing reveals high bacterial diversity and phylogenetic novelty in pit mud from Luzhou Laojiao cellars for Chinese strong-flavor Baijiu, Food Res. Int. 102 (2017) 68-76. https://doi.org/10.1016/j.foodres.2017.09.075.
M.R. Laffin, H. Tayebi Khosroshahi, H. Park, et al., Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: microbial analysis from a randomized placebo-controlled trial, Hemodial. Int. 23 (2019) 343-347. https://doi.org/10.1111/hdi.12753.
K. Holmstrøm, M.D. Collins, T. Møller, et al., Subdoligranulum variabile gen. nov., sp. nov. from human feces, Anaerobe 10 (2004) 197-203. https://doi.org/10.1016/j.anaerobe.2004.01.004.
D.M. Saulnier, K. Riehle, T. Mistretta, et al., Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome, Gastroenterology 141 (2011) 1782-1791. https://doi.org/10.1053/j.gastro.2011.06.072.
B. Zhang, W. Sun, N. Yu, et al., Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats, J. Funct. Foods 46 (2018) 256-267. https://doi.org/10.1016/j.jff.2018.04.070.
G. Cammarota, G. Ianiro, R. Cianci, et al., The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy, Pharmacol. Ther. 149 (2015) 191-212. https://doi.org/10.1016/j.pharmthera.2014.12.006.
Z. Bahadoran, P. Mirmiran, M.Z. Yeganeh, et al., Complementary and alternative medicinal effects of broccoli sprouts powder on Helicobacter pylori eradication rate in type 2 diabetic patients: a randomized clinical trial, J. Funct. Foods 7 (2014) 390-397. https://doi.org/10.1016/j.jff.2014.01.020.
X. Ze, S.H. Duncan, P. Louis, et al., Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon, ISME J. 6 (2012) 1535-1543. https://doi.org/10.1038/ismej.2012.4.
C.H. Liu, S.M. Lee, J.M. VanLare, et al., Regulation of surface architecture by symbiotic bacteria mediates host colonization, Proc. Natl. Acad. Sci. 105 (2008) 3951-3956. https://doi.org/10.1073/pnas.0709266105.
K. Wang, M. Liao, N. Zhou, et al., Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids, Cell Rep. 26 (2019) 222-235. https://doi.org/10.1016/j.celrep.2018.12.028.
Y. Feng, C. Zhong, J. Niu, et al., Effects of sleeve gastrectomy on lipid and energy metabolism in ZDF rats via PI3K/AKT pathway, Am. J. Transl. Res. 10 (2018) 3713.
Z. Chen, Y. Yuan, X. Zou, et al., Radix Puerariae and Fructus Crataegi mixture inhibits renal injury in type 2 diabetes via decreasing of AKT/PI3K, BMC Complement Altern. Med. 17 (2017) 1-9. https://doi.org/10.1186/s12906-017-1945-3.
T.Y. Liu, C.X. Shi, R. Gao, et al., Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes, Clin. Sci. 129 (2015) 839-850. https://doi.org/10.1042/CS20150009.
M. Kuai, Y. Li, X. Sun, et al., A novel formula Sang-Tong-Jian improves glycometabolism and ameliorates insulin resistance by activating PI3K/AKT pathway in type 2 diabetic KKAy mice, Biomed. Pharmacother. 84 (2016) 1585-1594. https://doi.org/10.1016/j.biopha.2016.10.101.
B.D. Manning, A. Toker, AKT/PKB signaling: navigating the network, Cell 169 (2017) 381-405. https://doi.org/10.1016/j.cell.2017.04.001.
F. Giorgino, O. de Robertis, L. Laviola, et al., The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells, Proc. Natl. Acad. Sci. 97 (2000) 1125-1130. https://doi.org/10.1073/pnas.97.3.1125.
W.J. Schnedl, S. Ferber, J.H. Johnson, et al., STZ transport and cytotoxicity: specific enhancement in GLUT2-expressing cells, Diabetes 43 (1994) 1326-1333. https://doi.org/10.2337/diab.43.11.1326.
L. Sun, X. Zeng, C. Yan, et al., Crystal structure of a bacterial homologue of glucose transporters GLUT1-4, Nature 490 (2012) 361-366. https://doi.org/10.1038/nature11524.
C.M. McKinnon, K. Docherty, Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function, Diabetologia 44 (2001) 1203-1214. https://doi.org/10.1007/s001250100628.
P. Kovacs, R.L. Hanson, Y.H. Lee, et al., The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians, Diabetes 52 (2003) 3005-3009. https://doi.org/10.2337/diabetes.52.12.3005.
A. Danielsson, A. Öst, E. Lystedt, et al., Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes, FEBS J. 272 (2005) 141-151. https://doi.org/10.1111/j.1432-1033.2004.04396.x.
K. Du, S. Herzig, R.N. Kulkarni, et al., TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver, Science 300 (2003) 1574-1577. https://doi.org/10.1126/science.1079817.
Y. Zhang, L. Dong, L. Liu, et al., Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: a review, J. Agric. Food Chem. 70 (2022) 6300-6316. https://doi.org/10.1021/acs.jafc.2c01080.