Potentilla anserina L. (PA) belongs to the Rosaceae family, is a common edible plant in the Qinghai-Tibet Plateau areas of China. This study elucidates the mechanism upon which crude polysaccharide of PA (PAP) on fat accumulation in HepG2 cells stimulated by oleic acid (OA) and high fat high sugar induced mice. The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells. Specifically, compared to the control group, the TG and TC levels were decreased in cells and mice serum, the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment. The expressions of adipogenic genes of SREBP-1c, C/EBPα, PPARγ, and FAS were inhibited after PAP treatment. Moreover, PAP increased the mRNA levels of CPT-1 and PPARα, which were involved in fatty acid oxidation. The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.
N.L. Gluchowski, B. Michel, T.C. Walther, et al., Lipid droplets and liver disease: from basic biology to clinical implications, Nat. Rev. Gastro. Hepat. 14 (2017) 343-355. https://doi.org/10.1038/nrgastro.2017.32.
G.A. Michelotti, M.V. Machado, A.M. Diehl, NAFLD, NASH and liver cancer, Nat. Rev. Gastro. Hepat. 10 (2013) 656-665. https://doi.org/10.1038/nrgastro.2013.183.
S.A. Parry, L. Hodson, Managing NAFLD in type 2 diabetes: the effect of lifestyle interventions, a narrative review, Adv. Ther. 37 (2020) 1381-1406. https://doi.org/10.1007/s12325-020-01281-6.
U. Iqbal, B.J. Perumpail, N. John, et al., Judicious use of lipid lowering agents in the management of NAFLD, Diseases 6 (2018) 87. https://doi.org/10.3390/diseases6040087.
J.R. Chen, Z.Q. Yang, T.J. Hu, et al., Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina, Fitoterapia 81 (2010) 1117-1124. https://doi.org/10.1016/j.fitote.2010.07.009.c.
P.H. Guo, C. Hong, J.P. Ma, et al., Enzyme-assisted extraction, characterization, and in vitro antioxidant activity of polysaccharides from Potentilla anserina L, Front. Nutr. 10 (2023) 1216572. https://doi.org/10.3389/fnut.2023.1216572.
G.T. Min, Protective mechanism of Potentilla anserina polysaccharide on mice with D-galactosamine-induced acute liver injury, Academic Journal of Second Military Medical University (2016) 916-919. https://doi.org/10.16781/j.0258-879x.2016.07.0916.
T. Morikawa, K. Ninomiya, K. Imura, et al., Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina, Phytochemistry 102 (2014) 169-181. https://doi.org/10.1016/j.phytochem.2014.03.002.
X. Qin, L. Li, Q. Lv, et al., Underlying mechanism of protection from hypoxic injury seen with n-butanol extract of Potentilla anserine L. in hippocampal neurons, Neural. Regen. Res. 7 (2012) 2576. https://doi.org/10.3969/j.issn.1673-5374.2012.33.002.
M. Tomczyk, K.P. Latté, Potentilla—a review of its phytochemical and pharmacological profile, J. Ethnopharmacol. 122 (2009) 184-204. https://doi.org/10.1016/j.jep.2008.12.022.
Y.L. Zhao, G.M. Cai, X. Hong, et al., Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L., Phytomedicine 15 (2008) 253-258. https://doi.org/10.1016/j.phymed.2008.01.005.
B. Zhao, J. Zhang, J. Yao, et al., Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide, Int. J. Biol. Macromol. 58 (2013) 320-328. https://doi.org/10.1016/j.ijbiomac.2013.04.059.
J. Sun, Q. Ma, L. Wang, et al., Protective effects of aqueous extract of Potentillae discoloris Herba on lipotoxic rat islet cells, Chinese Patent Medicine 6 (2019) 1242-1247. http://dx.chinadoi.cn/10.3969/j.issn.1001-1528.2019.06.009.
J. Wei, Q. Huang, R. Huang, et al., Asiatic acid from Potentilla chinensis attenuate ethanol-induced hepatic injury via suppression of oxidative stress and Kupffer cell activation, Biol. Pharm. Bull. (2013) 1980-1989. https://doi.org/10.1248/bpb.b13-00634.
T. Morikawa, K. Imura, Y. Akagi, et al., Ellagic acid glycosides with hepatoprotective activity from traditional Tibetan medicine Potentilla anserina, J. Nat. Med. 72 (2018) 317-325. https://doi.org/10.1007/s11418-017-1137-y.
Y. Zhang, X. Li, Q. Yang, et al., Antioxidation, anti-hyperlipidaemia and hepatoprotection of polysaccharides from Auricularia auricular residue, Chem-Biol. Interact. 333 (2021) 109323. https://doi.org/10.1016/j.cbi.2020.109323.
M. Dubois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017.
A.A.N. Saqib, P.J. Whitney, Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars, Biomass Bioenerg. 35 (2011) 4748-4750. https://doi.org/10.1016/j.biombioe.2011.09.013.
N. Blumenkrantz, G.H. Asboe, New method for quantitative determination of uronic acids, Anal. Biochem. 54 (1973) 484-489. https://doi.org/10.1016/0003-2697(73)90377-1.
C. Chen, L.J. You, A.M. Abbasi, et al., Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro, Food Funct. 7 (2016) 530-539. https://doi.org/10.1039/C5FO01114K.
M. Zhu, R. Huang, P. Wen, et al., Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels, Carbohyd. Polym. 254 (2021) 117371. https://doi.org/10.1016/j.carbpol.2020.117371.
H. Rafiei, K.Omidian, B.Bandy, Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function, Nutrients 11 (2019) 541. https://doi.org/10.3390/nu11030541.
C.J. Liou, S.J. Wu, L.C. Chen, et al., Acacetin from traditionally used Saussurea involucrata Kar. et Kir. suppressed adipogenesis in 3T3-L1 adipocytes and attenuated lipid accumulation in obese mice, Front. Pharmacol. 8 (2017) 589. https://doi.org/10.3389/fphar.2017.00589.
H.S. Gao, L.L. Ding, R. Liu, et al., Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice, Int. J. Biol. Macromol. 179 (2021) 259-269. https://doi.org/10.1016/j.ijbiomac.2021.02.217.
Z. Pataky, E.B. Harsch, A. Golay, Open questions about metabolically normal obesity, Int. J. Obesity. 34 (2010) S18-S23. https://doi.org/10.1038/ijo.2010.235.
B.M. Popkin, L.S. Adair, S.W. Ng, Global nutrition transition and the pandemic of obesity in developing countries, Nutr. Rev. 70 (2012) 3-21. https://doi.org/10.1111/j.1753-4887.2011.00456.x.
T.H. Fu, S.J. Wang, J. Liu, et al., Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice, Eur. J. Pharmacol. 827 (2018) 173-180. https://doi.org/10.1016/j.ejphar.2018.03.002.
C.W. Song, L. Huang, L. Rong, et al., Anti-hyperglycemic effect of Potentilla discolor decoction on obese-diabetic (ob-db) mice and its chemical composition, Fitoterapia 83(8) (2012) 1474-1483. https://doi.org/10.1016/j.fitote.2012.08.013.
P.F. He, A.Q. Zhang, F.M. Zhang, et al., Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia, Carbohyd. Polym. 152 (2016) 222-230. https://doi.org/10.1016/j.carbpol.2016.07.010.
M.A. Bezerra, D.E. Cohen, Triglyceride metabolism in the liver, Compr. Physiol. 8 (2017) 1. https://doi.org/10.1002/cphy.c170012.
W.Y. Zhang, H. Guan, D.J. Huang, et al., Effects of preheating temperatures on β-lactoglobulin structure and binding interaction with dihydromyricetin, efood 3(5) (2022) e30. https://doi.org/10.1002/efd2.30.
L.Y. Ren, D.M. Sun, X. Zhou, et al., Chronic treatment with the modified Longdan Xiegan Tang attenuates olanzapine-induced fatty liver in rats by regulating hepatic de novo lipogenesis and fatty acid beta-oxidationassociated gene expression mediated by SREBP-1c, PPAR-alpha and AMPK-alpha, J. Ethnopharmacol. 232 (2019) 176-187. https://doi.org/10.1016/j.jep.2018.12.034.
S. Assaf, S. Lagarrigue, S. Daval, et al., Genetic linkage and expression analysis of SREBP and lipogenic genes in fat and lean chicken, Comp. Biochem. Phys. B 137(4) (2004) 433-441. https://doi.org/10.1016/j.cbpc.2004.02.005.
A. Chen, X.Y. Chen, S. Cheng, et al., FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells, BBA-Biomembranes. 1863(5) (2018) 538-548. https://doi.org/10.1016/j.bbalip.2018.02.003.
Y. Mi, D.H.Tan, Y. He, et al., Melatonin modulates lipid metabolism in HepG2 cells cultured in high concentrations of oleic acid: AMPK pathway activation may play an important role, Cell Biochem. Biophys. 76(4) (2018) 463-470. https://doi.org/10.1007/s12013-018-0859-0.
Y.U. Li, S.Q. Xu, M.M. Mihaylova, et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell Metab. 13(4) (2011) 376-388. https://doi.org/10.1016/j.cmet.2011.03.009.
Y.H. Choi, J.K. Bae, H.S. Chae, et al., α-Mangostin regulates hepatic steatosis and obesity through SirT1-AMPK and PPARγ pathways in high-fat diet-induced obese mice, J. Agric. Food Chem. 63(38) (2015) 8399-8406. https://doi.org/10.1021/acs.jafc.5b01637.