PDF (7.6 MB)
Collect
Submit Manuscript
Open Access

Lactobacillus gasseri CCFM1255 promotes peripheral estrogen synthesis in ovariectomized rats by modulating the gut microbiome and serum metabolome

Qian Chena,bHaiqin Chena,b,c,dJianxin Zhaoa,b,c,dWei Chena,b,cGang Wanga,b,c,d()
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlight

• CCFM1255 increases circulating estradiol level and inhibits inflammation in OVX rats

• CCFM1255 upregulates the transcription of CYP19 in adipose tissue of OVX rats

• CCFM1255 reshapes serum metabolic profile and gut microbiota profile in OVX rats

• The effect of CCFM1255 on estrogen synthesis may be related to Gln in serum

Abstract

The decline in ovarian estrogen production is known to have detrimental health consequences and negatively affect the quality of life in menopausal women. Increasing estradiol levels is key to preventing disease in menopausal women. In this study, Lactobacillus gasseri CCFM1255 isolated from healthy infants was found to have a positive effect on estradiol production in ovariectomized rats. CYP19, the key enzyme catalysing the conversion of androgens into estrogens, was upregulated in adipose tissue upon CCFM1255 treatment. Untargeted metabolome analysis and targeted metabolite detection were used to identify the key metabolites altered by CCFM1255 treatment. CCFM1255 treatment significantly improved the serum concentration of glutamine (Gln). A significantly positive correlation was observed between serum Gln and estradiol concentrations. CCFM1255 treatment reshaped the structure of the gut microbiome, which was correlated with certain changes in serum metabolite concentrations. These results indicate that the provision of CCFM1255 as a dietary supplement may be an effective strategy to alleviate menopausal symptoms by increasing circulating estradiol.

References

[1]

J.M. Hall, J.F. Couse, K.S. Korach, The multifaceted mechanisms of estradiol and estrogen receptor signaling, J. Biol. Chem. 276 (2001) 36869-36872. https://doi.org/10.1074/jbc.R100029200.

[2]

P. Monteleone, G. Mascagni, A. Giannini, et al., Symptoms of menopause-global prevalence, physiology and implications, Nat. Rev. Endocrinol. 14 (2018) 199-215. https://doi.org/10.1038/nrendo.2017.180.

[3]

T. Fait, Menopause hormone therapy: latest developments and clinical practice, Drugs Context 8 (2019). https://doi.org/10.7573/dic.212551.

[4]

E. Thursby, N. Juge, Introduction to the human gut microbiota, Biochem. J. 474 (2017) 1823-1836. https://doi.org/10.1042/BCJ20160510.

[5]

H. Adlercreutz, F. Martin, P. Järvenpää, et al., Steroid absorption and enterohepatic recycling, Contraception 20 (1979) 201-223. https://doi.org/10.1016/0010-7824(79)90094-5.

[6]

G. Clarke, R.M. Stilling, P.J. Kennedy, et al., Minireview: gut microbiota: the neglected endocrine organ, Mol. Endocrinol. 28 (2014) 1221-1238. https://doi.org/10.1210/me.2014-1108.

[7]

J.H. Shin, Y.H. Park, M. Sim, et al., Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome, Res. Microbiol. 170 (2019) 192-201. https://doi.org/10.1016/j.resmic.2019.03.003.

[8]

M. Insenser, M. Murri, R. Del Campo, et al., Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity, J. Clin. Endocr. Metab. 103 (2018) 2552-2562. https://doi.org/10.1210/jc.2017-02799.

[9]

J. Mihajlovic, M. Leutner, B. Hausmann, et al., Combined hormonal contraceptives are associated with minor changes in composition and diversity in gut microbiota of healthy women, Environ. Microbiol. 23 (2021) 3037-3047. https://doi.org/10.1111/1462-2920.15517.

[10]
R. Li, Y. Li, C. Li, et al., Gut microbiota and endocrine disorder, in P. Chen (Ed.), Gut Microbiota and Pathogenesis of Organ Injury, 2020, pp. 143-164. https://doi.org/10.1007/978-981-15-2385-4_9.
[11]

B. Sánchez, S. Delgado, A. Blanco-Míguez, et al., Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res. 61 (2017) 1600240. https://doi.org/10.1002/mnfr.201600240.

[12]

Y. He, Q. Wang, X. Li, et al., Lactic acid bacteria alleviate polycystic ovarian syndrome by regulating sex hormone related gut microbiota, Food Funct. 11 (2020) 5192-5204. https://doi.org/10.1039/c9fo02554e.

[13]

W. Chen, Y. Pang, Metabolic syndrome and PCOS: pathogenesis and the role of metabolites, Metabolites 11 (2021) 869. https://doi.org/10.3390/metabo11120869.

[14]

Q. Chen, B. Wang, S. Wang, et al., Modulation of the gut microbiota structure with probiotics and isoflavone alleviates metabolic disorder in ovariectomized mice, Nutrients 13 (2021) 1793. https://doi.org/10.3390/nu13061793.

[15]

J. Chong, D.S. Wishart, J. Xia, Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis, Curr. Protoc. Bioinformatics 68 (2019) e86. https://doi.org/10.1002/cpbi.86.

[16]

L. Zhang, W. Zheng, X. Li, et al., A merged method for targeted analysis of amino acids and derivatives using parallel reaction monitoring combined with untargeted profiling by HILIC-Q-Orbitrap HRMS, J. Pharmaceut. Biomed. 203 (2021) 114208. https://doi.org/10.1016/j.jpba.2021.114208.

[17]

L. Xu, L. Guo, Z. Wang, et al., Profiling and identification of biocatalyzed transformation of sulfoxaflor in vivo, Angewandte Chemie. 132 (2020) 16352-16358. https://doi.org/10.1002/ange.202007079.

[18]

L.R. Nelson, S.E. Bulun, Estrogen production and action, J. Am. Acad. Dermatol. 45 (2001) S116-S124. https://doi.org/10.1067/mjd.2001.117432.

[19]

R.A. Lobo, S.R. Davis, T. De Villiers, et al., Prevention of diseases after menopause, Climacteric 17 (2014) 540-556. https://doi.org/10.3109/13697137.2014.933411.

[20]

M.M. Stojanoska, A. Milankov, B. Vukovic, et al., Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study, Environ. Monit. Assess. 187 (2015) 526. https://doi.org/10.1007/s10661-015-4754-5.

[21]

A.H. Payne, D.B. Hales, Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones, Endocr. Rev. 25 (2004) 947-970. https://doi.org/10.1210/er.2003-0030.

[22]

E. Simpson, G. Rubin, C. Clyne, et al., The role of local estrogen biosynthesis in males and females, Trends Endocrin. Met. 11 (2000) 184-188. https://doi.org/10.1016/S1043-2760(00)00254-X.

[23]

J. Cui, Y. Shen, R. Li, Estrogen synthesis and signaling pathways during aging: from periphery to brain, Trends Mol. Med. 19 (2013) 197-209. https://doi.org/10.1016/j.molmed.2012.12.007.

[24]

C.M. Klinge, B.J. Clark, R.A. Prough, Dehydroepiandrosterone research: past, current, and future, Vitam. Horm. 108 (2018) 1-28. https://doi.org/10.1016/bs.vh.2018.02.002.

[25]

N. Psychogios, D.D. Hau, J. Peng, et al., The human serum metabolome, PLoS ONE 6 (2011) e16957. https://doi.org/10.1371/journal.pone.0016957.

[26]

H. Chen, G. Cao, D.Q. Chen, et al., Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression, Redox. Biol. 10 (2016) 168-178. https://doi.org/10.1016/j.redox.2016.09.014.

[27]

I. Gertsman, B.A. Barshop, Promises and pitfalls of untargeted metabolomics, J. Inherit. Metab. Dis. 41 (2018) 355-366. https://doi.org/10.1007/s10545-017-0130-7.

[28]

D.R. Wise, C.B. Thompson, Glutamine addiction: a new therapeutic target in cancer, Trends Biochem. Sci. 35 (2010) 427-433. https://doi.org/10.1016/j.tibs.2010.05.003.

[29]

L. Verdier, Y. Boirie, S. Van Drieesche, et al., Do sex steroids regulate glutamine synthesis with age? Am. J. Physiol-Endoc. M. 282 (2002) E215-E221. https://doi.org/10.1152/ajpendo.00117.2001.

[30]

L. Wang, C. Zhou, J. Sun, et al., Glutamine and norepinephrine in follicular fluid synergistically affect the antioxidant capacity of human granulosa cells and the outcome of IVF-ET, Sci. Rep. 12 (2022) 9936. https://doi.org/10.1038/s41598-022-14201-1.

[31]
N. Kim, Sex difference of gut microbiota, in Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, 2022, pp. 363-377. https://doi.org/10.1007/978-981-19-0120-1_22.
[32]

M. Kunc, A. Gabrych, J.M. Witkowski, Microbiome impact on metabolism and function of sex, thyroid, growth and parathyroid hormones, Acta Biochim. Pol. 63 (2016) 189-201. https://doi.org/10.18388/abp.2015_1093.

[33]

A.Z.Z. de Souza, A.Z. Zambom, K.Y. Abboud, et al., Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: a pilot study, Nutrition 31 (2015) 884-889. https://doi.org/10.1016/j.nut.2015.01.004.

[34]

R.E. Ley, Prevotella in the gut: choose carefully, Nat. Rev. Gastroenterol. Hepatol. 13 (2016) 69-70. https://doi.org/10.1038/nrgastro.2016.4.

Food Science and Human Wellness
Pages 3301-3310
Cite this article:
Chen Q, Chen H, Zhao J, et al. Lactobacillus gasseri CCFM1255 promotes peripheral estrogen synthesis in ovariectomized rats by modulating the gut microbiome and serum metabolome. Food Science and Human Wellness, 2024, 13(6): 3301-3310. https://doi.org/10.26599/FSHW.2023.9250016
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return