Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With increasing life expectancy, neurodegenerative diseases have become one of the leading causes of ill-health in the elderly. Preventive strategies include following healthy diets, such as the Mediterranean diet, which is particularly rich in polyphenols, bioactive compounds with neuroprotective properties. The aim of this study was to assess the association of microbial phenolic metabolites (MPM) with cognition. This cross-sectional analysis was performed with 200 participants of the PREDIMED trial (Barcelona-Clinic recruitment center). A novel method based on liquid chromatography coupled to mass spectrometry was used to identify urinary MPM (protocatechuic acid, enterodiol glucuronide, enterolactone glucuronide, urolithin B glucuronide, and vanillic acid glucuronide), and cognitive function was evaluated with neuropsychological tests. Multivariable-adjusted ordinary least squares regression was used to assess the associations between cognitive function and MPM, and a score was calculated as the weighted sum of MPM. A higher MPM score was associated with better frontal lobe function. Among individual metabolites, vanillic acid glucuronide was correlated with frontal cognitive performance. Participants with higher concentrations of vanillic acid glucuronide and urolithin B glucuronide obtained better scores in the Color Trail Test part 2. A higher score for urinary multi-MPM was associated with better frontal cognitive performance in an older Mediterranean population.
G.A. Roth, D. Abate, K.H. Abate, et al., Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet 392 (2018) 1736-1788. https://doi.org/10.1016/S0140-6736(18)32203-7.
H. Niu, I. Álvarez-Álvarez, F. Guillén-Grima, et al., Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: metaanálisis, Neurologia 32 (2017) 523-532. https://doi.org/10.1016/j.nrl.2016.02.016.
C.A. Lane, J. Hardy, J.M. Schott, Alzheimer’s disease, Eur. J. Neurol. 25 (2018) 59-70. https://doi.org/10.1111/ene.13439.
M. Baumgart, H.M. Snyder, M.C. Carrillo, et al., Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective, Alzheimer’s Dement. 11 (2015) 718-726. https://doi.org/10.1016/j.jalz.2015.05.016.
N. Scarmeas, C.A. Anastasiou, M. Yannakoulia, Nutrition and prevention of cognitive impairment, Lancet Neurol. 17 (2018) 1006-1015. https://doi.org/10.1016/S1474-4422(18)30338-7.
D.G. Loughrey, S. Lavecchia, S. Brennan, et al., The impact ofsocial activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review, Syst. Rev. 8 (2017) 571-586. https://doi.org/10.1186/s13643-017-0632-2.
J. Barbaresko, A.W. Lellmann, A. Schmidt, et al., Dietary factors and neurodegenerative disorders: an umbrella review of meta-analyses of prospective studies, Adv. Nutr. 11 (2020) 1161-1173. https://doi.org/10.1093/advances/nmaa053.
A. Bach-Faig, E.M. Berry, D. Lairon, et al., Mediterranean diet pyramid today. Science and cultural updates, Public Health Nutr. 14 (2011) 2274. https://doi.org/10.1017/S1368980011002515.
M. Steele, G. Stuchbury, G. Münch, The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition, Exp. Gerontol. 42 (2007) 28-36. https://doi.org/10.1016/j.exger.2006.06.002.
C. Valls-Pedret, R.M. Lamuela-Raventós, A. Medina-Remón, et al., Polyphenol-rich foods in the mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk, J. Alzheimer’s Dis. 29 (2012) 773-782. https://doi.org/10.3233/JAD-2012-111799.
F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Biochem. 24 (2013) 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001.
S. Filosa, F. Di Meo, S. Crispi, Polyphenols-gut microbiota interplay and brain neuromodulation, Neural Regen. Res. 13 (2018) 2055-2059. https://doi.org/10.4103/1673-5374.241429.
M.Á. Martínez-González, D. Corella, J. Salas-salvadó, et al., Cohort profile: design and methods of the PREDIMED study, Int. J. Epidemiol. 41 (2012) 377-385. https://doi.org/10.1093/ije/dyq250.
R. Estruch, M.A. Martínez-González, D. Corella, et al., Annals of internal medicine article effects of a mediterranean-style diet on cardiovascular risk factors, Ann. Intern. Med. 145 (2006) 1-11.
C. Valls-Pedret, A. Sala-Vila, M. Serra-Mir, et al., Mediterranean diet and age-related cognitive decline: a randomized clinical trial, JAMA Intern. Med. 175 (2015) 1094-1103. https://doi.org/10.1001/jamainternmed.2015.1668.
W.C. Willett, Nutritional Epidemiology, Oxford University Press, New York, USA, 2012. https://doi.org/10.1093/acprof:oso/9780199754038.001.0001.
J.D. Fernández-Ballart, J.L. Piñol, I. Zazpe, et al., Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain, Br. J. Nutr. 103 (2010) 1808. https://doi.org/10.1017/S0007114509993837.
R. Elosua, M. Garcia, A. Aguilar, et al., Validation of the minnesota leisure time Spanish women, Med. Sci. Sport. Exerc. 32 (2000) 1431-1437.
M. Folstein, S. Folstein, “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician, J. Psychiatr. Res. 12 (1975) 189-198. https://doi.org/10.3744/snak.2003.40.2.021.
A. Rey, L’examen Clinique en Psychologie, Paris, 1964.
D. Wechsler, A standardized memory scale for clinical use, J. Psychol. 19 (1945) 87-95.
A. Ramier, H. Hecaen, Role respectif des atteintes frontales et de la lateralisation lésionnelle dans les déficits de la fluence verbale, Rev. Neurol. 123 (1970) 17-22.
D. Wechsler, Escala de inteligencia de Wechsler para adultos-Ⅲ (WAIS Ⅲ), Madrid, 1999.
L. D’Elia, P. Satz, C. Uchiyama, T. White, Color trails: professional manual, Odessa, 1994.
E.P. Laveriano-santos, M. Marhuenda-muñoz, A. Vallverd, et al., Identification and quantification of urinary microbial phenolic metabolites by HPLC-ESI-LTQ-Orbitrap-HRMS and their relationship with dietary polyphenols in adolescents, Antioxidants 11(6) (2022) 1167. https://doi.org/10.3390/antiox11061167.
A. Medina-Remón, A. Barrionuevo-González, R. Zamora-Ros, et al., Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake, Anal. Chim. Acta 634 (2009) 54-60. https://doi.org/10.1016/j.aca.2008.12.012.
G. Blom, Statistical estimates and transformed beta variables, Inc. Stat. 10 (1960) 53-55. https://doi.org/10.2307/2987488.
R.E. Ley, C.A. Lozupone, M. Hamady, et al., Worlds within worlds: evolution of the vertebrate gut microbiota, Nat. Rev. Microbiol. 6 (2008) 776-788. https://doi.org/10.1038/nrmicro1978.
J. Godos, F. Caraci, A. Micek, et al., Dietary phenolic acids and their major food sources are associated with cognitive status in older Italian adults, Antioxidants 10 (2021) 1-11. https://doi.org/10.3390/antiox10050700.
N. Cheng, L. Bell, D.J. Lamport, et al., Dietary flavonoids and human cognition: a meta-analysis, Mol. Nutr. Food Res. 2100976 (2022) 1-15. https://doi.org/10.1002/mnfr.202100976.
R. González-Domínguez, P. Castellano-Escuder, F. Carmona, et al., Food and microbiota metabolites associate with cognitive decline in older subjects: a 12-year prospective study, Mol. Nutr. Food Res. 65 (2021) 1-10. https://doi.org/10.1002/mnfr.202100606.
K. Krzysztoforska, D. Mirowska-Guzel, E. Widy-Tyszkiewicz, Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans, Nutr. Neurosci. 22 (2019) 72-82. https://doi.org/10.1080/1028415X.2017.1354543.
D. Wang, L. Ho, J. Faith, et al., Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization, Mol. Nutr. Food Res. 59 (2015) 1025-1040. https://doi.org/10.1002/mnfr.201400544.
B.S. McEwen, J.H. Morrison, The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course, Neuron. 79 (2013) 16-29. https://doi.org/10.1016/j.neuron.2013.06.028.
N.S. Vigliecca, S. Baez, Screening executive function and global cognition with the Nine-Card Sorting Test: healthy participant studies and ageing implications, Psychogeriatrics 15 (2015) 163-170. https://doi.org/10.1111/psyg.12104.
R. Kean, D. Lamport, J. Ellis, et al., Chronic consumption of orange juice flavonoids is associated with cognitive benefits: an 8 week randomised double-blind placebo-controlled trial in older adults, Appetite 130 (2018) 308. https://doi.org/10.1016/j.appet.2018.05.204.
A.B. Scholey, S.J. French, P.J. Morris, et al., Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort, J. Psychopharmacol. 24 (2010) 1505-1514. https://doi.org/10.1177/0269881109106923.
K. de Vries, E. Medawar, A. Korosi, et al., The effect of polyphenols on working and episodic memory in non-pathological and pathological aging: a systematic review and meta-analysis, Front. Nutr. 8 (2022). https://doi.org/10.3389/fnut.2021.720756.
F. Sarubbo, D. Moranta, G. Pani, Dietary polyphenols and neurogenesis: molecular interactions and implication for brain ageing and cognition, Neurosci. Biobehav. Rev. 90 (2018) 456-470. https://doi.org/10.1016/j.neubiorev.2018.05.011.
V. Castelli, D. Grassi, R. Bocale, et al., Diet and brain health: which role for polyphenols? Curr. Pharm. Des. 24 (2017) 227-238. https://doi.org/10.2174/1381612824666171213100449.
I. Hajjar, S.S. Hayek, F.C. Goldstein, et al., Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study, J. Neuroinflamm. 15 (2018) 1-7. https://doi.org/10.1186/s12974-017-1026-z.
N. Raz, K.M. Rodrigue, J.D. Acker, Hypertension and the brain: vulnerability of the prefrontal regions and executive functions, Behav. Neurosci. 117 (2003) 1169-1180. https://doi.org/10.1037/0735-7044.117.6.1169.
J. Tan, Y. Li, D.X. Hou, et al., The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity, Antioxidants 8 (2019) 1-16. https://doi.org/10.3390/antiox8100479.
L. Bell, D.J. Lamport, L.T. Butler, et al., A review of the cognitive effects observed in humans following acute supplementation with flavonoids, and their associated mechanisms of action, Nutrients 7 (2015) 10290-10306. https://doi.org/10.3390/nu7125538.
N. Ahmadi, N. Mirazi, A. Komaki, et al., Vanillic acid attenuates amyloid β1-40-induced long-term potentiation deficit in male rats: an in vivo investigation, Neurol. Res. 43 (2021) 562-569. https://doi.org/10.1080/01616412.2021.1893565.
N. Ahmadi, S. Safari, N. Mirazi, et al., Effects of vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats, Brain Res. Bull. 170 (2021) 264-273. https://doi.org/10.1016/j.brainresbull.2021.02.024.
V.F. Salau, O.L. Erukainure, C.U. Ibeji, et al., Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+-induced brain tissues damage, Metab. Brain Dis. 35 (2020) 727-738. https://doi.org/10.1007/s11011-020-00545-y.
R. Ullah, M. Ikram, T.J. Park, et al., Vanillic acid, a bioactive phenolic compound, counteracts LPS-induced neurotoxicity by regulating c-jun n-terminal kinase in mouse brain, Int. J. Mol. Sci. 22 (2021) 1-21. https://doi.org/10.3390/ijms22010361.
A. López-Yerena, I. Domínguez-López, A. Vallverdú-Queralt, et al., Metabolomics technologies for the identification and quantification of dietary phenolic compound metabolites: an overview, Antioxidants 10 (2021) 1-25. https://doi.org/10.3390/antiox10060846.
G. Lee, J.S. Park, E.J. Lee, et al., Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia, Phytomedicine 55 (2019) 50-57. https://doi.org/10.1016/j.phymed.2018.06.032.
P. Chen, F. Chen, J. Lei, et al., The gut microbiota metabolite urolithin b improves cognitive deficits by inhibiting Cyt C-mediated apoptosis and promoting the survival of neurons through the PI3K pathway in aging mice, Front. Pharmacol. 12 (2021) 1-21. https://doi.org/10.3389/fphar.2021.768097.
I. Figueira, G. Garcia, R.C. Pimpão, et al., Polyphenols journey through blood-brain barrier towards neuronal protection, Sci. Rep. 7 (2017) 1-16. https://doi.org/10.1038/s41598-017-11512-6.
578
Views
68
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).