PDF (5.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (10)

Show 1 more figures Hide 1 figures
Open Access

Krill oil ameliorates benign prostatic hyperplasia by regulating G1-phase cell cycle arrest and altering signaling pathways and benign prostatic hyperplasia-associated markers

Hoon KimaJongyeob KimaByungdoo HwangaSangYong ParkbJi-Yeon ShinbEunByeol GobJae Sil KimbYoungjin RohaSoonChul MyungcSeok-Joong YundYungHyun ChoieWun-Jae KimfSung-Kwon Moona()
Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
SD Biotechnologies, Seoul 07793, Republic of Korea
Department of Urology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
Department of Urology, Chungbuk National University, Chungbuk 361-763, Republic of Korea
Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
Institute of Urotech, Cheongju, Chungcheongbuk-do 361-763, Republic of Korea

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Krill oil (KO) inhibits proliferation of normal prostatic cells

• KO induces G1-phase cell cycle arrest via regulation of CDKs, cyclins, and CDKIs

• KO affects signaling pathway and proliferation-mediated NF-κB binding activity

• Oral administration of KO improves BPH in a rat model

• KO modulates expression of BPH-associated markers in vitro and in vivo

Graphical Abstract

View original image Download original image

Abstract

Krill oil (KO) exhibits various biological activities, such as anti-inflammatory and antitumor effects. However, the inhibitory effects of benign prostatic hyperplasia (BPH) in vitro and in vivo have not yet been studied. This study investigated the anti-BPH effects of KO extracted by an enzymatic hydrolysis method. KO treatment inhibited the proliferation of WMPY-1 and BPH-1 cells by induction of G0/G1 phase arrest through the modulation of positive and negative regulators in both prostate cell types. KO treatment stimulated phosphorylation of c-Jun N-terminal kinase (JNK) and p38 signaling. In addition, KO changed the expression of BPH-related markers (5α-reductase, androgen receptor, FGF, Bcl-2, and Bax) and the activity of the proliferation-mediated NF-κB binding motif. KO-induced levels of proliferation-mediated molecules of prostate cells were attenuated in the presence of siRNA-specific p-38 (si-p38) and JNK (si-JNK). Furthermore, the administration of KO alleviated prostate size and weight and the cell layer thickness of prostate glands in a testosterone enanthate-induced BPH rat model. KO treatment altered the level of dihydrotestosterone in serum and the expression levels of BPH-related markers in prostate tissues. Finally, KO-mediated inhibition of prostatic growth was validated by histological analysis. These results suggest that KO has an inhibitory effect on BPH in prostate cells in vitro and in vivo. Thus, KO might be a potential prophylactic or therapeutic agent for patients with BPH.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3311_ESM.docx (1.5 MB)

References

[1]

J. Sausville, M. Naslund. Benign prostatic hyperplasia and prostate cancer: an overview for primary care physicians, Int. J. Clin. Pract. 64 (2010) 1740-1745. http://doi.org/10.1111/j.1742-1241.2010.02534.x.

[2]

K.B. Lim. Epidemiology of clinical benign prostatic hyperplasia, Asian J. Urol. 4 (2017) 148-151. http://doi.org/10.1016/j.ajur.2017.06.004.

[3]

C.J. Girman, S.J. Jacobsen, T. Rhodes, et al., Association of health-related quality of life and benign prostatic enlargement, Eur. Urol. 35 (1999) 277-284. http://doi.org/10.1159/000019861.

[4]

C.J. Girman, S.J. Jacobsen, T. Tsukamoto, et al., Health-related quality of life associated with lower urinary tract symptoms in four countries, Urology 51 (1998) 428-436. http://doi.org/10.1016/s0090-4295(97)00717-6.

[5]

J.C. Nickel, P. Gilling, T.L. Tammela, et al., Comparison of dutasteride and finasteride for treating benign prostatic hyperplasia: the Enlarged Prostate International Comparator Study (EPICS), BJU Int. 108 (2011) 388-394. http://doi.org/10.1111/j.1464-410X.2011.10195.x.

[6]

L. Pirozzi, P. Sountoulides, P. Castellan, et al., Current pharmacological treatment for male LUTS due to BPH: dutasteride or finasteride? Curr. Drug Targets. 16 (2015) 1165-1171. http://doi.org/10.2174/1389450116666150518101617.

[7]

J.P. Deslypere, M. Young, J.D. Wilson, et al., Testosterone and 5α-dihydrotestosterone interact differently with the androgen receptor to enhance transcription of the MMTV-CAT reporter gene, Mol. Cell. Endocrinol. 88 (1992) 15-22. http://doi.org/10.1016/0303-7207(92)90004-p.

[8]

R.J. Carrasquillo, S.W. Nealy, D.S. Wang. 5-Alpha-reductase inhibitors in diseases of the prostate, Curr. Opin. Endocrinol. Diabetes Obes. 21 (2014) 488-492. http://doi.org/10.1097/med.0000000000000110.

[9]

M. Marcelli, G.R. Cunningham. Hormonal signaling in prostatic hyperplasia and neoplasia, J. Clin. Endocrinol. Metab. 84 (1999) 3463-3468. http://doi.org/10.1210/jcem.84.10.6083.

[10]

Y. Niu, Y. Xu, J. Zhang, et al., Proliferation and differentiation of prostatic stromal cells, BJU Int. 87 (2001) 386-393. http://doi.org/10.1046/j.1464-410x.2001.00103. x.

[11]

I.Y. Kim, D.J. Zelner, J.A. Sensibar, et al., Modulation of sensitivity to transforming growth factor-β1 (TGF-β1) and the level of type Ⅱ TGF-β receptor in LNCaP cells by dihydrotestosterone, Exp. Cell Res. 222 (1996) 103-110. http://doi.org/10.1006/excr.1996.0013.

[12]

C. Carson, 3rd, R. Rittmaster. The role of dihydrotestosterone in benign prostatic hyperplasia, Urology 61 (2003) 2-7. http://doi.org/10.1016/s0090-4295(03)00045-1.

[13]

M.T. Quiles, M.A. Arbós, A. Fraga, et al., Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH), Prostate 70 (2010) 1044-1053. http://doi.org/10.1002/pros.21138.

[14]

M.K. Abdel-Rahman, Effect of pumpkin seed (Cucurbita pepo L.) diets on benign prostatic hyperplasia (BPH): chemical and morphometric evaluation in rats, World J. Chem. 1 (2006) 33-40.

[15]

F. Vacherot, M. Azzouz, S. Gil-Diez-De-Medina, et al., Induction of apoptosis and inhibition of cell proliferation by the lipido-sterolic extract of Serenoa repens (LSESr, Permixon®) in benign prostatic hyperplasia, Prostate 45 (2000) 259-266.http://doi.org/10.1002/1097-0045(20001101)45:3<259::aid-pros9>3.0.co;2-g.

[16]

C.J. Sherr. Cancer cell cycles, Science 274 (1996) 1672-1677. http://doi.org/10.1126/science.274.5293.1672.

[17]

A.S. Lundberg, R.A. Weinberg. Control of the cell cycle and apoptosis, Eur. J. Cancer, 35 (1999) 1886-1894. http://doi.org/10.1016/s0959-8049(99)00292-0.

[18]

T. Pawson, P. Nash. Protein-protein interactions define specificity in signal transduction, Genes Dev. 14 (2000) 1027-1047. http://doi.org/10.1101/gad.14.9.1027.

[19]

C. Porta, C. Paglino, A. Mosca, Targeting PI3K/Akt/mTOR signaling in cancer, Front. Oncol. 4 (2014) 64. http://doi.org/10.3389/fonc.2014.00064.

[20]

J.R. Testa, A. Bellacosa. AKT plays a central role in tumorigenesis, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 10983-10985. http://doi.org/10.1073/pnas.211430998.

[21]

X. Chen, H. Thakkar, F. Tyan, et al., Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer, Oncogene. 20 (2001) 6073-6083. http://doi.org/10.1038/sj.onc.1204736.

[22]

R. Treisman. Regulation of transcription by MAP kinase cascades, Curr. Opin. Cell Biol. 8 (1996) 205-215. http://doi.org/10.1016/s0955-0674(96)80067-6.

[23]

M. Royuela, M.I. Arenas, F.R. Bethencourt, et al., Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate, Hum Pathol. 33 (2002) 299-306. http://doi.org/10.1053/hupa.2002.32227.

[24]

B. Su, M. Karin. Mitogen-activated protein kinase cascades and regulation of gene expression, Curr. Opin. Immunol. 8 (1996) 402-411. http://doi.org/10.1016/s0952-7915(96)80131-2.

[25]

R. Patel, B. Bartosch, J.L. Blank. p21WAF1 is dynamically associated with JNK in human T-lymphocytes during cell cycle progression, J. Cell Sci. 111(Pt 15) (1998) 2247-2255. http://doi.org/10.1242/jcs.111.15.2247.

[26]

W. Zheng, X. Wang, W. Cao, et al., E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro, Prostaglandins Leukot. Essent. Fatty Acids 117 (2017) 47-53. http://doi.org/10.1016/j. plefa.2017.01.005.

[27]

L. Burri, L. Johnsen, Krill products: an overview of animal studies, Nutrient 7 (2015) 3300-3321. http://doi.org/10.3390/nu7053300.

[28]

R. Bustos, L. Romo, K. Yáñez, et al., Oxidative stability of carotenoid pigments and polyunsaturated fatty acids in microparticulate diets containing krill oil for nutrition of marine fish larvae, J. Food Eng. 56 (2003) 289-293. http://doi.org/10.1016/S0260-8774(02)00272-8.

[29]

J.P. Schuchardt, I. Schneider, H. Meyer, et al., Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations-a comparative bioavailability study of fish oil vs. krill oil, Lipids Health Dis. 10 (2011) 145. http://doi.org/10.1186/1476-511x-10-145.

[30]

D.R. Park, R. Ko, S.H. Kwon, et al., FlexPro MD, a mixture of krill oil, astaxanthin, and hyaluronic acid, suppresses lipopolysaccharide-induced inflammatory cytokine production through inhibition of NF-κB, J. Med. Food. 19 (2016) 1196-1203. http://doi.org/10.1089/jmf.2016.3787.

[31]

A.G. Jayathilake, M.F. Veale, R.B. Luwor, et al., Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression, BMC Complementary Med. Ther. 20 (2020) 372. http://doi.org/10.1186/s12906-020-03160-7.

[32]

W. Jing, Y. Bi, G. Wang, et al., Krill oil perturbs proliferation and migration of mouse colon cancer cells in vitro by impeding extracellular signalregulated protein kinase signaling pathway, Lipids 56 (2021) 141-153. http://doi.org/10.1002/lipd.12281.

[33]

Y. Li, B. Shi, F. Dong, et al., Effects of inflammatory responses, apoptosis, and STAT3/NF-κB- and Nrf2-mediated oxidative stress on benign prostatic hyperplasia induced by a high-fat diet, Aging 11 (2019) 5570-5578. http://doi.org/10.18632/aging.102138.

[34]

H. Ren, X. Li, G. Cheng, et al., The effects of ROS in prostatic stromal cells under hypoxic environment, Aging Male 18 (2015) 84-88. http://doi.org/10.3109/13685538.2015.1018159.

[35]

F.T. Ferreira, L. Daltoé, G. Succi, et al., Relation between glycemic levels and low tract urinary symptoms in elderly, Aging Male 18 (2015) 34-37. http://doi.org/10.3109/13685538.2014.908461.

[36]

T. Grimstad, B. Bjørndal, D. Cacabelos, et al., Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats, Scand. J. Gastroenterol. 47 (2012) 49-58. http://doi.org/10.3109/00365521.2011.634025.

[37]

J.J. Zhu, J.H. Shi, W.B. Qian, et al., Effects of krill oil on serum lipids of hyperlipidemic rats and human SW480 cells, Lipids Health Dis. 7 (2008) 30. http://doi.org/10.1186/1476-511x-7-30.

[38]

H. Kim, Y. Roh, S. Yong Park, et al., In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: involvement of tumor-associated angiogenic vasculature, Food Res. Int. 156 (2022) 111144. http://doi.org/10.1016/j.foodres.2022.111144.

[39]

M. Karin, Y. Cao, F.R. Greten, et al., NF-κB in cancer: from innocent bystander to major culprit, Nat. Rev. Cancer 2 (2002) 301-310. http://doi.org/10.1038/nrc780.

[40]

P. Dhawan, A. Richmond. A novel NF-κB-inducing kinase-MAPK signaling pathway up-regulates NF-κB activity in melanoma cells, J. Biol. Chem. 277 (2002) 7920-7928. http://doi.org/10.1074/jbc.M112210200.

[41]

H. Lepor. Pathophysiology, epidemiology, and natural history of benign prostatic hyperplasia, Rev. Urol. 6(Suppl 9) (2004) S3-1010.

[42]

C. Cordon-Cardo, A. Koff, M. Drobnjak, et al., Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma, J. Natl. Cancer Inst. 90 (1998) 1284-1291. http://doi.org/10.1093/jnci/90.17.1284.

[43]

P. Tripathi, A. Aggarwal, NF-kB transcription factor: a key player in the generation of immune response, Curr. Sci. 90 (2006) 519-531.

[44]

Y. Yamamoto, R.B. Gaynor, Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer, J. Clin. Invest. 107 (2001) 135-142. http://doi.org/10.1172/jci11914.

[45]

A.F.G. Cicero, O. Allkanjari, G.M. Busetto, et al., Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer, Arch. Ital. Urol. Androl. 91 (2019) 139-152. http://doi.org/10.4081/aiua.2019.3.139.

[46]

E. Pagano, M. Laudato, M. Griffo, et al., Phytotherapy of benign prostatic hyperplasia. A minireview, Phytother Res. 28 (2014) 949-955. http://doi.org/10.1002/ptr.5084.

[47]

X.C. Kang, T. Chen, J.L. Zhou, et al., Phytosterols in hull-less pumpkin seed oil, rich in Δ7-phytosterols, ameliorate benign prostatic hyperplasia by lowing 5α-reductase and regulating balance between cell proliferation and apoptosis in rats, Food Nutr. Res. 65 (2021) 7537. http://doi.org/10.29219/fnr.v65.7537.

[48]

J.J. Lichius, C. Muth. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse, Planta Med. 63 (1997) 307-310. http://doi.org/10.1055/s-2006-957688.

[49]

C. Ub Wijerathne, H.S. Park, H.Y. Jeong, et al., Quisqualis indica improves benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis, Biological & Pharmaceutical Bulletin 40 (2017) 2125-2133. http://doi.org/10.1248/bpb.b17-00468.

[50]

H. Norimoto, K. Nakajima, S. Yomoda, et al., Testosterone 5α-reductase inhibitory constituents from the fruits of Rosa multiflora Thunb., J. Tradit. Med. 27 (2010) 90-95. http://doi.org/10.11339/jtm.27.90.

[51]

L. Wang, Y. Hou, R. Wang, et al., Inhibitory effect of astaxanthin on testosterone-induced benign prostatic hyperplasia in rats, Mar. Drugs 19 (2021). http://doi.org/10.3390/md19120652.

[52]

C. Wang, F. Luo, Y. Zhou, et al., The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats, Exp. Cell Res. 345 (2016) 125-133. http://doi.org/10.1016/j.yexcr.2015.03.026.

[53]

H. Pham, V.A. Ziboh. 5α-Reductase-catalyzed conversion of testosterone to dihydrotestosterone is increased in prostatic adenocarcinoma cells: suppression by 15-lipoxygenase metabolites of gamma-linolenic and eicosapentaenoic acids, J. Steroid Biochem. Mol. Biol. 82 (2002) 393-400. http://doi.org/10.1016/s0960-0760(02)00217-0.

[54]

L. Amate, A. Gil, M. Ramírez. Feeding infant piglets formula with longchain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions, J. Nutr. 131 (2001) 1250-1255. http://doi.org/10.1093/jn/131.4.1250.

[55]

S.A. Mathews, W.T. Oliver, O.T. Phillips, et al., Comparison of triglycerides and phospholipids as supplemental sources of dietary long-chain polyunsaturated fatty acids in piglets, J. Nutr. 132 (2002) 3081-3089. http://doi.org/10.1093/jn/131.10.3081.

[56]

L. Zhang, H. Wang. Multiple mechanisms of anti-cancer effects exerted by astaxanthin, Mar. Drugs 13 (2015) 4310-4330. http://doi.org/10.3390/md13074310.

Food Science and Human Wellness
Pages 3311-3324
Cite this article:
Kim H, Kim J, Hwang B, et al. Krill oil ameliorates benign prostatic hyperplasia by regulating G1-phase cell cycle arrest and altering signaling pathways and benign prostatic hyperplasia-associated markers. Food Science and Human Wellness, 2024, 13(6): 3311-3324. https://doi.org/10.26599/FSHW.2023.9250017
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return